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Abstract—Color plays a crucial role in visual communication
and multimedia content creation, yet generating color palettes
that accurately convey specific emotions remains challenging.
This paper presents an application-oriented generative frame-
work that adapts established variational modeling techniques to
the problem of emotion-conditioned color synthesis. Grounded
in Kobayashi’s Color Image Scale, the method maps continuous
affective coordinates to three-color combinations. To address the
scarcity of annotated data, an XGBoost-based pseudo-labeling
strategy expands a small set of labeled samples into a dataset of
53,698 web-collected triplets. The study employs a β-Conditional
Variational Autoencoder (β-CVAE) with a learned conditional
prior, configured to reflect emotion-specific variations in the
latent space. Direct alignment and decorrelation constraints are
incorporated to disentangle emotion-controlling dimensions from
residual stylistic factors, enabling independent manipulation of
emotional intent and visual style. Experimental results show
strong correlations between latent dimensions and affective
axes (Spearman’s ρ = 0.926 for warm–cool, 0.954 for soft–
hard), demonstrating effective control and stylistic diversity. The
proposed framework provides an interpretable and practical tool
for emotion-aware multimedia design, visualization systems, and
affective computing applications.

Index Terms—Emotion-conditioned generation, Color Palette
Generation, CVAE, Disentangled representation, Affective Com-
puting

I. INTRODUCTION

Color plays an essential role in multimedia and visual
communication, influencing aesthetic quality, user attention,
and overall experience. In applications such as interface de-
sign, branding, and data visualization [1]–[3], designers often
rely on carefully crafted color palettes to convey specific
impressions. However, creating palettes that express particular
emotional qualities remains challenging and typically requires
expert knowledge, motivating automated approaches for con-
trolled palette generation.

Kobayashi’s Color Image Scale (CIS) [4], [5] is a widely
used reference for describing impressions of color combi-
nations. CIS associates palettes with key image-words (e.g.,
“elegant,” “pretty,” “dynamic”) and places them within a two-
dimensional Warm–Cool and Soft–Hard space. While useful
for design practice, its limited number of samples makes it
insufficient for training generative models that require contin-
uous and high-coverage affective supervision.

Traditional palette extraction techniques—such as histogram
analysis, Principal Component Analysis (PCA), and K-means
clustering [6], [7]—rely on low-level pixel statistics and cannot
represent high-level affective semantics or generate diverse
variations. Conversely, while deep generative models can syn-
thesize harmonious palettes [8]–[11], most lack mechanisms
for controlling outputs via continuous affective parameters
and do not disentangle intended impressions from stylistic
variation.

To address these gaps, we propose an emotion-controllable
palette generation framework based on a disentangled β-
Conditional Variational Autoencoder (β-CVAE). The model
incorporates a learned conditional prior to capture impression-
dependent structure and partitions the latent space into
emotion-aligned and style-related components. Furthermore,
we construct a large-scale pseudo-labeled dataset by extend-
ing CIS samples using XGBoost-based coordinate prediction,
enabling continuous and robust generative modeling across the
affective space.

Fig. 1. Conceptual overview of the proposed emotion-controllable color
palette generation framework. Given affective coordinates from the Color
Image Scale, the β-CVAE encodes the emotion-aligned latent variables zxy
and residual style factors zresid, producing color palettes that reflect the
intended emotional impression.

II. RELATED WORK

A. Kobayashi’s Color Image Scale
The Color Image Scale (CIS) has been widely adopted

in applications such as image indexing, semantic annota-
tion, painting-style emotion analysis, and color generative
tasks [12]–[15]. These studies demonstrate that CIS offers
a practical descriptive framework for associating color com-
binations with impression-related keywords, enabling its use



across psychology, design, and computer vision research. Its
structured Warm–Cool and Soft–Hard axes further support
downstream tasks in affective design, color recommendation,
and automated palette synthesis.

In the context of palette generation, several works have
explored the use of CIS-labeled data. One approach introduces
a Hue Spread Index (HSI) that quantifies subjective color
harmony principles into computational metrics, enabling auto-
mated yet adjustable palette construction [11]. Another line of
work employs autoencoder-based models to generate mixed-
color palettes aligned with CIS impression categories [10].
While these studies illustrate the feasibility of using CIS for
generative purposes, they remain constrained by the limited
size of the original dataset and rely on relatively simple
architectures. Autoencoder-based models, in particular, often
struggle with controllability and disentanglement, making it
difficult to separate affective intent from stylistic variation or
to perform tasks such as style transfer.

B. Generative Palette Models

Deep generative models have been successfully applied
to automated color tasks, including color harmony extrac-
tion [16], word–color association learning [17], and cross-
modal emotion transfer [18]. While architectures such as VAEs
and GANs can synthesize visually coherent palettes [8], [9],
they typically prioritize visual fidelity over semantic con-
trollability. Most approaches lack mechanisms for explicitly
adjusting outputs through continuous affective parameters,
limiting their use in tasks requiring precise emotional tuning.

A recent review on palette generation [19] highlights
broader challenges in computational color design, emphasizing
that color selection is inherently connected to emotional ex-
pression and cultural context. The review argues for systems
that are not only harmonious but also semantically aligned
with desired impressions. However, existing generative frame-
works tend to conflate affective intent with stylistic varia-
tion in their latent representations. Consequently, modifying
emotional characteristics often leads to unintended alterations
in the palette’s compositional structure, making independent
control difficult.

III. METHODOLOGY

A. Problem Formulation

The goal of this work is to learn a conditional generative
model that synthesizes three-color palettes consistent with
specified emotional coordinates. Each palette is represented
as x ∈ R9, formed by concatenating three RGB triplets nor-
malized to [0, 1]. The emotional condition c ∈ R2 corresponds
to the Warm–Cool and Soft–Hard dimensions of Kobayashi’s
Color Image Scale.

We model the conditional distribution p(x|c) using a Con-
ditional Variational Autoencoder (CVAE), where an encoder
approximates the posterior qϕ(z|x, c) and a decoder generates
palettes from latent variables and conditions. The following
section describes the latent structure and conditional prior used
to enable emotion-controlled generation.

B. Model Architecture

The proposed framework consists of four components: an
encoder, a decoder, a conditional prior network, and two
auxiliary alignment heads.

Encoder. The encoder receives the concatenation of the
palette x ∈ R9 and condition c ∈ R2, mapping them
into the latent distribution parameters (µ, logσ2) ∈ R6 of
the approximate posterior qϕ(z|x, c). It is implemented as a
lightweight multilayer perceptron with SiLU activations.

Decoder. The decoder reconstructs palettes from the con-
catenation [z, c], producing an output in [0, 1]9. A symmetric
multilayer perceptron with a sigmoid output layer ensures
valid RGB ranges.

Conditional Prior Network. To enable continuous control
along affective dimensions, we introduce a conditional prior
over the emotion-related subspace zxy . Instead of using a fixed
isotropic Gaussian prior, a small neural network predicts the
mean of the latent distribution conditioned on the emotional
coordinates:

pψ(zxy|c) = N (µψ(c), I), (1)

where µψ(c) ∈ R2 is produced by a lightweight MLP. This
design anchors the latent representation to emotion-dependent
locations, allowing smooth traversal across the Warm–Cool
and Soft–Hard axes. The remaining latent dimensions zresid
follow a standard Gaussian prior p(zresid) = N (0, I), provid-
ing stylistic variability that remains independent of emotional
input. This hybrid prior formulation enables the model to
jointly support emotion control and style diversity.

Auxiliary Alignment Heads. Two linear heads are incor-
porated during training: fz→c predicts the emotional condition
from zxy , reinforcing emotion-aligned encoding; fc→z maps
the condition back into the latent space for cycle-consistency
regularization. These heads are used only for training losses
and impose no overhead during inference.

Fig. 2. Architecture of the proposed β-CVAE with a conditional prior. The
encoder maps a color palette x and affective condition c to a disentangled
latent representation z = [zxy , zresid], where zxy encodes emotion-aligned
factors and zresid captures residual style. A conditional prior anchors zxy
to the affective coordinates during training. Auxiliary control heads and
alignment constraints are used only for training to encourage disentanglement
and are removed at inference time.

C. Training Objective

The model is trained by maximizing the evidence lower
bound (ELBO) with additional regularization terms that en-
courage continuous emotion control and separation between



emotion-related and stylistic factors. The full objective is
defined as:

L = Lrecon+LKL+λ1Linfo+λ2Lcycle+λ3Ldirect+λ4Ldecorr (2)

Reconstruction Loss. Palette reconstruction is optimized
using an element-wise squared error:

Lrecon = ∥x− x̂∥2 (3)

KL Divergence with Capacity Control. The posterior is
regularized toward the hybrid prior, consisting of a learned
conditional prior for zxy and a standard Gaussian prior for
zresid:

DKL = DKL
(
qϕ(zxy|x, c) ∥ pψ(zxy|c)

)
+DKL

(
qϕ(zresid|x, c) ∥N (0, I)

) (4)

To prevent posterior collapse while enabling the model to grad-
ually encode more information, a capacity constraint inspired
by β-VAE is applied:

LKL = β · |DKL − C(t)| (5)

The target capacity C(t) increases linearly from zero to a
maximum Cmax during training.

Information Preservation Loss. A linear head fz→c pre-
dicts the emotional condition from zxy , encouraging emotion-
relevant information to be retained in the emotion subspace:

Linfo = ∥fz→c(zxy)− c∥2 (6)

Cycle Consistency Loss. A reverse mapping fc→z projects
the condition back into the latent space, enforcing bidirectional
consistency:

Lcycle = ∥fz→c(fc→z(c))− c∥2 (7)

Direct Alignment Loss. To stabilize emotion-conditioned
latent structure, the encoder’s mean for the emotion subspace
is aligned with the prior mean:

Ldirect = ∥µxy − µψ(c)∥2 (8)

Decorrelation Loss. To enforce independence between style
and emotion, we minimize the squared Pearson correlation
between the residual codes and each emotion dimension:

Ldecorr =

2∑
k=1

ρ(zresid, ck)
2 (9)

where ck denotes the k-th dimension of the affective coordi-
nates.

D. Implementation Details

The proposed framework was implemented in PyTorch.
Both the encoder and decoder adopt symmetric MLP archi-
tectures with a hidden dimension of 512. The latent space has
a total dimensionality of 6, consisting of an emotion-aligned
subspace zxy ∈ R2 and a residual style subspace zresid ∈ R4.
Optimization was carried out using Adam with a learning rate
of 2 × 10−4, weight decay of 1 × 10−5, and a batch size of

64. Gradient clipping with a threshold of 5.0 was applied to
stabilize training. All models were trained for 130 epochs.

For the β-VAE objective, the penalty coefficient was fixed at
β = 4.0. To mitigate posterior collapse, a controlled capacity
increase schedule was employed, where the target capacity
C was linearly annealed from 0 to a maximum value of
Cmax = 4.0 nats over the first 70% of the total training steps.
In addition, a minimum information constraint (free-bits) of
0.05 was applied per latent dimension.

Regarding regularization, static loss weights were set to
λcycle = 0.1 and λdecorr = 0.1. For emotion-alignment objec-
tives, a staged activation strategy was adopted to stabilize early
training dynamics. The information alignment loss λinfo and
direct alignment loss λdirect were initialized to zero, activated
after 20% and 25% of the total training steps respectively, and
then linearly increased to their final values of λinfo = 2.0 and
λdirect = 0.2 over the subsequent 40% of training.

IV. DATASET

This work is based on Kobayashi’s Color Image Scale
(CIS), which provides over 1,000 three-color combinations
positioned in a two-dimensional affective space defined by the
Warm–Cool and Soft–Hard axes. Because the original charts
provide only graphical placements, the affective coordinates
were digitized by extracting the centroid position of each
palette, resulting in 1,132 machine-readable samples.

To address the limited size of the CIS dataset, additional
palettes were collected from online design platforms. These
five-color schemes were decomposed into overlapping triplets
(e.g., 1–2–3, 2–3–4, 3–4–5) to match the CIS format. An
XGBoost regressor was trained on the digitized CIS data
using an 80/20 train–validation split and achieved an R2 score
of 0.82 on the held-out validation set. The trained regressor
was then used to predict affective coordinates for the web-
collected triplets, yielding a pseudo-labeled dataset of 53,698
samples. For generative model training, this dataset was further
randomly split into 80% for training and 20% for testing.

V. EXPERIMENTS

A. Ablation Study on Latent Alignment

To evaluate the contribution of the auxiliary loss terms, we
conducted an ablation study by training a baseline model in
which all auxiliary losses were removed (λinfo = λcycle =
λdirect = λdecorr = 0). This results in a standard β-CVAE with
a learned conditional prior, trained only with reconstruction
and KL objectives.

We measured the correspondence between the latent di-
mensions and the affective coordinates using Spearman’s rank
correlation coefficient (ρ). As shown in Table I, the baseline
model exhibits noticeably weaker correlations. In comparison,
the full model achieves high correlations of 0.926 on the
Warm–Cool axis and 0.954 on the Soft–Hard axis, indicating
that the auxiliary objectives play an important role in shaping
the latent variables with respect to the affective dimensions.



TABLE I
ABLATION STUDY ON LATENT–EMOTION CORRELATION. THE BASELINE

MODEL EXCLUDES ALL AUXILIARY LOSSES (λAUX = 0).

Method Warm–Cool (z1) Soft–Hard (z2)
Baseline (λaux = 0) −0.016 0.200
Full Model 0.926 0.954

B. Emotion-Controllable Generation

To evaluate whether the model can generate palettes that
consistently reflect specified emotional coordinates, we con-
ducted an emotion-conditioned sampling experiment. For each
target affective coordinate, the emotion-related latent variables
zxy were fixed according to the learned conditional prior,
while the residual latent variables zresid were randomly sam-
pled to produce stylistic variations.

Figure 3 shows generated palettes for four representative
affective targets: Fresh, Pretty, Stylish, and Dynamic. Within
each condition, the generated palettes display coherent emo-
tional characteristics consistent with their target coordinates.
For example, Fresh palettes tend to exhibit higher-luminance
cool tones, whereas Dynamic palettes often contain saturated
warm hues. At the same time, variations across samples
demonstrate that the residual latent space captures stylistic
diversity independent of the affective dimensions.

These results indicate that the proposed model can control
emotional intent while maintaining generative variability, en-
abling practical use in emotion-aware design workflows that
require both consistency and diversity.

Fig. 3. Emotion-controllable color palette generation. For each affective
target, the emotion-related code zxy is fixed to the target coordinate, while the
style code zresid is randomly sampled. The model generates diverse palettes
that remain consistent with the semantic characteristics of the target emotion.

C. Style-Consistent Emotion Transfer

To evaluate the separation between emotional and stylistic
representations, we conducted a style transfer experiment in
which the residual style vector zresid from a source palette was
combined with different target emotional coordinates.

Figure 4 presents the outputs. The source palette (Modest)
features a distinctive light-to-dark luminance progression, and
this structure is consistently preserved after transfer. For the
four target emotions (Vivid, Smart, Sharp, Free), the model

adjusts hue and saturation to match the intended affect while
maintaining the original luminance ordering and contrast re-
lationships.

These results suggest that zresid encodes stable stylistic
cues—such as luminance arrangement and basic compositional
patterns—that remain intact regardless of the target emotion.
This enables emotional attributes, controlled by zxy , to be
modified without disrupting the palette’s underlying structure.

Fig. 4. Style-consistent emotion transfer. (Left) A source palette with a
Modest impression, characterized by a light-to-dark luminance arrangement.
(Right) Transfer results applying the same style code zresid to four different
target emotions. The model adapts the chromatic properties to the new
emotions while strictly preserving the luminance hierarchy and compositional
structure of the source.

D. Latent Space Traversal

To examine the continuity and organization of the learned
emotion-related representations, we performed a latent inter-
polation experiment. The emotion-aligned subspace zxy was
traversed over a two-dimensional grid, while the residual style
code zresid was fixed at the prior mean.

Figure 5 visualizes the resulting palette manifold. The gen-
erated palettes exhibit smooth chromatic transitions across the
affective plane. Moving horizontally and vertically across the
grid yields gradual changes in hue, saturation, and luminance
that align with the semantic structure of the Warm–Cool and
Soft–Hard dimensions. For example, palettes in the upper-left
region correspond to warm and high-contrast combinations,
whereas palettes in the lower-right region transition toward
cooler and softer tones.

The absence of abrupt discontinuities or degenerate out-
puts indicates that the model has learned a continuous and
well-structured color–emotion manifold. This smooth traversal
demonstrates that the proposed β-CVAE supports meaningful
interpolation between affective states, enabling controllable
navigation through the latent emotion space.

E. Application to Multimedia Interface Design

To illustrate the practical applicability of the proposed
emotion-controllable palette generator in multimedia scenar-
ios, we applied model-generated palettes to a mobile travel
application interface. As shown in Figure 6, the layout, typog-
raphy, and content are held constant across all variants; only



Fig. 5. Visualization of the learned color–emotion manifold. Each palette is
generated by traversing the emotion-related latent subspace zxy while keeping
zresid fixed. The smooth transitions from warm/intense (top-left) to cool/soft
(bottom-right) indicate that the model captures a continuous and semantically
organized affective space.

the color palette is replaced according to different affective
targets.

The resulting interfaces exhibit clearly distinguishable af-
fective impressions. For example, the Fresh palette produces
a bright and welcoming tone, whereas the Authoritative palette
conveys a more formal and structured atmosphere. Similarly,
Merry yields a warm and cheerful presentation, while Proper
results in a restrained and elegant aesthetic. Despite these
perceptual differences, the underlying UI structure remains
unchanged, demonstrating that the proposed model can be
seamlessly integrated into interface design pipelines to support
emotion-aware visual customization in multimedia applica-
tions.

Fig. 6. Application to Interface Design. Four model-generated palettes
applied to a fixed mobile travel interface. By varying only the latent affective
coordinates, the model successfully alters the visual identity of the application
across distinct emotional targets (Fresh, Authoritative, Merry, Proper) while
maintaining strict structural consistency.

F. Application to Data Visualization

We also examined whether the generated palettes are suit-
able for analytical graphics, where clarity and category dis-
tinction are critical. Figure 7 applies four affective palettes to
identical line and area chart layouts. Only the color assign-
ments vary across conditions.

Across all examples, the charts remain readable, with con-
sistent contrast between series and no ambiguity in class
differentiation. This demonstrates that the proposed model can
generate palettes that are not only affectively meaningful but

also meet basic usability requirements for data visualization,
enabling their use in dashboards and multimedia analytics
tools.

Fig. 7. Use of model-generated palettes in data visualization. Each chart
uses identical data and layout, differing only in the applied affective palette.
All palettes maintain sufficient contrast and category separability, indicating
suitability for analytical graphics.

VI. CONCLUSION

In this work, we presented a β-CVAE with a learned
conditional prior for emotion-controllable color palette gen-
eration. By integrating Kobayashi’s Color Image Scale with
a disentangled latent design, the model enables independent
manipulation of emotional intent and stylistic characteristics.
The pseudo-labeled dataset further expands the affective cov-
erage of the training data, supporting robust learning in the
two-dimensional emotion space.

Experimental results show that the model exhibits strong
latent correlations with the target affective coordinates and
generates palettes that remain semantically consistent while
allowing substantial stylistic diversity. The framework sup-
ports style-consistent emotion transfer and smooth traversal
across the learned affective manifold, and applications in UI
design and data visualization demonstrate its practical utility
in multimedia contexts.

Future work will explore extending the framework to sup-
port variable-length palettes, as well as incorporating multi-
modal conditioning—such as text prompts, images, or style
exemplars—to enable more flexible and interactive affect-
aware design tools. Additionally, conducting user studies and
pursuing finer disentanglement of stylistic attributes, including
luminance, saturation, and ordering patterns, represent promis-
ing directions for improving interpretability and expanding
the model’s applicability. Ultimately, this work contributes to
the development of AI-driven multimedia systems that benefit
from controllable color semantics and adaptive, emotion-aware
visual design tools.
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