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Abstract—The deployment of cell-free massive multiple-input
multiple-output (CF-mMIMO) systems at scale requires dis-
tributed processing across multiple central processing units
(CPUs). The assignment of access points (APs) to CPUs directly
impacts computational load distribution and network perfor-
mance. Existing optimization methods rely on global channel
knowledge and iterative solvers, limiting real-time applicability.
This paper presents a graph neural network (GNN) framework
with centralized training and decentralized execution (CTDE)
for AP-CPU assignment. The network topology is represented as
a graph where APs form nodes and edges capture interference
relationships. Graph attention layers generate embeddings that
enable each AP to select its CPU assignment through a sequential
coordination mechanism. Simulation results for a network with
50 APs and 20 users demonstrate 78% reduction in CPU load
imbalance compared to distance-based assignment, while main-
taining equivalent throughput. The learned policy achieves the
highest minimum user rate of 10.82 bps/Hz among all methods.
Additional scalability experiments across 30 to 70 APs confirm
consistent improvements of 73--82%, validating the effectiveness
of learning-based approaches for backhaul resource management.

Index Terms—Cell-free massive MIMO, GNN, multi-agent
reinforcement learning, AP-CPU assignment, load balancing

I. INTRODUCTION

Cell-free massive multiple-input multiple-output (CF-
mMIMO) is widely recognized as a pivotal enabler for up-
coming sixth-generation (6G) communication systems [1].
By discarding traditional cellular boundaries, this architecture
leverages a dense array of geographically distributed access
points (APs) to provide joint service to all users in the network.
These APs maintain wireless fronthaul connections with users
while exchanging data with a central processing unit (CPU)
through wired or wireless backhaul infrastructure. Such a
distributed topology effectively mitigates the cell-edge phe-
nomenon, ensuring consistent spectral efficiency throughout
the coverage zone [2].

The original CF-mMIMO framework assumed that all APs
are connected to a single CPU, which performs centralized
signal processing for the entire network. While theoretically
appealing, this design suffers from poor scalability. As the
number of users and APs grows, the computational burden
at the CPU increases substantially, and the backhaul capacity
becomes a bottleneck. To mitigate this, user-centric approaches
were introduced where each user is served by only a subset of
nearby APs rather than the full network [3]. Although user-
centric clustering reduces fronthaul overhead, the single-CPU

architecture remains a fundamental limitation for large-scale
deployments.

To enable truly scalable CF-mMIMO, recent works have
considered architectures with multiple CPUs distributed across
the network [4], [5]. In such systems, each AP must be
assigned to exactly one CPU for signal processing. This AP-
to-CPU assignment directly affects both the computational
load distribution among CPUs and the achievable network
throughput. An unbalanced assignment where some CPUs
handle many more APs than others leads to processing delays
at overloaded CPUs and underutilization of others. Finding the
optimal assignment that balances CPU loads while maximizing
throughput is therefore critical for practical multi-CPU CF-
mMIMO systems.

Existing approaches to the AP-CPU assignment problem
can be broadly categorized into optimization-based methods
and learning-based methods. In context of optimization-based
approaches, authors in [5] address the joint optimization of
fronthaul loading and resource allocation by modeling it
as a mixed-integer linear program (MILP). They proposed
a successive convex approximation (SCA) algorithm that
demonstrated improved network performance through explicit
traffic management. Dynamic cooperative clustering (DCC)
frameworks have also been developed using combinatorial
algorithms such as the Kuhn-Munkres method to match APs
with CPUs based on traffic statistics and backhaul capacity [2],
[4]. While these optimization-based methods provide strong
performance guarantees, they rely on iterative solvers with
high computational complexity. The requirement for global
channel state information (CSI) and the slow convergence
of iterative algorithms make these approaches impractical for
real-time adaptation in time-varying wireless environments.

To address the computational limitations of optimization
methods, deep reinforcement learning (DRL) has been applied
to CF-mMIMO resource allocation. Authors in [6] proposed a
distributed DRL framework for AP clustering, where each user
is associated with a virtual CPU that dynamically selects serv-
ing APs. This approach reduces signaling overhead compared
to centralized methods. However, the virtual CPU concept
focuses on logical user-centric clusters and does not explicitly
model the physical constraints of multi-CPU hardware. The
competition among APs for limited CPU processing capacity
and backhaul bandwidth is not captured in this formulation.

Recently, Graph Neural Networks (GNNs) have gained
prominence as a powerful solution for managing wireless



Fig. 1. Cell-free massive MIMO with multiple CPUs

resources, largely because they excel at capturing the inherent
topological structure of networks [7], [8]. By modeling APs
and their spatial relationships as a graph, GNNs can capture
interference patterns and proximity information that feed-
forward networks cannot. Despite the success of GNNs in
power control and beamforming problems, their application
to AP-CPU assignment in multi-CPU CF-mMIMO remains
unexplored.

A. Contributions

This paper proposes a graph neural network framework
with centralized training and decentralized execution (GNN-
CTDE) for dynamic AP-to-CPU assignment in multi-CPU CF-
mMIMO systems. The proposed approach addresses the limi-
tations of both optimization-based and existing learning-based
methods by combining the representational power of GNNs
with the scalability of multi-agent reinforcement learning. The
main contributions are summarized as follows:

• We formulate the AP-CPU assignment as a cooperative
multi-agent problem where each AP acts as an indepen-
dent agent that selects its CPU assignment. A graph atten-
tion network (GAT) encoder captures the spatial topology
and interference relationships among APs, generating
node embeddings that inform each agent’s decision.

• We introduce a sequential action selection mechanism
that enables implicit coordination among decentralized
agents. Each agent observes the accumulated CPU load
from prior assignments when making its decision, allow-
ing agents to naturally avoid overloaded CPUs without
explicit inter-agent communication during execution.

• We design a reward structure that combines global net-
work objectives with local credit assignment. The global
component captures sum-rate throughput, user fairness,
and CPU load balance, while the local component pro-
vides each agent with feedback on its individual contri-
bution to load balancing.

• Numerical results show that the proposed GNN-CTDE
achieves 78% reduction in CPU load balancing compared
to distance-based assignment while maintaining equiva-
lent throughput.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. Network Architecture

Consider a cell-free massive MIMO network deployed over
a square area of S × S meters, as shown in Fig. 1. The
network comprises M APs, K single-antenna users, and C
central processing units (CPUs). Each AP is equipped with L
antennas.

The network has two distinct link types. On the fronthaul,
APs communicate with users through wireless channels. On
the backhaul, each AP connects to exactly one CPU through
capacity-constrained wireless links. The CPUs handle base-
band processing tasks including channel estimation, precoding
computation, and signal detection. This work focuses on the
backhaul segment, specifically the assignment of APs to CPUs.

Let M = {1, . . . ,M}, K = {1, . . . ,K}, and C =
{1, . . . , C} denote the sets of APs, Users, and CPUs. The
AP-to-CPU assignment is defined by binary variables

am,c =

{
1, if AP m connects to CPU c

0, otherwise
(1)

with the constraint that each AP connects to exactly one CPU:

C∑
c=1

am,c = 1, ∀m ∈M. (2)

B. Backhaul Model and CPU Load

Each CPU processes the signals from all APs assigned to
it. The computational load at CPU c is proportional to the
number of connected APs:

Lc =

M∑
m=1

am,c. (3)

The processing latency at a CPU increases with its load. When
loads are unbalanced, overloaded CPUs become bottlenecks
that degrade network performance, while underloaded CPUs
waste resources.

We impose a capacity constraint Lc ≤ Lmax to prevent
any CPU from exceeding its processing capability. The load
imbalance across the network is quantified by the standard
deviation:

σL =

√√√√ 1

C

C∑
c=1

(Lc − L̄)2, (4)

where L̄ = M/C is the ideal balanced load. A well-designed
assignment achieves σL ≈ 0.

The backhaul also affects coordination among CPUs. Fol-
lowing user-centric clustering [9], each UE k is served by a
subsetMk of D nearby APs. When these serving APs connect
to different CPUs, inter-CPU coordination is required on the
backhaul to exchange precoding information. Let

NCPU
k = |{ϕ(m) : m ∈Mk}| (5)

denote the number of distinct CPUs serving UE k. Higher
values of NCPU

k increase backhaul signaling overhead.



C. Channel Model and Spectral Efficiency

The channel between AP m and UE k is modeled as
hmk =

√
βmkh̃mk, where βmk captures large-scale fading

and h̃mk ∼ CN (0, IL) represents small-scale fading. Using
maximum ratio transmission and standard capacity bounds [9],
the spectral efficiency of UE k is

Rk = log2(1 + SINRk). (6)

The sum-rate is Rsum =
∑K

k=1 Rk and the minimum rate is
Rmin = mink Rk.

D. Problem Formulation

The AP-CPU assignment problem seeks a mapping that
maximizes throughput while balancing CPU loads:

max
{am,c}

α1Rsum + α2Rmin − α3σL (7a)

s.t.
C∑

c=1

am,c = 1, ∀m (7b)

Lc ≤ Lmax, ∀c (7c)
am,c ∈ {0, 1}, ∀m, c (7d)

where α1, α2, α3 weight the objectives. This mixed-integer
problem has CM possible assignments, making exhaustive
search infeasible. We propose a learning-based approach in
the next section.

III. PROPOSED GNN-CTDE FRAMEWORK

This section presents the graph neural network framework
with centralized training and decentralized execution (GNN-
CTDE) for solving the AP-CPU assignment problem. Fig. 2.
illustrates the overall architecture.

A. Centralized Training, Decentralized Execution

The CTDE paradigm separates the training and deployment
phases. During training, a central controller has access to
global network information and coordinates the learning of all
agents. This central controller can reside on any server with
sufficient computational resources and is used only offline.
During deployment, each AP acts independently using only
local observations, requiring no real-time communication with
a central entity.

This separation addresses a key challenge in multi-CPU
systems. While training benefits from global coordination to
learn effective policies, practical deployment requires dis-
tributed decision-making since real-time centralized control
would introduce unacceptable latency. In our framework, the
training server collects experiences from the network, updates
all agent policies simultaneously, and distributes the learned
parameters to individual APs. Once deployed, each AP makes
CPU selection decisions locally without consulting the training
server or other APs.

B. Graph Representation

We model the cell-free network as a graph G = (V, E)
where nodes V represent APs and edges E capture interference
relationships. An edge connects APs m and m′ if they serve
at least one common user, indicating potential interference
coupling:

(m,m′) ∈ E ⇐⇒ Km ∩ Km′ ̸= ∅. (8)

Each node m has a feature vector xm ∈ RF containing:

• Channel statistics: Average and minimum SINR to served
users

• Load information: Current assignment and CPU distances
• Position: Normalized AP coordinates

This graph structure allows the GNN to learn spatial pat-
terns and interference relationships that influence assignment
quality.

C. Graph Attention Encoder

A graph attention network (GAT) processes G to produce
node embeddings. For each AP m, the encoder aggregates
information from neighboring APs using attention weights:

zm = σ

 ∑
m′∈N (m)

αmm′Wxm′

 , (9)

where N (m) is the neighborhood of AP m, W is a learnable
weight matrix, and αmm′ are attention coefficients computed
as

αmm′ =
exp(LeakyReLU(aT [Wxm∥Wxm′ ]))∑

j∈N (m) exp(LeakyReLU(aT [Wxm∥Wxj ]))
.

(10)
The encoder uses two GAT layers with multi-head attention,

producing embeddings zm ∈ R32 that capture both local
features and network-wide context.

D. Sequential Action Selection

A naive approach would have all APs select CPUs simul-
taneously. However, this leads to poor coordination since no
agent knows what others will choose. We introduce sequential
selection where agents act one after another, each observing
the accumulated load from previous decisions.

At each decision round, agents are processed in sequence.
Agent m receives its embedding zm and the current load
vector L = [L1, . . . , LC ] reflecting assignments made by
earlier agents. The policy network outputs a distribution over
CPUs:

πm(c|zm,L) = softmax(fθ([zm;L/Lmax])), (11)

where fθ is a two-layer neural network. By conditioning on
L, later agents can avoid CPUs that earlier agents have filled,
achieving implicit coordination without explicit communica-
tion.



Fig. 2. GNN-CTDE architecture. The GAT encoder processes the network graph to produce AP embeddings. Each AP agent selects a CPU based on its
embedding and observed loads.

E. Reward Design

The reward combines global objectives with local credit
assignment. The global component is

rglobal = w1R̃sum + w2R̃min + w3rbalance + w4rcoord, (12)

where R̃sum and R̃min are normalized throughput terms, rbalance
penalizes load imbalance, and rcoord encourages multi-CPU
coordination per user.

To address credit assignment in multi-agent learning, each
agent also receives a local reward based on its individual
contribution:

rm = 0.7 · rglobal + 0.3 · rlocal
m , (13)

where rlocal
m rewards selecting underloaded CPUs and penalizes

selecting overloaded ones.

F. Training with PPO

We train the framework using Proximal Policy Optimization
(PPO) [10]. A centralized critic estimates the value function
from the joint embedding of all APs:

V (s) = gϕ([z1; z2; . . . ; zM ]), (14)

where gϕ is a neural network. The critic is used only during
training to compute advantages for policy updates. During
deployment, only the distributed actor policies are needed.

The complete GNN-CTDE procedure is summarized in
Algorithm 1.

During training (lines 3-19), the framework collects experi-
ences through sequential action selection where each agent ob-
serves accumulated loads before deciding. The critic provides
value estimates for advantage computation while actors update
via clipped surrogate objective. At deployment (lines 25-30),
only forward passes through the trained networks are required,
enabling real-time execution without iterative optimization.

Algorithm 1 GNN-CTDE for AP-CPU Assignment
Require: APs M , Users K, CPUs C, Episodes E, Steps T
Ensure: Trained policy networks {πm}Mm=1

1: Initialize: GAT encoder Gθ, actor networks {πm}, critic
Vϕ

2: // Centralized Training Phase
3: for episode = 1 to E do
4: Reset environment and trajectory buffer B
5: for t = 1 to T do
6: Z = [z1, . . . , zM ]← Gθ(G) ▷ GNN encoding
7: L← [0, . . . , 0]C ▷ Initialize CPU loads
8: for m = 1 to M do ▷ Sequential selection
9: Sample cm ∼ πm(·|zm,L)

10: Lcm ← Lcm + 1
11: Store (zm,L, cm, log πm(cm)) in B
12: end for
13: Apply assignment c = [c1, . . . , cM ]
14: Observe Rsum, Rmin, σL from environment
15: Compute rglobal using (12)
16: for m = 1 to M do
17: rm ← 0.7 · rglobal + 0.3 · rlocal

m

18: end for
19: end for
20: Compute advantages Ât

m via GAE(γ, λ)
21: Update Vϕ by minimizing (Vϕ(s)−Rtarget)2

22: Update πm via PPO: maxmin(ρÂ, clip(ρ, 1± ϵ)Â)
23: end for
24: // Decentralized Execution Phase
25: Z← Gθ(G), L← 0
26: for m = 1 to M do
27: cm ← argmaxc πm(c|zm,L)
28: Lcm ← Lcm + 1
29: end for
30: return {c1, c2, . . . , cM}



TABLE I
SIMULATION PARAMETERS

Parameter Value
Number of APs (M ) 50
Number of users (K) 20
Number of CPUs (C) 4
Antennas per AP (L) 4
Serving APs per user (D) 4
Coverage area 500 × 500 m2

Carrier frequency 2 GHz
Bandwidth 20 MHz
AP transmit power 200 mW
Noise power −94 dBm
Shadow fading std. 8 dB
Training episodes 500
Learning rate 5× 10−5

Discount factor (γ) 0.99
PPO clip (ϵ) 0.2
GNN embedding dimension 32

IV. NUMERICAL RESULTS

This section evaluates the proposed GNN-CTDE framework
through simulations. We first describe the simulation setup
and baseline methods, then present the main performance
comparison, and finally analyze scalability across different
network sizes.

The simulation considers a CF-mMIMO network deployed
over a 500×500 m2 area. Table I summarizes the key pa-
rameters. APs and CPUs are distributed uniformly at random,
while users follow a clustered distribution to model hotspot
scenarios. The wireless channel follows a three-slope path loss
model with log-normal shadow fading. Each user is served by
D = 4 APs selected based on large-scale fading coefficients.

The GNN encoder uses two graph attention layers with 4
attention heads, producing 32-dimensional embeddings. Each
agent’s policy network has two hidden layers with 64 neurons.
Training is performed over 500 episodes using PPO with
generalized advantage estimation. Results are averaged over
50 test episodes.

We compare the proposed GNN-CTDE against two baseline
methods. Closest CPU assigns each AP to the geographically
nearest CPU, minimizing backhaul path length but ignoring
load distribution. Load-Balanced Greedy sequentially assigns
each AP to the least loaded CPU, achieving near-optimal
balance through explicit load tracking.

TABLE II
PERFORMANCE COMPARISON (M = 50, K = 20, C = 4)

Method Sum Rate Min Rate Load Std
(bps/Hz) (bps/Hz)

Closest CPU 274.2 10.72 3.32
Greedy 272.2 10.62 0.58
GNN-CTDE 274.5 10.82 0.74

Table II presents the main performance comparison at M =
50, K = 20. The Closest CPU method achieves sum rate of
274.2 bps/Hz but exhibits poor load balancing with standard
deviation of 3.32. This imbalance occurs because AP density
varies spatially, causing some CPUs to handle significantly

more APs than others. The Greedy method achieves excellent
load balance (std = 0.58) but relies on hand-crafted rules.

GNN-CTDE reduces the load standard deviation to 0.74,
representing a 78% improvement over Closest CPU while
approaching the Greedy baseline. Importantly, GNN-CTDE
achieves this through a learned policy without explicit load-
tracking logic. The sum rate of 274.5 bps/Hz is comparable
to Closest CPU, confirming that load balancing does not
compromise throughput.

Fig. 3. CPU load standard deviation comparison

Fig. 3. visualizes the load balancing performance. The
substantial gap between Closest CPU (3.32) and the other
methods highlights the importance of load-aware assignment.
GNN-CTDE achieves 78% of the gap closure between Closest
CPU and Greedy.

Fig. 4. Minimum user spectral efficiency. Higher values indicate better
fairness for worst-case users.

Fig. 4. shows the minimum user rate, which reflects fairness
among users. GNN-CTDE achieves 10.82 bps/Hz, outper-



forming both Closest CPU (10.72) and Greedy (10.62). This
improvement results from the composite reward function that
balances throughput, load distribution, and user fairness.

Fig. 5. CDF of per-user spectral efficiency.

Fig. 5. presents the cumulative distribution function of per-
user spectral efficiency. All three methods exhibit similar dis-
tributions in the mid-to-high rate region, confirming that GNN-
CTDE maintains overall throughput. The slight rightward shift
at lower rates indicates improved service for disadvantaged
users.

Fig. 6. Load balance improvement over Closest CPU across different network
sizes.

To evaluate scalability, we trained and tested GNN-CTDE
across network sizes from M = 30 to M = 70, scaling users
as K = 0.4M . Fig. 6. shows the load balancing improvement
over Closest CPU. The improvement increases from 73%
at M = 30 to 82% at M = 70, demonstrating that the
learned policy generalizes effectively to larger networks. This
scalability stems from the graph attention mechanism, which
captures local interference patterns regardless of total network
size.

V. CONCLUSION

This paper presented a GNN-based multi-agent reinforce-
ment learning framework for AP-CPU assignment in cell-
free massive MIMO networks. The proposed GNN-CTDE
approach employs graph attention layers to encode network
topology and a sequential action selection mechanism for
implicit coordination among agents. Simulation results demon-
strated 78% improvement in load balancing at M = 50 com-
pared to distance-based assignment, with the learned policy
achieving the highest minimum user rate among all methods.
Scalability experiments confirmed consistent improvements of
73–82% across networks ranging from 30 to 70 APs. Future
work will investigate dynamic scenarios with user mobility
and joint optimization with power control.
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