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Abstract—Deep reinforcement learning (DRL) for robot navi-
gation relies heavily on the quality of representations extracted
from high-dimensional visual and geometric observations. How-
ever, RGB, depth, and LiDAR inputs often contain substantial
appearance-related redundancy, while navigation behavior pri-
marily depends on geometric semantics. When a shared encoder
is jointly optimized by critic objectives and auxiliary repre-
sentation learning losses, these heterogeneous learning signals
tend to mix task-relevant and task-irrelevant factors within
the same feature space, leading to representation entanglement.
Such entanglement increases the variance of value estimation,
reduces policy robustness to appearance changes, and limits
generalization across environments.

This paper provides a conceptual and structural analysis
of how redundancy and entanglement emerge in current DRL
frameworks for navigation, and why disentangling navigation
semantics from appearance factors is fundamentally important.
The discussion highlights key challenges arising from shared-
encoder training and outlines potential benefits of adopting
disentangled representations for improving stability, robustness,
and transferability in DRL-based navigation systems.

Index Terms—Deep Reinforcement learning, robot navigation,
representation learning, Disentanglement learning.

I. INTRODUCTION

With the rapid progress of deep reinforcement learning
(DRL) in robotics, vision-based and multimodal autonomous
navigation has emerged as a central research topic. Mobile
robots operating in real-world environments must process
high-dimensional observations collected from RGB cameras,
depth sensors, and LiDAR units. Although these sensing
modalities provide rich environmental information, they also
contain large amounts of task-irrelevant variations, such as
changes in illumination, texture, material appearance, and
sensor noise. These appearance-related factors significantly
increase observational redundancy, thereby making effective
policy learning more challenging in navigation tasks.

Recent studies have combined DRL with auxiliary
representation-learning techniques—including reconstruction
[1], [2], self-supervised contrastive learning [2]–[6], and pre-
dictive representation learning [2], [6]–[8]—to improve train-
ing stability and sample efficiency. In typical architectures,
the encoder is jointly updated by critic losses and auxiliary

losses, while the actor consumes a stop-gradient version of
the encoder features to avoid destabilizing gradients. This
paradigm has shown strong performance on standard visuo-
motor benchmarks. However, because multiple heterogeneous
learning objectives simultaneously update the same encoder,
the resulting representations often entangle navigation-relevant
geometric semantics with appearance-induced disturbances,
a phenomenon known as representation entanglement. Such
entanglement can destabilize value estimation and make the
learned policy sensitive to appearance changes, ultimately
compromising reliability and generalization across environ-
ments and platforms.

These representation issues are especially pronounced in
mobile robot navigation. Real-world environments exhibit
substantial variability in building layouts, lighting conditions,
floor materials, dynamic occlusions, and even domain shifts
between simulation and reality. If the learned representation
fails to separate task-relevant from task-irrelevant factors, the
policy may perform well only in the training environment but
degrade significantly—or behave unpredictably—under new
visual conditions or in unseen scenes.

Motivated by these challenges, this paper provides a con-
ceptual and structural analysis of two fundamental represen-
tation issues in DRL-based robot navigation: observational
redundancy and representation entanglement. Specifically, we
examine (i) why navigation observations inherently possess
high redundancy, (ii) how entanglement emerges when the
encoder is jointly optimized by critic and auxiliary objectives,
and (iii) why incorporating some form of representation disen-
tanglement is structurally beneficial for enhancing robustness
and cross-scene transferability. Rather than proposing a new
algorithm, this work aims to offer motivation and analytical
grounding for future research on task-aware representation de-
sign and disentanglement methods in DRL-based navigation.

II. REDUNDANCY IN NAVIGATION OBSERVATIONS

Mobile robots operating in real-world environments must
process large volumes of data from multiple sensing modali-
ties, including RGB images, depth maps, and LiDAR scans.
Although these modalities provide rich environmental cues, a



substantial portion of their observed dimensions is not directly
relevant to navigation behavior. For example, RGB inputs
typically contain appearance-related factors—such as texture,
material properties, illumination, and color variations—that
do not correspond to traversability or goal-related geometry.
Depth and LiDAR observations likewise include numerous
distant points, noise artifacts, and fine-grained geometric de-
tails that contribute little to local decision-making, thereby
introducing structural redundancy into the high-dimensional
observation space.

For reinforcement learning–based navigation systems, such
redundancy implies that the encoder must extract behavior-
critical semantics from an extremely high-dimensional and
largely irrelevant observation space, making representation
learning considerably more difficult [9]. Moreover, modern
visual DRL frameworks often incorporate reconstruction, con-
trastive learning, or predictive auxiliary tasks to improve
training stability. However, these auxiliary objectives tend to
encourage the encoder to preserve appearance details or visual
consistency, causing it to retain even more task-irrelevant
information and thereby amplifying redundancy in the learned
representation. This is particularly evident in RGB-based in-
puts, where color and material variations occupy significant
encoder capacity despite being peripheral to navigation deci-
sions.

In multimodal settings, redundancy may further accumulate
across modalities. RGB inputs emphasize appearance patterns,
while depth maps provide dense geometric structure—yet
many dimensions in both modalities are unrelated to obstacle
avoidance or short-horizon path planning. When these modali-
ties are jointly processed by a shared encoder, the model must
cope not only with large-scale high-dimensional input, but also
with modality-dependent statistical discrepancies that compli-
cate feature fusion. As a result, the learned representation often
becomes mixed and highly redundant, increasing susceptibility
to noise, slowing convergence, and reducing generalization to
new environments.

In summary, the high redundancy present in navigation
observations arises from large input dimensionality, substantial
appearance variability, repeated geometric information, and
pervasive sensor noise. Redundancy is not merely a property
of raw perception; it also consumes encoder capacity and
fundamentally increases the difficulty of learning task-relevant
representations. These factors lay the structural groundwork
for the representation entanglement discussed in the following
section.

III. REPRESENTATION ENTANGLEMENT IN DRL FOR
NAVIGATION

As shown in Fig. 1, in visual reinforcement learning systems
for navigation, the policy and value networks typically share a
common encoder to improve training efficiency. However, this
shared structure must simultaneously serve multiple learning
objectives: the critic objective drives the encoder to extract
reward-relevant geometric semantics, while auxiliary objec-
tives—such as contrastive learning, prediction, or reconstruc-
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Fig. 1. A common encoder-sharing paradigm in visual DRL navigation, where
critic and auxiliary objectives jointly update the encoder. Such multi-objective
optimization often leads to representation entanglement.

tion—encourage the encoder to preserve appearance-related
information that supports visual consistency or reconstructabil-
ity. When these heterogeneous objectives act on the same
encoder parameters, task-relevant and task-irrelevant factors
become difficult to separate, giving rise to representation
entanglement in the learned feature space.

More concretely, as shown in Eqs. (1) and (2), the feature
vector h in the critic branch is passed through fc to produce
the value-related latent representation Zc. Critic supervision
relies on geometric cues—such as obstacle boundaries, goal
direction, and local traversability—and thus requires the en-
coder to emphasize these semantics. In contrast, auxiliary tasks
promote the retention of textures, colors, illumination patterns,
and other appearance attributes to satisfy reconstruction or
contrastive matching. When both objectives jointly update
the CNN encoder, geometric and appearance information are
inevitably mixed within the same representation, preventing
the encoder from forming a clean, task-aligned semantic
structure.

obs
fcnn−−→ h

fc−→ Zc
fQ−→ Q(s, a), (1)

obs
fcnn−−→ h

fc−→ Zc → Laux, (2)

As shown in Eq. 3, although the actor branch does not prop-
agate gradients back to the encoder, the actor still consumes
hsg, a stop-gradient version of the same shared representation
shaped jointly by the critic and auxiliary losses. As a result,
policy learning inherently inherits the biases introduced by
representation entanglement. For instance, the policy may
inadvertently learn to rely on texture or lighting patterns as
decision cues—features that can change drastically across



environments—leading to unstable behavior during cross-
scene evaluation. Meanwhile, the entangled representation also
disrupts value estimation, making the critic more sensitive to
appearance noise and increasing training instability.

obs
fcnn−−−−−→

stopgrad
hsg

fa−→ Za
fπ−→ π(a|s), (3)

Navigation tasks are particularly vulnerable to represen-
tation entanglement because their core decisions depend on
stable geometric semantics, whereas appearance variations,
sensor noise, and real-world physical inconsistencies are
widespread and often unavoidable [10]. When such distur-
bances leak into the encoder’s representation, both the policy
and the critic may suffer degradation manifested as slower
learning, heightened sensitivity to visual changes, poor gen-
eralization across environments, and potentially unsafe or
unpredictable behavior during real-world deployment.

Thus, representation entanglement is not an incidental
byproduct of training details but a structural consequence of
jointly optimizing a shared encoder with multiple, and often
conflicting, objectives. It fundamentally limits the stability of
DRL training in navigation tasks and constrains the reliability
of learned policies in real-world applications. These issues
provide strong motivation for the disentanglement-based per-
spective introduced in the next section.

IV. WHY DISENTANGLEMENT IS DESIRABLE FOR
NAVIGATION

The previous section examined how representation entangle-
ment arises when a shared encoder is jointly optimized under
multiple objectives. In robot navigation, the negative effects of
such entanglement are far more pronounced than in general
visual tasks, as reliable navigation requires not only stable
geometric representations but also robustness to appearance
variations, cross-scene differences, and sensor noise. These
challenges highlight the need to reconsider representation
learning from a structural perspective, ensuring that task-
relevant and task-irrelevant factors are appropriately separated
within the feature space [2]. This conceptual disentanglement
structure is illustrated in Fig. 2.

Navigation inherently depends on geometric seman-
tics—such as the topology of traversable regions, the layout
of obstacles, and the relative spatial relationship between the
robot and its goal. These factors directly determine action
selection. However, visual observations (e.g., RGB and depth)
simultaneously contain abundant appearance information, in-
cluding textures, materials, illumination, colors, and sensor
artifacts. When the shared encoder is jointly shaped by critic
and auxiliary objectives, these appearance factors are often
embedded into the same feature representation as navigation-
relevant geometry. As a result, value estimation becomes
susceptible to interference, yielding higher variance or even
spurious correlations. If the policy branch further relies on
such appearance-biased features, its performance may degrade
significantly under illumination shifts or scene changes, com-
promising robustness.
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Fig. 2. A conceptual illustration of disentangled representation structure for
navigation, where geometry-related semantics and appearance-related factors
occupy partially separated feature subspaces. Such separation helps reduce
representation entanglement and improves robustness to appearance variations.

Introducing a degree of representation disentangle-
ment—such that geometric semantics and appearance factors
occupy partially separated regions of the feature space—can
substantially mitigate these issues. First, disentanglement
allows the critic to perform value estimation on a cleaner
and more stable representation, reducing gradient variance
and improving convergence. Second, if the representation
consumed by the actor emphasizes geometry rather than
appearance, the resulting policy becomes less sensitive
to texture or lighting variations, thereby improving cross-
scene generalization. Moreover, in multimodal navigation
systems where RGB, depth, and LiDAR data exhibit high
dimensionality and substantial redundancy, disentanglement
helps reduce cross-modality interference and enables different
sensing modalities to contribute to the representation in a
more structured manner.

Overall, representation disentanglement is not intended to
increase network capacity or introduce additional supervision,
but to address the structural bottlenecks inherent in navigation
tasks—namely representation redundancy and entanglement.
By constructing a representation space that is more explic-
itly aligned with navigation semantics, DRL-based navigation
systems can achieve greater stability, robustness, and transfer-
ability in real-world environments, forming a foundation for
tackling more complex navigation challenges.

V. CONCLUSION

This paper has analyzed key representation challenges faced
by deep reinforcement learning in robot navigation, with a
particular focus on observational redundancy and representa-
tion entanglement arising from shared-encoder architectures.



Visual and geometric observations in navigation often con-
tain substantial task-irrelevant variation, making the encoder
susceptible to absorbing appearance noise and environmental
perturbations when jointly optimized by multiple objectives.
Such entanglement destabilizes critic value estimation and
further weakens policy robustness and cross-scene general-
ization. Through this systematic examination, we highlight
the importance and necessity of incorporating representation
disentanglement into DRL-based navigation systems.

Representation disentanglement is not intended to increase
model complexity, but to provide a cleaner and more stable
semantic space at the structural level, allowing reinforcement
learning to focus more effectively on geometry that is truly
relevant to decision-making. Such disentangled representations
reduce critic variance, improve training stability, and enhance
policy resilience to appearance shifts and domain changes,
thereby strengthening the reliability of navigation systems
deployed in real-world environments.

Future research may further explore disentanglement mech-
anisms tailored to multimodal sensory inputs, generalization
strategies for cross-scene navigation, and lightweight repre-
sentation models that balance efficiency with expressiveness.
We believe that addressing representation redundancy and
entanglement will remain a key direction for advancing the
performance and robustness of visual DRL in real-world
robotic navigation.
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