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Abstract—For channel analysis in high-mobility scenarios,
accurate estimation of fractional delay–Doppler parameters is
essential for reliable sensing and communication. To address
this challenge, we explain two novel methods in this paper. First,
we introduce a generalized root raised cosine (RRC) window
that removes the conventional constraint of keeping window
values within [0, 1], allowing negative and greater-than-one
values for enhanced waveform flexibility. When combined with
the corresponding interpolation algorithm, this method achieves
improved sensing capability. In addition, we present a two-stage,
Prony-based estimation method that can accurately recover up
to 𝑁 − 1 delay–Doppler parameters under noiseless conditions.
Numerical simulations validate the high estimation accuracy of
these approaches and demonstrate their strong potential for
future ISAC frameworks.

Index Terms—OTFS, radar, delay Doppler estimation

I. Introduction
Orthogonal Time-Frequency Space (OTFS) modulation has

recently drawn much attention as a robust solution for high-
mobility wireless systems due to its strong resilience against
Doppler effects and its suitability for doubly dispersive chan-
nels [1]–[3]. Beyond traditional signal structure, OTFS has
emerged as a promising framework for Integrated Sensing
and Communication (ISAC) [4]–[6], offering higher spectral
utilization and robustness by merging sensing and communi-
cation into a unified structure [7].

A key requirement for both OTFS-based communication
and sensing is the accurate estimation of multipath channel
parameters, particularly delay and Doppler. When these pa-
rameters lie on integer delay-Doppler grid points, estimation
is straightforward. However, real propagation conditions typi-
cally involve fractional delays and Doppler shifts, which cause
energy dispersion across neighboring delay-Doppler bins, gen-
erate inter-path interference, and significantly degrade estima-
tion accuracy [8]–[12]. While recent works attempt to mitigate
these issues through the method like enhanced correlation
methods [13], refined signal modeling [10], analytical investi-
gations [12], or sequential estimation for MIMO-OTFS [14],
their performance is often constrained by grid quantization or
heavy pilot overhead.

Motivated by these, this work addresses two methods for
high-mobility OTFS sensing. First, we consider a waveform
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that employs a generalized window function derived from
the root raised cosine (RRC) [15], which, to the best of our
knowledge, have not been systematically utilized for OTFS
sensing. Leveraging this waveform, we derive an accurate
discrete-time input–output relation that accounts for fractional
delay-Doppler parameters. Based on this model, we further
show an interpolation technique built upon the autocorrelation
of the RRC function, enabling high-precision estimation of
fractional delay and Doppler.

Second, we develop a two-stage high-resolution estimation
method using Prony’s technique [16]. By reorganizing the
received OTFS pilot in Time-delay domain, Doppler com-
ponents are isolated and estimated first by jointly solving
several coupled Prony equations. Then delay extraction is also
processed by applying the discrete Fourier transform (DFT)
and Prony’s method. Under noiseless conditions, the Prony
method can precisely estimate up to 𝑁−1 delay-Doppler pairs.

Overall, the generalized window function based waveform
design and the Prony-based estimation method each offer
distinct advantages for OTFS sensing. Simulation results
demonstrate that both approaches can improve the estimation
accuracy of fractional delay–Doppler parameters.

The remainder of this paper is organized as follows. Section
II presents the waveform design based on the generalized
RRC window, derives the corresponding system model, and
describes the interpolation method. Section III details the two-
stage Prony-based estimation approach, including the separate
extraction of Doppler shifts and delays. Section IV provides
simulation results and evaluates the performance of two meth-
ods. Section V concludes the paper.

II. Channel Estimation Based on a Generalized RRC
Window Function

Most OTFS studies use rectangular windows, which are
simple but cause spectral leakage and limit sensing resolution.
Therefore, in this chapter, we explain a waveform based on
generalized RRC window, which has recently been proposed
in [15], and demonstrate their advantages for OTFS-based
sensing.

A. Flexible Transmission Signal Structure
Let 𝑋DD [𝑘, ℓ] denote the symbols in delay–Doppler do-

main. In this paper, we set 𝑋DD [𝑘, ℓ] as a pilot signal



Fig. 1. Illustration of the window function.

expressed as

𝑋DD [𝑘, ℓ] =
{

1, 𝑘 = 0, ℓ = 0,
0, otherwise,

(1)

to simplify the explanation. Its inverse discrete Zak transform
(IDZT) can be expressed as

𝑥TD [𝑛𝑀 + ℓ] = 1
√
𝑁

𝑁−1∑︁
𝑘=0

𝑋DD [𝑘, ℓ]𝑊−𝑛𝑘
𝑁 . (2)

In this case, the transmitted signal in time domain can be
given by

𝑠(𝑡) =
𝑁−1∑︁
𝑘=0

𝑀−1∑︁
ℓ=0

𝑋DD [𝑘, ℓ] ℎ𝑘,ℓ (𝑡), (3)

where ℎ𝑘,ℓ (𝑡) is

ℎ𝑘,ℓ (𝑡) =
∞∑︁

𝑛=−∞
𝑤 [𝑛𝑀 + ℓ] 𝑝

(
𝑡 − 𝑛𝑇 − ℓ𝑇

𝑀

)
𝑊−𝑛𝑘

𝑁 , (4)

with pulse shaping 𝑝(·), window function 𝑤 [·], and DFT
twiddle factor 𝑊𝑁 = 𝑒 𝑗2𝜋/𝑁 . Substituting (4) into (3) yields
that,

𝑠(𝑡) =
∞∑︁

ℓ=−∞
𝑤 [ℓ] 𝑥TD [ℓ] 𝑝(𝑡 − ℓ𝑇𝑠)

=

∞∑︁
ℓ=−∞

𝑥TD [ℓ] 𝑝(𝑡 − ℓ𝑇𝑠), (5)

where 𝑥TD [ℓ] = 𝑤 [ℓ]𝑥TD [ℓ] and can be better illustrated in
Fig. 1. By combining different choices of 𝑤 [·] and 𝑝(·), trans-
mission signals with varying characteristics can be obtained.
This structure greatly enhances the flexibility of signal design.

To facilitate the subsequent discussion, several functions are
defined first. The rectangular function is defined as

rect(𝑥) =


1, |𝑥 | < 1
2 ,

0, |𝑥 | > 1
2 ,

1
2 , 𝑥 = ± 1

2 .

(6)

Then the sinc function is given by

sinc(𝑥) =


sin(𝜋𝑥)
𝜋𝑥

, 𝑥 ≠ 0,

1, 𝑥 = 0.
(7)

Next, the raised cosine (RC) function with roll-off factor 𝛽

is defined as

RC( 𝑓 ; 𝛽) =


1, | 𝑓 | < 1−𝛽

2 ,

1
2

[
1 + cos

(
𝜋
𝛽

(
| 𝑓 | − 1−𝛽

2

))]
,

1−𝛽
2 ≤ | 𝑓 | ≤ 1+𝛽

2 ,

0, | 𝑓 | > 1+𝛽
2 .

(8)

The corresponding root raised cosine (RRC) function is ex-
pressed as,

RRC(𝑡) =
∫ ∞

−∞

√︁
RC( 𝑓 ) 𝑒 𝑗2𝜋𝑡 𝑓 𝑑𝑓 . (9)

Based on the above functions, the pulse-shaping filters and
window functions considered in this work are introduced.
Three pulse-shaping filters are considered in the following
analysis:

• Rectangular pulse: 𝑝(𝑡) = rect(𝑡/𝑇𝑠);
• Sinc pulse: 𝑝(𝑡) = sinc(𝑡/𝑇𝑠);
• RRC pulse with roll-off factor 𝛽𝑝: 𝑝(𝑡) = RRC(𝑡/𝑇𝑠; 𝛽𝑝).

In addition, two types of window functions are employed:
• Rectangular window: 𝑤(𝑡) = rect(𝑡/(𝑁𝑇));
• RRC window with roll-off factor 𝛽𝑤:
𝑤(𝑡) = RRC(𝑡/((1 + 𝛽𝑤)𝑁𝑇); 𝛽𝑤).

The ambiguity functions of ℎ0,0 (𝑡) corresponding to dif-
ferent combinations of pulse shapes and window functions
are depicted in Fig. 2, where the horizontal and vertical axes
represent Doppler and delay, respectively. When a rectangular
window is applied, as shown in Fig. 2(a1), (b1), and (c1),
noticeable oscillatory behavior appears along the Doppler
dimension for all considered pulse shapes. By contrast, em-
ploying the RRC window in conjunction with a rectangular
pulse, as illustrated in Fig. 2(a2), effectively suppresses these
oscillations. This property is particularly beneficial, as it leads
to a more regular ambiguity structure and simplifies subse-
quent processing in the delay-Doppler domain. Therefore, the
RRC window combined with rectangular pulse is employed
throughout the following analysis.

B. Corresponding Receive Signal and Channel Estimation
Assume the number of reflected echoes received by antenna

is 𝑃. For the 𝑖-th echo, let 𝛼𝑝 , 𝑡𝐷,𝑝 , and 𝑓𝐷,𝑝 denote its
attenuation, delay, and Doppler shift. The noise-free received
signal is

𝑟 (𝑡) =
𝑃−1∑︁
𝑝=0

𝛼𝑝 𝑠(𝑡 − 𝑡𝐷,𝑝) 𝑒 𝑗2𝜋 𝑓𝐷,𝑝 𝑡 . (10)

Here, the delay and Doppler frequency are defined as 𝑡𝑑,𝑝 =

(𝑙 + 𝜀𝑡 )𝑇𝑠 and 𝑓𝐷,𝑝 =
𝑘+𝜀 𝑓

𝑁𝑀𝑇𝑠
, where 𝑙 and 𝑘 are the integer

parts, 𝜀𝑡 and 𝜀 𝑓 are the fractional parts.
In addition, we assume that the delay lengths satisfy 𝑇𝐵 <

𝑡𝑑,𝑝 < (𝑈 − 1)𝑇𝐵 to avoid additional interference. 𝑇𝐵 is the
interval of an OTFS block, 𝑈𝑇𝐵 is the pulse repetition interval
(PRI), and the next OTFS block is transmitted after a silent



Fig. 2. The fine ambiguity function 𝐴𝑠,𝑠 (𝜏, 𝜈) is illustrated for −5𝑇𝑠 <

𝜏 < 5𝑇𝑠 and −5/𝑇𝐵 < 𝜈 < 5/𝑇𝐵 under different pulse shaping schemes,
including (a) rectangular, (b) sinc, and (c) RRC pulses. The RRC pulse
employs a roll-off factor of 25%. In addition, (𝑥1) and (𝑥2) indicate
rectangular and RRC windowing, respectively [15].

period lasting (𝑈 − 1)𝑇𝐵. The Doppler range is restricted by
the sampling period 𝑇𝑠 , i.e., 2 𝑓𝐷,max < 1/𝑇𝑠 .

The received 𝑟 (𝑡) signal is passed through the matched filter
𝑝(𝑡) = 𝑝(−𝑡) and sampled at 𝑡 = ℓ𝑇𝑠 , yielding

𝑦TD [ℓ] =
∫ ∞

−∞
𝑟 (𝑡) 𝑝(𝑡 − ℓ𝑇𝑠) d𝑡, (11)

where ℓ ranges from ⌊(1+ 𝛽𝑤)𝑁𝑀⌋ to ⌊(𝑈 − (1+ 𝛽𝑤))𝑁𝑀⌋,
and 𝛽𝑤 is the excess bandwidth ratio.

The discrete-time discrete-frequency cross-ambiguity func-
tion is then calculated as,

𝐴𝑦,𝑥 [𝑘, ℓ] =
1

√
𝑁𝑀

∑︁
ℓ′

𝑦TD [ℓ′ + ℓ]𝑥TD [ℓ′]𝑊 𝑘ℓ′
𝑁𝑀 , (12)

where ℓ′ denotes the index of DFT of 𝑦TD [ℓ′ + ℓ]𝑥TD [ℓ′].
By locating the peak 𝐴𝑦,𝑥 [ 𝑘̂ , ℓ̂], the integer parts of the
delay–Doppler parameters can be estimated. However, due to
the fractional delay–Doppler components, the true peak does
not lie exactly on 𝐴𝑦,𝑥 [ 𝑘̂ , ℓ̂] but rather in its vicinity. By
comparing the magnitudes of the neighboring grid points, the
four grid points surrounding the actual peak can be identified,
forming the following local matrix,[

|𝐴𝑦,𝑥 [ 𝑘̂ , ℓ̂] | |𝐴𝑦,𝑥 [ 𝑘̂ , ℓ̂ + 1] |
|𝐴𝑦,𝑥 [ 𝑘̂ + 1, ℓ̂] | |𝐴𝑦,𝑥 [ 𝑘̂ + 1, ℓ̂ + 1] |

]
, (13)

which is denoted as
[
𝐴00 𝐴01
𝐴10 𝐴11

]
.

Next, the interpolation method is used for fractional pa-
rameter estimation. By substituting (5) into (10) and then
substituting the result into (11), we can obtain that,

𝑦TD [ℓ] =
𝑃−1∑︁
𝑝=0

𝛼𝑝

∑︁
ℓ′

𝑥TD [ℓ′]𝑒 𝑗 𝜋 𝑓𝐷,𝑝 (ℓ+ℓ′ )𝑇𝑠

· 𝐴𝑝𝑢,𝑝𝑢 ((ℓ − ℓ′)𝑇𝑠 − 𝑡𝐷,𝑝 ,− 𝑓𝐷,𝑝). (14)

where 𝐴𝑝𝑢,𝑝𝑢 ((ℓ − ℓ′)𝑇𝑠 − 𝑡𝐷,𝑝 ,− 𝑓𝐷,𝑝) is the autocorrelation
function of the pulse and can be further approximated as
≈ 𝑝𝑢 ∗ 𝑝𝑢((ℓ− ℓ′)𝑇𝑠 − 𝑡𝐷,𝑝) since | 𝑓𝐷,𝑝 | has been considered

much smaller than 1/𝑇𝑠 . In this case, it can be observed that
(12) can be approximately regarded as the autocorrelation
function of (5) with an attenuation coefficient, denoted by
𝛼 · 𝐴𝑠𝑠 . The detailed derivation is omitted here due to space
limitations. Therefore, a total error function is defined as

𝐿 (𝛼, 𝜀𝑡 , 𝜀 𝑓 ) =
1∑︁
𝑖=0

1∑︁
𝑗=0

��𝐴𝑖 𝑗 − 𝛼 · 𝐴𝑠𝑠 (𝑖 − 𝜀𝑡 , 𝑗 − 𝜀 𝑓 )
��2 . (15)

Since 𝑋DD is the pilot signal shown in (1), the 𝐴𝑠𝑠 can be
further approximated by

𝐴𝑠𝑠 (𝜏, 𝑣) ≈ 𝑝𝑢∗𝑝𝑢(𝜏)·𝑊∗𝑊̂ (𝜈), |𝜏 | ≤ 𝑇𝑠 , |𝜈 | ≤
1
𝑁𝑇

. (16)

For the adopted RRC window, the autocorrelation function
can be expressed as,

𝑊∗𝑊̂ (𝜈) =



1
2

cos(𝑏𝜈) (1 − 2𝜈 − 2𝑎) + 1
2𝑏

sin(𝑏 − 𝑏𝜈 − 2𝑏𝑎)

− 3
2𝑏

sin(−𝑏𝜈) + 2𝑎 − 𝜈, for: 0 ≤ 𝜈 ≤ −𝑎 + 1
2

2
𝑏

sin
(
𝑏

2
− 𝑏𝑎

)
+ 2𝑎 − 𝜈, for: − 𝑎 + 1

2
< 𝜈 ≤ 2𝑎

2
𝑏

[
sin

(
𝑏

2
− 𝑏𝑎

)
− sin(−2𝑏𝑎 + 𝑏𝜈)

]
+ 1

4𝑏
[sin(−2𝑏𝑎 + 𝑏𝜈) − sin(2𝑏(𝑎 − 𝜈) + 𝑏𝜈)]

+ 1
2

cos(𝑏𝜈 − 2𝑏𝑎) (−2𝑎 + 𝜈), for: 2𝑎 < 𝜈 ≤ 𝑎 + 1
2

1
2

[
1
𝑏

sin(𝑏 − 𝑏𝜈) + cos(−2𝑏𝑎 + 𝑏𝜈) (−𝜈 + 1)
]
,

for: 𝑎 + 1
2
< 𝜈 ≤ 1

0, for: otherwise,
(17)

where 𝑎 =
1−𝛽

2(1+𝛽) , 𝑏 =
𝜋 (1+𝛽)

2𝛽 , and 𝛽 is chosen to be 0.25 in
this work. By substituting (13) into (15), the desired fractional
parameters (𝜀𝑡 , 𝜀 𝑓 ) as well as the attenuation factor 𝛼̂ can
be obtained via arg min

𝛼,𝜀𝑡 , 𝜀 𝑓

𝐿 (𝛼, 𝜀𝑡 , 𝜀 𝑓 ). The whole process is
summarized in Algorithm 1.

Algorithm 1 Channel Estimation Based on a Generalized
RRC Window Function
Require: Transmitted signal samples 𝑥TD [ℓ] over the trans-

mission interval and received samples 𝑦TD over the ob-
servation window. Specify the parameter MAX_PATHS.

1: Evaluate the ambiguity function in (12) by applying an
𝑁𝑀-point FFT to each product sequence 𝑦TD [·+ℓ] 𝑥TD [·].

2: Identify the MAX_PATHS index pairs [ 𝑘̂ , ℓ̂] associated
with the largest magnitudes of 𝐴𝑦,𝑥 [𝑘, ℓ], and collect
them into a candidate set denoted by {[ 𝑘̂ , ℓ̂]}.

3: Perform peak extraction on |𝐴𝑦,𝑥 [ 𝑘̂ , ℓ̂] | by detecting local
maxima above a threshold and determining their associ-
ated 2 × 2 submatrices {𝐴00, 𝐴01, 𝐴10, 𝐴11}.

4: Based on (16) and use optimize.minimize to solve
a least-squares problem between the interpolated values
and the obtained 2 × 2 matrix.

5: return (𝜀𝑡 , 𝜀 𝑓 ) and 𝛼̂.



Fig. 3. Time- and frequency-domain illustrations of the Dirichlet waveform
used as the transmit signal [16].

III. Channel Estimation Based on Prony method
In this chapter, we explain a two-stage Prony-based method

which has recently been proposed in [16]. The method im-
proves robustness in multipath channels while reducing com-
putational cost. A DFT-friendly pilot is designed to preserve
signal periodicity, and the received samples are arranged
into a time-delay domain matrix. This enables the core ad-
vantage of our approach: Doppler and delay are estimated
separately—Doppler first, then delay after compensation.

A. Signal Structure
A center-shifted variant of the Dirichlet kernel is chosen as

the transmitted pilot waveform,

𝑠(𝑡) = 𝐷𝑀

( 𝑡
𝑇

)
𝑤(𝑡), (18)

𝐷𝑀 (𝑥) =
𝑀/2−1∑︁

𝑚=−𝑀/2
𝑒 𝑗2𝜋𝑚𝑥 = 𝑒− 𝑗 𝜋𝑥 sin(𝜋𝑀𝑥)

sin(𝜋𝑥) , (19)

for it enables efficient DFT-based reception. In contrast to the
method in Section II, the window function 𝑤(𝑡) used here is a
rectangular window of duration 𝑁𝑇 , where 𝑇 is the time-slot
duration and 𝑁 is the number of pilot repetitions. The function
𝐷𝑀 (𝑡/𝑇) exhibits discrete spectral components at frequencies
𝑓 = 𝑚/𝑇 , 𝑚 = −𝑀/2, . . . , 𝑀/2 − 1. Figure 3 illustrates the
signal structure. In addition, we also use the 𝑋DD defined in (1)
to simplify the analysis.

For the received continuous-time signal, its expression is
same as (10). When sampling at interval 𝑇𝑠 = 𝑇/𝑀 , it can be
given by

𝑟TD [ℓ] =
∫

𝑟 (𝑡) sinc
(
𝑡

𝑇𝑠
− ℓ

)
d𝑡 ≈ 𝑟 (ℓ𝑇𝑠), (20)

where sinc(𝑥) = sin(𝜋𝑥 )
𝜋𝑥

. This approximation holds when the
maximum Doppler shift satisfied 𝑓𝐷,max < 1/𝑇 is sufficiently
small compared to the transmit signal bandwidth 1/𝑇𝑠 = 𝑀/𝑇 .

B. Problem Formulation
A general challenge is that fractional delay and Doppler

must be jointly estimated, as they are strongly coupled in the
received signal. Under such coupling, separate estimation suf-
fers from interference and reduced accuracy, while joint esti-
mation—though capable of addressing these issues—requires
extremely fine resolution in the analysis process. This results
in high computational complexity and long processing time,

limiting its applicability in time-critical scenarios such as V2V
communications. Thus, we give the following lemma.

Lemma 1: Consider the 𝑁 × 𝑀 matrix R = (𝑅𝑛,ℓ) whose
entries are given by

𝑅𝑛,ℓ = 𝑟TD [ 𝑛𝑀 + ℓ ] .

Define E ∈ C𝑁×𝑃 by

𝐸𝑛,𝑝 = 𝑒 𝑗2𝜋 𝑓𝐷,𝑝𝑛𝑇 ,

and let V = (𝑉𝑝,ℓ) ∈ C𝑃×𝑀 with

𝑉𝑝,ℓ = 𝛼𝑝 𝐷𝑀

(
ℓ

𝑀
−
𝑡𝑑,𝑝

𝑇

)
𝑒 𝑗2𝜋 𝑓𝐷,𝑝ℓ𝑇𝑠 .

Then the matrix R admits the factorization

R = EV . (21)

The proof is omitted for brevity. From the above lemma, it can
be seen that the matrix E is determined solely by the Doppler
shifts 𝑓𝐷,𝑝 , regardless of the delays 𝑡𝑑,𝑝 . Once the Doppler
shifts 𝑓𝐷,𝑝 are accurately estimated, the Doppler components
contained in V𝑝,ℓ can be compensated. Consequently, we
obtain a Doppler-free matrix Ṽ𝑝,ℓ , expressed as

𝑉𝑝,ℓ = 𝛼𝑝𝐷𝑀

(
ℓ

𝑀
−
𝑡𝑑,𝑝

𝑇

)
, (22)

where ℓ = 0, 1, . . . , 𝑀 − 1.
Furthermore, applying an 𝑀-point DFT to 𝑉𝑝,ℓ , ℓ =

0, 1, . . . , 𝑀 − 1 yields
𝑀−1∑︁
ℓ=0

𝑉𝑝,ℓ 𝑒
− 𝑗 2𝜋

𝑀
𝑚ℓ

=

𝑀−1∑︁
ℓ=0

𝛼𝑝𝐷𝑀

(
ℓ

𝑀
−
𝑡𝑑,𝑝

𝑇

)
𝑒− 𝑗 2𝜋

𝑀
𝑚ℓ

= 𝛼𝑝

𝑀
2 −1∑︁

𝑚′=− 𝑀
2

𝑀−1∑︁
ℓ=0

𝑒
𝑗2𝜋𝑚′

(
ℓ
𝑀

−
𝑡𝑑,𝑝

𝑇

)
𝑒− 𝑗 2𝜋

𝑀
𝑚ℓ

= 𝛼𝑝𝑀𝑒− 𝑗2𝜋𝑚′ 𝑡𝑑,𝑝
𝑇 , (23)

where 𝑚′ = 𝑚 for 0 ≤ 𝑚 ≤ 𝑀
2 − 1, and 𝑚′ = 𝑚 − 𝑀 for

𝑀
2 ≤ 𝑚 ≤ 𝑀 − 1.

Through this procedure, the originally coupled
Doppler–delay parameters are effectively decoupled, and the
resulting expression exhibits a similar exponential structure.
The advantage of this decoupling is that it transforms the joint
estimation problem into a set of one-dimensional spectral
estimation problems, enabling the use of many classical
high-resolution techniques such as ESPRIT, MUSIC, and
Prony.

In this work, we adopt Prony’s method due to its abil-
ity to provide super-resolution parameter estimation with
low computational complexity, while avoiding the eigen-
decomposition required in subspace-based approaches. More-
over, Prony’s method directly exploits the exponential struc-
ture of 𝐸𝑛,𝑝 and 𝑉𝑝,ℓ , making it particularly well suited for
the above estimation procedure.



C. Prony Based Channel Estimation
This section presents the Prony-based method [16]. Corre-

sponding to the Section III-B, the overall procedure consists
of three estimation stages: Doppler estimation, preprocessing
for delay estimation, and delay estimation.

1) Stage 1 - Doppler Estimation: Doppler shifts are first
estimated in this stage. Since R ∈ C𝑁×𝑀 contains 𝑀 columns,
we apply Prony’s method to each column independently. The
resulting Prony polynomials share the same roots, which
correspond to the Doppler frequencies. Thus, the 𝑀 columns
provide 𝑀 coupled equations, leading to a more robust
Doppler estimation.

We set the predicted number of paths to 𝑃̂ with 𝑃̂ < 𝑁−1. A
key challenge in this method lies in accurately estimating the
predicted number of paths, 𝑃̂. This parameter directly deter-
mines the structure of the polynomial in (29), and therefore has
a critical impact on the accuracy of the subsequent Doppler
estimation. Choosing an appropriate information criterion is
a common challenge in hyperparameter estimation. Although
information-theoretic criteria such as the Akaike Information
Criterion (AIC) [17] and the Bayesian Information Criterion
(BIC) [18] are frequently used, they may fail to provide reli-
able estimates in certain scenarios. To address this limitation,
we adopt a simple energy-based thresholding rule to determine
𝑃̂, which yields more stable and accurate results. Due to space
constraints, the detailed analysis and comparison are omitted
here and can be found in [16].

Based on 𝑃̂, Toeplitz matrix 𝑇 (ℓ ) for each ℓ = 0, 1, . . . , 𝑀−
1 is constructed as,

𝑇 (ℓ ) =

©­­­­«
𝑅𝑃̂,ℓ 𝑅𝑃̂−1,ℓ · · · 𝑅0,ℓ
𝑅𝑃̂+1,ℓ 𝑅𝑃̂,ℓ · · · 𝑅1,ℓ

...
...

...

𝑅𝑁−1,ℓ 𝑅𝑁−2,ℓ · · · 𝑅𝑁−𝑃̂−1,ℓ

ª®®®®¬
, (24)

and stacked vertically to form the merged matrix,

𝑇 =


𝑇 (0)

...

𝑇 (𝑀−1)

 . (25)

Next, we determine a vector a = (𝑎[0], 𝑎[1], . . . , 𝑎[𝑃̂])𝑡
with 𝑎[0] = 1 that satisfies

Ta = 0, 0 ∈ C𝑀 (𝑁−𝑃̂) . (26)

Let t0 be the first column of T, and let T̃ be the matrix
obtained by removing this column. The vector a can be
obtained by

a𝑡 = (1, ã𝑡 ), (27)
ã = −T̃†t0, (28)

where T̃† denotes a generalized inverse.
Then, the roots of the Prony polynomial composed by a,

𝑎[0]𝑥 𝑃̂ + 𝑎[1]𝑥 𝑃̂−1 + · · · + 𝑎[𝑃̂ − 1]𝑥 + 𝑎[𝑃̂] = 0. (29)

are found, denoted as 𝑍𝑝 for 𝑝 = 1, 2, . . . , 𝑃̂. In this case, the
estimated Doppler frequencies are given by

𝑓𝐷,𝑝 =
arg(𝑍𝑝)

2𝜋𝑇
, (30)

where arg(·) denotes the complex argument.
2) Stage 2 - Preprocessing for Delay Estimation: The

matrix Ê is first reconstructed based on the 𝑓𝐷,𝑝 , expressed
as

Ê =

(
𝑒 𝑗2𝜋 𝑓𝐷,𝑝𝑛𝑇

)
𝑛,𝑝

. (31)

Next, V is estimated according to (21), shown as

V̂ = arg min
V




R − ÊV



2

= Ê†R, (32)

where † denotes the Moore–Penrose pseudo-inverse.
By applying the estimated Doppler shifts 𝑓𝐷,𝑝 once more,

the Doppler components in V̂ are removed, resulting in a
matrix Ṽ with only the delay components shown as,

𝑉𝑝,ℓ = 𝑉̂𝑝,ℓ 𝑒
− 𝑗2𝜋 𝑓𝐷,𝑝ℓ𝑇𝑠 . (33)

Assuming that the 𝑓𝐷,𝑝 are accurate, (33) reduces to (22). In
that case and based on (23), by applying the 𝑀-point DFT to
each row of Ṽ, we obtain

𝑌𝑝 [𝑚] = 𝛼𝑝𝑀 𝑒− 𝑗2𝜋𝑚𝑡𝑑,𝑝/𝑇 , (34)

for 𝑚 = −𝑀
2 , . . . , 𝑀

2 −1. Then the time delay can be estimated.
3) Stage 3: Delay Estimation: Let 𝐿 denote the number of

paths sharing the same Doppler shift and simply set 𝐿 = 1
in all simulations. This assumption may be restrictive when
Doppler shifts are nearly identical, but remains acceptable at
high SNR.

Similarly to stage 1, for each Y𝑝 = (𝑌𝑝 [𝑚])𝑚, the Toeplitz
matrix is first constructed as,

(T ′)𝑖 𝑗 = 𝑌𝑝

[
𝐿 − 𝑀

2
+ 𝑖 − 𝑗

]
, (35)

where 𝑖 = 1, . . . , 𝑀 − 1 and 𝑗 = 1, 2.
Then, a nonzero vector a′ = (𝑎′ [0], 𝑎′ [1])𝑡 satisfying

T ′a′ = 0 is obtained, and the roots of the polynomial,
𝑎′ [0]𝑥 + 𝑎′ [1] = 0, formed by a′ are computed and denoted
as 𝑍𝑝,ℓ .

Under this condition, the estimated delays are

𝑡𝑑,𝑝,ℓ =
arg(𝑍𝑝,ℓ)

2𝜋
𝑇. (36)

IV. Numerical Results
Numerical simulations are conducted with 𝑇 = 10−6 sec-

onds and 𝑁 = 𝑀 = 32. The delays and Doppler shifts are uni-
formly generated over [0, 𝑇] and [−1/(2𝑇), 1/(2𝑇)], and the
corresponding estimation results are illustrated in Fig. 4. Here,
we evaluated the performance of the two methods in terms of
the matching map and the root-mean-square error (RMSE).
The results presented in the matching maps are normalized
by the corresponding resolutions Δ𝑡 = 𝑇/𝑀 and Δ 𝑓 = 1/𝑁𝑇 ;
that is, both the true parameters and the estimates are divided



Fig. 4. Estimation performance of the window-function (WF) method and
the Prony method. (a) Matching maps at SNR = 10 dB; (b) Matching maps in
the noise-free case; (c) RMSE of delay estimation in the noise-free case over
200 Monte Carlo trials; (d) RMSE of Doppler estimation in the noise-free
case over 200 Monte Carlo trials.

by their respective resolutions. In addition, the RMSE is com-
puted as RMSE =

√︃
1

𝑟𝑢𝑛·𝑃
∑𝑟𝑢𝑛

𝑛=1
∑𝑃

𝑝=1
(
𝑥𝑛,𝑝 − 𝑥𝑛,𝑝

)2
, where

𝑟𝑢𝑛, 𝑥𝑝 and 𝑥̂𝑝 denote the number of Monte Carlo trials, true
and estimated parameters.

Figure 4 shows that, in the noise-free case, the Prony
method provides highly accurate estimates for both delay
and Doppler. The window-function (WF) method, while more
robust in low-SNR situations, exhibits a small inherent estima-
tion bias, which is also reflected in the RMSE results obtained
over 200 Monte Carlo trials.

In terms of computational cost, the Prony method requires
0.0809 seconds, whereas the WF method requires 1.2969
seconds on the same device (measured via time.time). This
highlights a trade-off between computational efficiency and
robustness across the two approaches.

Looking ahead, two directions are of particular interest:
(i) improving the noise robustness of the Prony method, and
(ii) developing more efficient and accurate algorithms for
estimating the number of propagation paths.

V. Conclusion
This paper has introduced two high-mobility OTFS sensing

methods [15], [16]. The generalized RRC window, together
with an autocorrelation-based interpolation technique, en-
hances fractional delay–Doppler estimation through improved
waveform shaping. In contrast, the two-stage Prony-based
method enables high-resolution parameter recovery. Simula-
tion results demonstrate that the generalized RRC window-
based method is more robust at low SNR, whereas the
Prony-based method achieves higher estimation accuracy with
lower computational complexity, highlighting their potential
for future OTFS-based ISAC systems.
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