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Abstract—Cell-free massive multiple-input multiple-output (CF-
mMIMO) is considered a key technology for sixth-generation
(6G) mobile networks. A large number of distributed antennas,
called access points (APs), cooperate and serve users at the same
time. This architecture provides almost uniform service quality
over a wide area. As total power consumption increases rapidly,
improving energy efficiency (EE) becomes a central design target.
EE measures the ability of the system to maintain the same quality
of service while reducing the consumed power. Recent research no
longer relies solely on classical mathematical optimization. It also
applies artificial intelligence (AI), including deep learning, deep
reinforcement learning (DRL), and federated learning (FL), to
automatically design power control, AP selection, and feedback
bit allocation. Other studies use AI to control reconfigurable
intelligent surfaces (RISs) to improve coverage and EE in CF-
mMIMO networks. This paper explains these trends from an
Al-centric viewpoint. It describes which EE-related problems
appear in CF-mMIMO and how existing work defines and solves
these problems in a simple and intuitive way. The paper also
introduces recent research that combines CF-mMIMO with RIS,
coordinated multi-point (CoMP), frequency-division-duplex (FDD)
based CF systems, ultradense networks, integrated sensing and
communication (ISAC), and FL. It then discusses open research
directions for future 6G systems.

Index Terms—Cell-free massive MIMO, Energy efficiency, Deep
learning, Deep reinforcement learning, Federated learning, Recon-
figurable intelligent surfaces

I. INTRODUCTION

In fifth-generation (5G) and sixth-generation (6G) mobile
communication, data traffic increases very rapidly. As traffic
grows, the power that base stations (BSs) and user devices
consume also increases. In this situation, it is not enough to
focus only on higher spectral efficiency (SE). The system also
needs to increase energy efficiency (EE), which measures how
many useful bits it sends per unit of consumed power [1]. Cell-
free massive multiple-input multiple-output (CF-mMIMO) uses
many distributed access points (APs) that cooperate and act
as one large antenna array. The distributed APs jointly serve
all users on the same time—frequency resources. This structure
reduces cell-edge problems and provides more uniform service
quality across the coverage area [2]. In a traditional cellular
network, each user is associated with one BS. In a CF-mMIMO
system, a user receives service from several nearby APs at the
same time. Because of this macro-diversity gain, the network
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can reduce the transmit power, or it can provide higher data
rates with the same power. When the number of APs increases,
the system consumes not only more transmit power but also
more circuit power and more fronthaul and backhaul power.
These components include baseband processing, data convert-
ers, and optical or wireless fronthaul links. Therefore, simply
adding more APs does not always improve the global EE. The
designer must answer questions such as how many APs should
be active, which APs should serve which users, and how should
the system set user transmit powers and beamforming vectors.
Most EE studies formulate these questions as optimization
problems. The objective is an EE metric. The constraints
include power budgets and minimum rate or quality-of-service
(QoS) targets [3].

The basic concepts and theory of CF-mMIMO are now well
organized. Prior work clarifies channel models, user-centric
clustering, pilot design, and power control, and it explains
how these pieces form a scalable user-centric CF-mMIMO
architecture. At the same time, ultradense CF-mMIMO for 6G
raises new issues such as low-complexity architectures, scalable
resource allocation, fronthaul limits, and massive access. In
parallel, artificial intelligence (AI) centric designs appear for
EE maximization, AP selection, user association, feedback
optimization, and federated learning (FL) based resource man-
agement. These methods use deep neural networks (DNNs),
deep reinforcement learning (DRL), and FL in order to replace
or assist traditional optimization [4]. This paper organizes these
research efforts under the common theme of Al-centric EE
enhancement for CF-mMIMO. First, it introduces the basic CF-
mMIMO system model and the mathematical definitions of SE
and EE with simple equations. Next, it explains optimization-
based work and Al-based work separately. Finally, it discusses
future Al-centric CF-mMIMO that combines reconfigurable
intelligent surface (RIS), integrated sensing and communication
(ISAC), and FL and that aims at truly intelligent and energy-
efficient 6G networks [5].

II. FUNDAMENTALS OF ENERGY EFFICIENCY IN
CELL-FREE MASSIVE MIMO
A. Cell-Free Massive MIMO System Model

In a CF-mMIMO network, M APs and K user equipments
(UEs) share the same time—frequency resources. Each AP has
N antennas. Each UE usually has one antenna. For simplicity,
this subsection considers uplink transmission from UEs to APs.



Fig. 1: Illustration of a cell-free massive MIMO network, where
a CPU coordinates distributed APs that jointly serve UEs.

Fig. 1 illustrates a CF-mMIMO network. A central process-
ing unit (CPU) connects to distributed APs through fronthaul
links and coordinates their operation. The APs jointly serve
multiple single-antenna UESs that are scattered over the coverage
area on the same time—frequency resources. This user-centric
architecture provides macro-diversity and enables more uniform
service quality compared with conventional cellular systems.

The received signal at the mth AP is expressed as in (1):

K
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where py; is the transmit power of UE k, gy, is the complex
channel coefficient between AP m and UE k (including path
loss and small-scale fading), sy is the transmit symbol of UE
k with unit power, and n,, is receiver noise at AP m [2].

In a CF-mMIMO architecture, a CPU, or a set of distributed
processing nodes, collects all received signals y,,. The CPU
then jointly detects all user symbols by linear or non-linear
processing. As a result, even if one user is far from some APs,
other nearby APs can still provide strong signal power. This
joint processing creates almost uniform signal-to-noise ratio
(SNR) and data rate over the service area [6].

B. SINR and Spectral Efficiency

For each user, the receiver can separate the received signal
in practical scenarios into desired-signal power, interference
power, and noise power. The signal-to-interference-plus-noise
ratio (SINR) of UE k is expressed as in (2):
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where S}, is the desired-signal power, I} is the total interference
power from other users or cells, and o2 is the noise power.
The exact expressions of S, and I depend on the receiver,
for example maximum-ratio, zero-forcing, or minimum mean

square error (MMSE), but the basic interpretation useful signal
divided by interference plus noise does not change.

Let 7, be the pilot length and 7. be the coherence length.
The SE of UE £ in bit/s/Hz, overhead, is expressed as in (3):

Ry = (1 - ?’) logy (1 + 7k)- 3)

In (3), the factor (1 — :—’:
that carry data instead of pilots. The function logy(1 + %)
comes from the Shannon capacity formula for a Gaussian
channel and expresses the data rate per unit bandwidth. Let
B denote the system bandwidth. In many papers, the total rate
in bit/s is BRy, and the analysis uses average SE values over
fading, which are called ergodic rates [1].
C. Definition of Energy Efficiency
EE measures the number of successfully transmitted bits per
unit of consumed energy. Consider the total rate B Zszl Ry,
in bit/s for K users and the consumed power Pi;. The total
power includes transmit power, circuit power, and fronthaul and
backhaul power. The network EE in bit/J is defined as in (4):
EE = B lele By
P

tot

) represents the fraction of symbols

[bit/J]. )

The numerator B Zle Rj, expresses how much useful data
rate the network delivers (in bit/s), while the denominator Py
expresses how much power the network uses to deliver this rate.
A larger ratio in (4) means a more energy-efficient system [7].

An analysis of CF-mMIMO with random AP locations ex-
amines how system parameters affect EE. The analysis adjusts
the number of users, the transmit powers, and the pilot length
in order to maximize EE as in (4). Studies on ultradense CF-
mMIMO show that very dense AP deployments create trade-
offs between SE and EE. In summary, EE analysis in CF-
mMIMO usually considers optimization of the EE definition
in (4) under realistic constraints. The next section explains
representative optimization-based approaches.

III. OPTIMIZATION-BASED APPROACHES FOR ENERGY
EFFICIENT DESIGN

This section analyzes optimization-based methods that en-
hance EE in CF-mMIMO networks. It presents representative
problem formulations for power control and AP selection and
also describes cooperative transmission mechanisms based on
CoMP operation. It further outlines optimization approaches
that use RIS and ISAC functions. These topics show how
optimization methods define system behavior and reveal factors
that affect EE under practical constraints.

A. Power Control and AP Selection

A way to improve EE is to control the transmit power of
each user and to decide which APs remain active. Many works
define optimization problems that follow the form in (5):

max EE(p,a)
p,x

k=1,... K, (5)
k=1 K.

st. Ry(p,a) > R
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where p = [p1, ..., pxk] is the user-power vector and « denotes
design variables such as AP-user association or beamforming
weights. The constraint R represents the minimum rate
requirement of UE k [3]. In general, the problem in (5) is
non-convex. The numerator and denominator of EE(p, ) have
coupled variables, and the rate constraints also have non-linear
forms. Many works therefore use fractional programming, suc-
cessive convex approximation, or iterative algorithms in order
to find good local optima [1].

Joint multi-user grouping and AP switch on/off for EE
maximization in CF-mMIMO is considered. The method selects
a set of APs and assigns the APs to user groups. It then
turns off APs that provide little benefit, thereby reducing circuit
power. At the same time, it satisfies rate constraints of all users
by keeping APs that are important for user performance. A
network-assisted full-duplex CF-mMIMO system is analyzed.
In this scenario, each AP sends downlink data and receives
uplink data at the same time. The design must handle self-
interference at APs and cross-link interference between uplink
and downlink. The analysis defines optimization problems that
jointly set uplink and downlink powers and that select receiver
and precoder structures. The results show that well-designed
full-duplex CF-mMIMO can improve both SE and EE under
realistic interference and hardware constraints [8].

B. CoMP-Based Cooperative Transmission and Energy Effi-
ciency

CF-mMIMO is closely related to coordinated multi-point
(CoMP) systems, where several BSs cooperate in order to serve
users near cell edges. CoMP is an important historical step
toward fully cell-free operation. A CoMP-integrated cellular
network is studied. The study designs cooperative caching
and transmission strategies with reinforcement learning (RL).
The goal is to improve cell-edge performance and to reduce
backhaul load at the same time. In this system, multiple
BSs form a CoMP joint-transmission cluster. A RL agent
decides which content to cache at each BS and which BSs
jointly serve each user. This dynamic policy improves user
rates and reduces unnecessary data transfers over backhaul [9].
An energy-efficient resource allocation problem in a multi-
cell CoMP heterogeneous network is analyzed. The analysis
considers a multi-cell cooperation antenna (MSCA) scheme
and optimizes transmit powers and serving-BS sets under EE
criteria. Although the network is not fully cell-free, many
ideas transfer to CF-mMIMO. In both cases, several spatially
separated transmitters cooperate, and the designer must decide
which nodes actually serve each user in order to satisfy rate
constraints with minimal power [10].

C. RIS and ISAC in Cell-Free Architectures

A RIS uses many passive reflecting elements with tunable
phase shifts. It shapes the propagation environment and changes
both signal power and interference patterns without active RF
chains. An energy-efficient RIS-aided CF-MIMO architecture
is proposed [5]. The analysis shows that proper RIS design
focuses energy toward intended users and reduces interference

toward others. As a result, the network can achieve higher
rates for the same transmit power or can reduce power while
it keeps the same rates. An overview of energy-efficient RIS-
aided CF-mMIMO systems is provided. The overview discusses
use cases, design opportunities, and important challenges such
as RIS placement, joint optimization of active and passive
beamforming, and the combination of RIS with AI and FL.
The work does not give a single closed-form solution. Instead,
it provides a conceptual framework and highlights the need for
scalable EE-focused algorithms in RIS-aided CF-mMIMO [11].
An RIS-enabled multi-user ISAC system is studied. The study
designs location sensing and beamforming together. In this
model, the RIS helps both communication and sensing. It
improves user localization accuracy and data rates through joint
transmit and reflection-beam design. This idea suggests that
when ISAC and CF-mMIMO combine with RIS, the network
can support sensing and communication simultaneously with
high EE [12].

IV. AI-CENTRIC FOR ENERGY EFFICIENT CF-MMIMO

The previous section focuses on optimization based mainly
on analytical models. This section explains how Al-based
methods such as deep learning, DRL, and FL help EE-centric
design in CF-mMIMO.

A. Deep Learning for Processing, Fronthaul, and Feedback

One main Al-centric line of work replaces or assists complex
channel estimation and detection with deep learning. This is
especially useful in systems with limited fronthaul or feed-
back capacity. An uplink CF-mMIMO system with limited
fronthaul capacity is considered. The study compares two
schemes. In quantize-and-forward (QF), each AP quantizes its
received signal and its local channel estimates and forwards the
quantized data to the CPU. In combine-quantize-and-forward
(CQF), each AP first combines its signals, then quantizes and
forwards the resulting data. The formulation defines a sum-rate
maximization problem under fronthaul constraints and solves
it with geometric programming. The approach then trains a
deep convolutional neural network that maps large-scale fading
coefficients to near-optimal power control solutions. This net-
work allows fast power control without solving the optimization
at every coherence interval [4]. Deep-learning-aided channel
training and precoding for frequency-division-duplex (FDD)
massive MIMO is studied. The method uses channel statistics
such as covariance matrices to design downlink pilots and
precoders jointly. The system achieves high sum rate even when
the number of pilot symbols and feedback bits is small. This
idea is important for FDD CF-mMIMO, where feedback links
are often the main bottleneck [13].

A user-centric association and feedback-bit allocation method
for FDD CF-mMIMO is presented. The method uses a
Saleh—Valenzuela multi-path model and identifies which path-
gain parameters are important for beamforming. The scheme
jointly decides which APs serve which UEs and how many
feedback bits each UE sends for each path. As a result, the
system can achieve high SE under strict feedback budgets.



This work shows that intelligent feedback management is a key
tool for energy-efficient FDD CF-mMIMO [14]. These methods
improve EE in an indirect but important way. By reducing
fronthaul and feedback requirements, the system can use sim-
pler hardware and shorter training phases. The same physical
infrastructure then supports higher rates per unit energy.

B. Deep Learning for Joint Pilot and Data Power Control

Another Al-centric line of work focuses on power control
and pilot allocation. The goal is to replace repeated heavy op-
timization with a trained DNN. A deep-learning-based scheme
for joint pilot and data power control in CF-mMIMO networks
is proposed. The DNN takes channel and large-scale fading
information as input and outputs power levels for both pilot and
data symbols. After an offline training phase, the DNN produces
near-optimal power vectors for new channel realizations with
very low complexity. This allows fast adaptation even in fast-
fading environments [15].

Energy-efficient AP selection in CF-mMIMO with DRL
is studied. The study models the AP-selection problem as a
Markov decision process. The agent observes user and AP
positions and learns which APs should serve which users
in order to maximize an EE reward. The evaluation tests
DRL algorithms such as DDPG and soft actor—critic variants
and shows that the learned policies outperform heuristic AP-
selection rules. The result is higher EE for network topologies.

C. RL for CoMP, Caching, and Resource Management

RL is also useful for CoMP-style cooperative networks that
are closely related to CF-mMIMO. The framework uses RL
to control both caching and CoMP transmission policies. The
agent observes content popularity and user positions and selects
which content to cache at which BS and which BSs should
cooperate for each user. The results show that the learned
policy improves cell-edge throughput and reduces backhaul
traffic. These improvements indirectly increase EE because the
network dispenses with unnecessary data transfers [9].

An energy-efficient resource-allocation framework for
MSCA-enabled CoMP in heterogeneous networks is presented.
The approach optimizes power allocation and BS selection
under rate and power constraints, and the results show that
cooperative transmission increases EE when the cooperation
sets are chosen carefully. These insights are also useful for CF-
mMIMO system design, which faces similar trade-offs between
cooperation gain and overhead [10].

D. Federated Learning Over RIS Assisted CF-mMIMO

A new research direction considers the EE of Al itself
when it runs on CF-mMIMO networks. In FL, many UEs
train local models and send updates to a central server over
wireless links. FL over RIS-assisted CF-mMIMO networks is
studied. The setting considers a scenario where each UE trains
a local model and uploads parameters to a server through a
CF-mMIMO network with RIS. The formulation defines an EE
optimization problem that includes both communication energy
and training energy. The decision variables include RIS phase

shifts and transmit powers. The results show that proper joint
optimization significantly reduces the total energy needed for
FL while maintaining model accuracy [16]. This line of work
shows that CF-mMIMO can serve not only as a data-delivery
platform but also as an energy-aware computation and learning
platform. In future networks, designers may need to optimize
EE from the physical layer up to the Al applications.

E. Foundations of User Centric CF-mMIMO and Links to Al

A detailed monograph on the foundations of user-centric CF-
mMIMO is provided. The monograph defines user-centric dy-
namic cooperation clustering (DCC), channel estimation, uplink
and downlink transmission schemes, and power optimization
algorithms. The monograph also analyzes channel hardening,
favorable propagation, and scalability issues such as fronthaul
load and computational complexity. It shows that CF-mMIMO
can provide more uniform SE than cellular networks and that
user-centric clustering is a key mechanism for scalability [2].
A survey of ultradense CF-mMIMO for 6G is presented. The
survey discusses challenges such as dense AP deployment,
synchronization, channel acquisition, and scalable resource
allocation. Many of these challenges require data-driven or
learning-based solutions. For example, scheduling, distributed
precoding, and dynamic user selection in very dense networks
naturally fit DRL or graph neural network formulations. Thus,
the theoretical foundations in these works provide a base on
which Al-centric resource allocation methods can build [6].

V. FUTURE RESEARCH DIRECTIONS FOR AI-CENTRIC
CF-MMIMO

This section summarizes promising research directions for
Al-centric energy-efficient CF-mMIMO networks. First, there
is a strong need for integrated AI design that spans the
physical, medium-access control, and network layers. Many
current works focus on local problems such as power control,
AP selection, or pilot design [7]. In practice, however, decisions
at different layers interact. Scheduling, handover, fronthaul
capacity management, caching, and ISAC resource splitting
influence each other. Multi-layer DRL or graph-based methods
that jointly learn scheduling, power control, and AP selection
in ultradense CF-mMIMO constitute an important research
direction. Second, RIS-assisted CF-mMIMO requires more
detailed EE-aware models. Existing work mainly demonstrates
conceptual gains or uses small-scale examples. Future studies
should answer practical questions such as where to deploy
how many RIS panels, how often to update the configurations,
and how to balance the power consumed by RIS control
circuits against the EE gain in communication. Prior studies
demonstrate the potential of RIS in ISAC contexts, which
motivates joint optimization of RIS control, sensing accuracy,
and EE in CF-mMIMO [12].

Third, FDD-based CF-mMIMO still poses many open chal-
lenges for feedback and user association. A joint user-centric
association and feedback-bit allocation framework for FDD
CF-mMIMO is presented under limited feedback budgets, and
a deep-learning-based FDD training and precoding approach



is introduced to enhance downlink performance [13]. Future
work may consider deep-learning-based feedback compression,
unsupervised feature extraction for channel representation, and
RL-based adaptive feedback policies that react to traffic load
and mobility. These methods need to optimize both feedback
overhead and EE at the same time [14].

Fourth, FL and distributed Al on top of CF-mMIMO create
new cross-layer EE trade-offs. It is shown that RIS-assisted CF-
mMIMO can reduce the energy required for FL by proper joint
optimization of communication and learning parameters [16].
Future studies should analyze the three-way trade-off between
model accuracy, communication resource usage, and energy
consumption. Future studies should also quantify how user-
centric CF-mMIMO structures help FL by providing robust
connectivity to many devices [11]. Finally, a combination of
model-based and data-driven approaches is likely to be crucial.
Analytical models and optimization tools for CF-mMIMO are
provided in prior work, and practical constraints for ultra-
dense deployments are detailed in existing studies. Model-
aided learning can use these analytical results to shape neural
network architectures, constrain action spaces, or generate high-
quality training data. This can improve the reliability and
interpretability of Al-centric EE designs and reduce the risk
of unstable or suboptimal policies.

VI. CONCLUSION

This paper surveys research on energy-efficient CF-mMIMO
networks from an Al-centric perspective. It first introduces
the basic CF-mMIMO architecture, the uplink system model,
and the definitions of SINR, SE, and EE with simple equa-
tions. These explanations help beginners understand how CF-
mMIMO differs from cellular systems and why it has strong
potential for high and uniform SE and EE. The paper then
reviews optimization-based studies that design power control,
AP selection, CoMP-style cooperation, and RIS configurations
under EE objectives. It also summarizes Al-based methods
that apply deep learning, DRL, and FL to power control, AP
selection, fronthaul and feedback constraints, and energy-aware
FL over RIS-assisted CF-mMIMO.

Overall, CF-mMIMO shows high potential to provide user-
centric, uniform service quality and high EE. It does so by
using many distributed APs that cooperate in a flexible way.
When combined with Al techniques, CF-mMIMO can learn
complex resource-allocation policies, adapt to network dynam-
ics, and exploit structures such as RIS, ISAC, FDD operation,
CoMP cooperation, and FL in an energy-aware manner. Future
research needs to consider end-to-end EE optimization from the
physical layer up to Al applications. It should integrate model-
based and data-driven tools, use realistic large-scale simulations
and testbeds, and explore standardization and implementation
aspects. Through such efforts, CF-mMIMO can move from
theory to practice and become a core infrastructure for 6G
networks that are both intelligent and energy efficient.
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