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Abstract—Internet of Medical Things (IoMT) devices require
real-time intrusion detection systems that provide both high
accuracy and verifiable audit trails for regulatory compliance.
Traditional centralized approaches lack transparency and im-
mutability guarantees. This paper proposes AttentionChain, a
self-attention neural network integrated with blockchain for
IoMT intrusion detection. AttentionChain employs a custom
FeatureAttention layer that learns weighted representations of
network traffic features, achieving 99.89% accuracy on the
CIC-IoMT 2024 dataset (5.4M samples, 46 features, 19 attack
classes) with real-time inference at 0.0233 ms per sample, and
0.017 % false positive rate. Detected intrusions are automatically
logged to Pure Chain, a permissioned blockchain using the
Proof of Authority and Association (PoA?) consensus mecha-
nism [1], [2]. Pure Chain logging guarantees immutable and
cryptographically verifiable audit trails. Comprehensive bench-
marking on Pure Chain demonstrates 65.33 TPS throughput with
0.9 second latency, enabling practical deployment for healthcare
environments. AttentionChain provides healthcare institutions
with verifiable, transparent, and tamper-proof intrusion detection
capabilities for securing critical IoMT networks.

Index Terms—Deep Learning, loMT, Intrusion Detection, Pure
Chain, Self-Attention.

I. INTRODUCTION

IoMT has revolutionized healthcare delivery by enabling
remote patient monitoring, real-time clinical data collection,
and automated diagnostic systems across hospital networks
and connected medical infrastructures [3]. However, the ex-
pansion of interconnected medical devices has introduced new
security vulnerabilities that directly threaten patient safety and
data privacy [4], [5], [6]. IoMT devices operate in resource-
constrained environments with limited computational capa-
bilities, making them inherently susceptible to sophisticated
network attacks including DDoS attacks, packet injection,
unauthorized access, and malware propagation. Unlike tradi-
tional IT systems where security breaches result in data loss
or financial damage, compromised IoMT devices can directly
endanger patient lives and compromise critical medical oper-
ations [7], [8]. Healthcare organizations face strict regulatory
compliance requirements including HIPAA, GDPR [9], and
healthcare-specific standards that mandate comprehensive au-
dit trails, forensic evidence retention, and immediate threat
detection for all security incidents. The challenge of balanc-
ing real-time intrusion detection requirements with regulatory
compliance and audit trail preservation remains a critical gap
in healthcare cybersecurity [10].

Current intrusion detection systems for [oMT networks
typically rely on signature-based methods, machine learning,
or deep learning, each exhibiting significant limitations [11].
Signature-based systems are limited to detecting only pre-
viously known attack patterns, requiring frequent manual
updates to address emerging threats, and often generating nu-
merous false positives in the dynamic and complex healthcare
environment [12]. Machine learning techniques improve upon
this by enabling detection based on learned traffic patterns
rather than rigid signatures [11]. Deep learning enhances de-
tection capability by automatically extracting hierarchical and
complex features from raw data, generally achieving higher
accuracy [13]. However, deep learning models can be affected
by irrelevant or noisy features that may distract the learning
process, resulting in performance below expectations [11]. In
addition, standalone deep learning systems introduce critical
vulnerabilities. Detection decisions lack cryptographic verifi-
cation, logged alerts can be modified or deleted in centralized
databases without trace, audit trails are vulnerable to tampering
by administrators or attackers [14]. It could result in no
immutable forensic evidence for regulatory compliance or
incident investigation. Existing systems cannot simultaneously
satisfy the essential requirements like high-accuracy attack
detection, real-time processing capability, and verifiable and
tamper-proof event logging [15]. Recent IoMT intrusion de-
tection and blockchain-based security studies primarily focus
on centralized deep models or conceptual logging schemes
that do not provide per-prediction, automatically generated
audit trails on a deployed permissioned blockchain. This gap
creates a fundamental weakness in healthcare IoMT security
architecture where accurate threat detection cannot be verified
or forensically validated.

To address these limitations, this paper introduces Atten-
tionChain, a self-attention deep learning framework utilizing
a FeatureAttention layer with immutable blockchain logging.
This design enables the model to both detect new or emerging
attacks in IoMT traffic. Self-attention mechanisms in deep
learning enable the model to identify which specific traffic
characteristics are most indicative of attacks. Unlike traditional
deep learning models that treat all features equally, self-
attention layers compute adaptive weights over input features.
This targeted feature weighting enhances accuracy, robust-
ness, and efficiency of intrusion detection in diverse IoMT
settings, making FeatureAttention a crucial component in



Fig. 1: AttentionChain Framework Architecture

improving deep learning-based security solutions. Blockchain
ensures verifiable and immutable event logging. Pure Chain
is suitable for real-time healthcare applications because of its
high throughput and low latency. By automatically logging
self-attention deep learning predictions to Pure Chain, the
framework achieves accurate and real-time intrusion detec-
tion, cryptographically verifiable audit trails, and transparent
forensic analysis that enables rigorous investigation of security
incidents. In contrast to existing approaches, AttentionChain
combines a FeatureAttention-based self-attention architecture
with an implemented Web3.py-based logging component and
a smart contract on Pure Chain, so that every detection
decision is immutably recorded on-chain during inference in
real time.
The contributions of this work are as follows:

o Presented a self-attention deep learning framework,
achieving 99.89% accuracy with real-time inference
0.0233 ms per sample, and 0.017% false positive rate.

« Developed FeatureAttention layer that computes adaptive
importance weights over network traffic features, en-
abling transparent identification of which characteristics
are most indicative of attacks.

o Demonstrated Pure Chain integration achieving crypto-
graphically verifiable, tamper-proof intrusion logging at
65.33 transactions per second throughput, and 0.9 second
latency.

II. METHODOLOGY

This section presents the complete methodology of the
AttentionChain framework for blockchain-verifiable IoMT in-
trusion detection. The approach consists of four integrated
stages: (1) comprehensive data preprocessing and normaliza-
tion of network traffic features from the CIC-IoMT 2024
dataset [16], (2) design and training of the AttentionChain
neural network incorporating a FeatureAttention mechanism

for threat detection, (3) inference and performance evaluation
across 1,081,536 test samples, and (4) automatic logging
of detected intrusions to Pure Chain for cryptographically
verifiable audit trail maintenance. Each stage is designed to ad-
dress critical requirements: accurate attack classification, real-
time processing capability, and tamper-proof forensic evidence
retention. The following subsections detail the implementation
of each stage.

A. Framework Overview

Figure. 1 illustrates the flow of data of the proposed
AttentionChain framework. The framework integrates three
key steps: (1) data preprocessing of IoMT network traffic,
(2) self-attention deep learning for intrusion detection, and
(3) blockchain integration for immutable audit trail logging.
The framework processes raw network traffic features through
feature normalization, trains an attention-based neural network
to classify 19 attack types with feature importance weights,
and automatically logs detected intrusions to Pure Chain with
cryptographic verification.

B. Dataset and Data Preprocessing

The CIC-IoMT 2024 dataset [16] comprises network traf-
fic from healthcare IoMT devices with 5,407,680 samples
containing 46 numeric network flow features and 19 attack
class labels. Attack type labels are cleaned by removing suffix
markers (“_train”, ““_test”) using regular expression matching:
label = regex_match(r‘(. x [A — Za — z])(+)?‘). Labels are
encoded to integers 0-18 using scikit-learn’s LabelEncoder,
creating 19 discrete attack classes.

Numeric features are selected from the raw data, resulting in
46 features per sample. Missing values within numeric features
are imputed with column-wise means to handle incomplete
records. Duplicate rows are removed to eliminate redundant
samples. Data is partitioned using stratified random sampling



into training (70%, 3,785,376 samples), validation (10%,
540,768 samples), and test (20%, 1,081,536 samples) sets.
Stratification ensures class distribution is maintained across
all sets, preventing class imbalance issues.

Feature normalization is applied using StandardScaler:

~ X —
X = H

(1)

where 1 and o are computed from training data only. The
training scaler is then applied to validation and test data to
prevent data leakage. All feature matrices are converted to
float32 precision for efficient GPU computation during training
and inference.

g

C. FeatureAttention Layer

The custom FeatureAttention layer enables adaptive fea-
ture weighting for intrusion detection by learning importance
scores across all input features through a matrix-based atten-
tion mechanism. This allows the model to focus on the most
relevant network traffic characteristics when distinguishing
between benign and different types of attack.

Given input features = € RP*128 where B is the batch size
and 128 is the number of input features, the FeatureAttention
layer applies a trainable linear transformation parameterized
by a weight matrix and bias:

e = tanh(zWyy + bay) )

where Wy, € R128%128 i the weight matrix and by, € R128
is a learned bias vector, both initialized using Glorot uniform
and zeros, respectively.

The attention energies e are normalized using the softmax
function across the feature dimension for each sample to
produce attention weights:

a = softmax(e) 3)

resulting in @ € RBX128 with attention weights for each
sample that sum to 1 across all features.

The output of the FeatureAttention layer is then computed
by scaling each input feature by its corresponding attention
weight:

output =z © a 4)

where © denotes element-wise multiplication over the fea-
ture dimension for each sample.

This matrix-based attention mechanism allows the model
to adaptively amplify the most discriminative features and
suppress irrelevant ones, thus improving the accuracy and
robustness of intrusion detection. The computed attention
weights can be extracted for further analysis or secure logging,
supporting transparency and auditability of model decisions.
Unlike standard self-attention mechanisms that model pairwise
interactions between tokens in a sequence, the proposed Fea-
tureAttention layer operates directly over the feature dimen-
sion of tabular IoMT traffic, using a single linear projection

and softmax normalization to obtain per-feature importance
scores with O(d) complexity for d input features. This design
is tailored to high-dimensional flow-based intrusion detection,
where emphasizing discriminative network statistics is more
critical than modeling long-range temporal dependencies.

D. AttentionChain Model Architecture

AttentionChain is a feedforward neural network integrating
dense layers, batch normalization, dropout regularization, and
the custom FeatureAttention layer. The architecture accepts
46 normalized network traffic features as input. The first
dense layer maps inputs to 128 units with ReLU activation,
followed by batch normalization and dropout (rate = 0.3)
for regularization. The FeatureAttention layer then computes
adaptive importance weights over these 128 features.

Following FeatureAttention, a dense layer reduces dimen-
sionality to 64 units with ReLU activation, batch normaliza-
tion, and dropout (0.3). A third dense layer further reduces
to 32 units with ReLU activation and dropout (0.2). Finally,
the output layer contains 19 units with softmax activation,
producing probability distributions over the 19 attack classes.
The complete model contains 34,259 trainable parameters dis-
tributed across dense layer weights and biases, batch normal-
ization parameters, and the FeatureAttention weight matrix.
This lightweight architecture enables real-time inference while
maintaining sufficient expressive capacity for complex attack
pattern detection in diverse IoMT network traffic.

E. Model Training

Model training minimizes Categorical Crossentropy loss:

19
L=—-) yilog(g) 5)
k=1

where y; is the one-hot encoded ground truth label and
U, is the predicted probability for class k. Training data
labels are converted to one-hot encoded format: Yopehot =
to_categorical(y, 19), creating a 19-dimensional binary vector
for each sample.

Optimization is performed using Adam optimizer with
learning rate o = 0.001:

(6)

Ori1 =0, — a2
it e
where m; is the exponential moving average of gradients
(first moment) and v, is the exponential moving average of
squared gradients (second moment). The training configuration
uses batch size 128, processing 3,785,376 training samples
across 50 epochs. Early stopping with patience 10 is im-
plemented, monitoring validation loss to prevent overfitting.
Training is terminated when validation loss does not improve
for 10 consecutive epochs. Total training time was 38.60
minutes on the complete training set.



F. Inference and Evaluation

Inference performs forward propagation through all trained
layers for each test sample, generating probability scores
across 19 attack classes. Predicted class is extracted as:

Z,A/pred = arg Hl]?X yAk‘ (7)

Performance is evaluated using scikit-learn metrics: overall
accuracy, weighted precision, weighted recall, and weighted
Fl1-score. To quantify the impact of incorrect alarms in IoMT
settings, the false positive rate (FPR) is computed as:

FP

FPR = ———
FP + TN

®)
Per-class metrics are computed for all 19 attack types from

the classification report. Confusion matrix analysis reveals

classification performance across all attack class pairs.

G. Blockchain Integration and Alert Logging

Detected intrusions are automatically logged to the Pure
Chain blockchain to create immutable, cryptographically veri-
fiable audit trails during inference. The framework connects
to Pure Chain via Web3.py using the RPC endpoint and
interacts with the IDChainLogger smart contract (address
0xf0fB8e25191d9bb6B95e7d997fB71b838FB12042), whose
logAlert function accepts the attack type (string), con-
fidence score (uint256), top features (string array), feature
importance values (uint256 array), and a correctness flag
(uint256).

For each prediction sample, Algorithm 1 extracts
attack_type, confidence, and correctness, builds a
logAlert (...) transaction, signs it with the private
key, and submits it to Pure Chain. The client then waits
for the confirmation receipt, records the transaction hash,
block number, and gas used, and appends this metadata
to a JSON log, ensuring that every detection decision is
permanently linked to a verifiable on-chain record without
manual intervention.

Algorithm 1 Blockchain Logging

Require: AttentionChain predictions, Pure Chain RPC URL, contract address
Ensure: Confirmed transactions on blockchain
1: Initialize Web3 connection to Pure Chain

2: Load IDChainLogger smart contract

3: for each prediction sample 7 do

4: Extract attack_type, confidence, correctness

5: nonce <— w3.eth.get_transaction_count (...)

6: Build tx <« logAlert (attack_type, confidence,
top_features, importance_values, correctness)

7: Configure gas parameters

8: Sign tx with private key

9: Send raw tx to blockchain

10: Wait for confirmation receipt

11: Record tx_hash, block_number, gas_used

12: end for

13: Save logs to JSON file
14: return Confirmed transactions array

H. Blockchain Performance Benchmarking

Pure Chain performance is evaluated to ensure suitability for
real-time IoMT monitoring. Throughput (TPS) is calculated as:

TPS — Number of conﬁr.med. transactions ©)
Total elapsed time in seconds

Transaction confirmation latency is measured as time from
submission to block inclusion.

III. PERFORMANCE EVALUATION

A. Model Accuracy and Metrics

AttentionChain achieved 99.89% accuracy on the CIC-
IoMT 2024 test set containing 1,081,536 network traffic
samples. The model correctly classified 1,081,305 intrusions
out of 1,081,536 test instances, corresponding to an overall
false positive rate of 0.017%. The confusion matrix in figure 2
shows that the test precision, recall, and F1-score metrics all
reached 99.89%.

TABLE I: AttentionChain Test Performance

Metric Value
Test Accuracy 99.89%
Test Precision 99.89%
Test Recall 99.89%
Test F1-Score 99.89%
False Positive Rate 0.017%
Total Test Samples 1,081,536
Correct Classifications 1,081,305

B. Inference Performance

The model processed each network traffic sample in 0.0233
milliseconds. This resulted in a throughput of 42,960 samples
per second. The complete test set of 1,081,536 samples was
processed in 25.30 seconds. The model architecture contains
34,259 trainable parameters.

TABLE II: Inference Performance Results

Metric Value
Inference Time per Sample 0.0233 milliseconds
Throughput 42,960 samples/second
Total Test Samples Processed 1,081,536
Model Parameters 34,259

C. Pure Chain Performance

Figure 3 shows that AttentionChain predictions were auto-
matically logged to Pure Chain. Benchmarking results demon-
strate 65.33 TPS throughput with mean latency 0.9 sec-
onds. Block generation time on Pure Chain averaged 1.4-
1.5 seconds, with approximately 5.2 transactions per block on
average. Each blockchain transaction consumed an average of
238,737 gas. The median gas consumption was 241,665 gas.



Fig. 2: Confusion Matrix of the Self-Attention Feedforward Neural Network Model

Fig. 3: AttentionChain predictions automatically logged to
Pure Chain

D. Comparison with Recent Works

Table IV presents a comparative analysis between the pro-
posed AttentionChain and recent intrusion detection frame-
works. Compared to recent IDS approaches, the Attention-

TABLE III: Pure Chain Performance

Metric Value
Transactions Per Second (TPS) 65.33
Mean Latency 0.9 seconds

Block Generation Time 1.4-1.5 seconds
Average Transactions per Block 52

Chain framework demonstrates the highest accuracy and F1-
score with the lowest inference time on the CIC-IoMT2024
dataset, while uniquely providing permissioned blockchain au-
ditability. Hybrid-DNN [17] and HIDS-RPL [18] offer strong
detection performance on CIC-DDo0S2019, but lack both au-
ditability and real-time healthcare focus. The Explainable
Transformer [19] achieves lower multiclass accuracy and does
not support audit trails. This highlights that AttentionChain
stands out by achieving state-of-the-art detection, real-time
inference, and secure compliance for IoMT networks.



TABLE IV: Performance comparison with recent intrusion detection systems on CIC-IoMT2024 and CIC-DDoS2019 datasets.

System Dataset Method Accuracy% | F1-Score% Inference Time (ms) | Usage of Blockchain
Hybrid- CIC-DDo0S2019 XGBoost FS + CNN- | 99.50 99.46 0.179 No

DNN [17] LSTM

HIDS-RPL [18] CIC-DDoS2019 CNN + LSTM Hybrid | 99.87 98.54 Not Specified No

Explainable CIC-IoMT2024 Transformer + XAI | 974 97 Not Specified No

Transformer [19] (LIME/SHAP)

AttentionChain CIC-IoMT2024 Self-attention DL + | 99.89 99.89 0.0233 Permissioned
(Proposed) Blockchain

IV. CONCLUSION

AttentionChain successfully integrates a FeatureAttention-
based self-attention deep learning model with Pure Chain
blockchain to provide real-time IoMT intrusion detection with
verifiable audit trails. On the CIC-IoMT 2024 dataset, the
framework achieved 99.89% test accuracy with a 0.017% false
positive rate, while processing 42,960 samples per second
at 0.0233 ms per sample and completing training in 38.60
minutes. All detected intrusions were automatically logged
to Pure Chain via the IDChainLogger smart contract, and
benchmarking showed 65.33 transactions per second with
mean latency of 0.9 seconds, indicating that immutable on-
chain logging can be integrated without violating typical IoMT
real-time monitoring requirements. These results demonstrate
that AttentionChain can secure critical [oMT networks while
simultaneously providing cryptographically verifiable audit
trails for regulatory compliance and forensic investigations.
Future work will explore federated learning techniques to dis-
tribute model training across multiple healthcare organizations
while preserving data privacy and enabling interoperability
across multiple permissioned blockchains.
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