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Abstract—Industrial systems are increasingly exposed to cy-
ber—physical threats as sensing, automation, and machine learn-
ing (ML)-driven control expand the operational attack surface.
This work introduces an integrated XAI-Blockchain framework
that combines an interpretable one-dimensional convolutional
neural network (1D-CNN) and long short-term memory (LSTM)
intrusion detection models with PureChain’s tamper-resistant
logging to secure end-to-end industrial data flows. Experimental
results demonstrate that the system achieves real-time detection
with low-latency explanation generation, maintaining a high
explanation stability of 0.98. It supports reliable access control
by blocking 100% of unauthorized attempts and provides de-
terministic, near-linear blockchain logging suitable for industrial
Internet of Things (IIoT) operations. The framework improves
security transparency, operational continuity, and auditability,
demonstrating its practical viability for resilient industrial envi-
ronments despite the limitations, notably elevated false-positive
rates and low tamper-detection performance. These are key areas
for enhancement. Future work will refine the ML models and
explanation mechanisms to reduce misclassification, improve in-
terpretability fidelity, and strengthen security through enhanced
authentication and encryption.

Index Terms—Blockchain, Cybersecurity, Explainable AI, In-
dustrial IoT, Intrusion Detection, PureChain, PoA?, XAI

I. INTRODUCTION

Industrial systems are undergoing rapid transformation as
advanced sensing, automation, and data-driven control reshape
modern production environments [1]. Growing interconnec-
tivity has expanded cyber—physical attack surfaces beyond
the capacity of traditional security frameworks to manage
effectively [2]. Recent incidents in manufacturing, energy,
and process industries demonstrate how adversarial actions,
anomalous behaviors, and opaque decision pipelines can cas-
cade through operational technology (OT) networks, causing
substantial downtime and safety risks [3]. Integrating Machine
learning (ML) into industrial control compromises determin-
istic guarantees, magnifies sensitivity to data drift and adver-
sarial inputs, and puts strict real-time budgets under pressure.
Coupled with limited interpretability and legacy integration
barriers, these factors collectively elevate safety and security
risks [4]. Although data-driven models enhance efficiency and
predictive maintenance, their limited interpretability under-
mines operator trust and complicates validation under adver-
sarial or uncertain conditions [5].

Explainable Artificial Intelligence (XAI) provides inter-
pretable, human-aligned insights for complex industrial mod-
els through attribution techniques, surrogate explanations, and
causal reasoning [6]. While these methods improve trans-
parency and support informed oversight, they do not inherently
ensure the integrity, provenance, or tamper resistance of oper-
ational data or model outputs. In high-stakes industrial envi-
ronments, explanations must also be verifiable, auditable, and
immutable to sustain trust in autonomous decision-making [7].

Blockchain technologies offer decentralized consensus, im-
mutability, and cryptographic integrity, enabling secure and
trustworthy data sharing across heterogeneous industrial sys-
tems without centralized control [8], [9]. These properties
make blockchain well-suited for environments that demand
operational integrity, traceability, and resilience against mali-
cious manipulation. However, blockchains alone lack semantic
understanding of data flows and cannot provide interpretability
or insight into the decision-making processes of advanced
analytics components.

Integrating XAI with blockchain offers a fused approach
to improving industrial security, transparency, and operational
resilience [10]. The combination of interpretable machine
intelligence and tamper-proof data governance enables accu-
rate, explainable anomaly detection, and the secure recording,
verification, and traceability of events and decisions. This inte-
gration supports emerging Industry 5.0 requirements for trust-
worthy autonomy, decentralized coordination, and human-Al
collaboration. Motivated by escalating cyber-physical threats
and increasing reliance on Al analytics, this research presents
an integrated XAl-blockchain framework that combines in-
terpretable ML models with blockchain’s immutable logging
capabilities to address interpretability and security in industrial
control systems.

This study makes the following contributions:

1) Development and validation of an integrated XAI-
blockchain framework that secures industrial control
systems by providing real-time anomaly detection along-
side transparent, tamper-proof event logging.

2) Evaluation of the performance of 1-dimensional con-
volutional neural network (1D-CNN) and long short-
term memory (LSTM) models for intrusion detection in



industrial scenarios, assessing their accuracy and latency
while analyzing interpretability through SHAP-based
explanations.

3) Assessment of a custom blockchain (PureChain) inte-
gration in providing immutable logging and verifiable
audit trails for industrial cybersecurity.

4) Investigation of trade-offs between system performance
and explainability in industrial cybersecurity, specifically
addressing challenges such as false positive rates, tamper
detection, and explainability fidelity.

II. RELATED WORK
A. Al and XAl in Industrial Cybersecurity

Traditional AI models can detect sophisticated IIoT cy-
ber threats but generally function as opaque “black boxes,”
limiting operator trust and auditability, an issue especially
problematic in critical infrastructure [11]. Prior efforts, such as
Zolanvari et al. [12] model-agnostic TRUST XAI framework
and other XAl-driven approaches, improve interpretability by
generating human-readable explanations for threat detection.
However, these studies focus on explanation mechanisms
rather than ensuring the integrity, authenticity, and tamper
resistance of both the explanations and the underlying security
data.

B. Blockchain for Data Integrity and Security

Blockchain has been widely investigated for its decen-
tralized, immutable, and transparent storage, which supports
trust and data integrity in domains such as supply chains
and smart grids [8]. In cybersecurity, prior work shows that
blockchain can preserve traceability and provenance of data
and Al model activity, for example, by storing model metadata
in a permissioned ledger to create tamper-proof forensic audit
trails [13]. However, these approaches focus solely on secure
logging and lack the interpretive capabilities of XAI needed
to explain the reasoning behind recorded events.

C. Integrated Al and Blockchain Approaches

Recent research increasingly combines Al with blockchain
to provide end-to-end secure and transparent solutions [8],
[13], [14]. One study introduces a blockchain-assisted feder-
ated learning framework for IIoT digital twins, leveraging ex-
plainable Al to improve interpretability while ensuring tamper-
resistant data management [15]. Another integrates XAI with
blockchain to strengthen the trust and integrity of industrial
intrusion detection systems (IDS) by applying local explana-
tion methods of the Shapley Additive Explanations (SHAP)
and Local Interpretable Model-Agnostic Explanations (LIME)
and recording alerts through smart contracts, illustrating the
practical viability of embedding explainability and auditability
into critical security functions [16].

D. Summary of Findings

The current research on XAl-blockchain integration in
industrial systems is primarily conceptual, with limited im-
plementation in real-world environments. Existing models,

though advancing intrusion detection, lack a unified, validated
framework combining XAI for interpreting system behav-
ior and blockchain for securing industrial data flows. This
work addresses that gap by proposing a comprehensive XAI-
blockchain framework for enhancing security and operational
resilience at an industrial scale. Our approach integrates 1D-
CNN and LSTM models with SHAP explanations for accurate
intrusion detection and interpretability. The 1D-CNN detects
short-term anomalies in IIoT traffic, while the LSTM captures
long-term dependencies, improving attack pattern detection.
SHAP provides transparency by attributing feature contribu-
tions to model predictions. Security events are logged on
the PureChain blockchain for immutability and auditability,
ensuring traceable and accountable decisions in high-stakes
industrial settings.

III. SYSTEM MODEL

The experimental framework in Fig. 1 adopts a multi-
layered architecture designed to evaluate security, resilience,
and operational performance across the IIoT environment.
The system integrates Al-based intrusion detection with the
PureChain blockchain using the PoA? consensus mechanism.
This ensures synchronized detection, logging, and response,
enabling the study to analyze how model predictions, SHAP
explanations, and blockchain operations interact within a uni-
fied pipeline. The architecture addresses three core objectives:
(i) accurate and timely threat detection, (ii) verifiable and
tamper-proof auditability, and (iii) deterministic mitigation
through a structured control policy. The integration of ML,
PureChain, and the response engine establishes a coherent
end-to-end workflow that preserves trust, reduces latency, and
maintains operational continuity in industrial environments.

A. Integration of AI Models and PureChain Blockchain

The study integrates two 1D-CNNs and an LSTM into the
PureChain blockchain through a continuous feedback pipeline.
The system facilitates real-time threat detection, transparent
logging, and structured performance evaluation across window
sizes of 1, 5, and 10. The integration operates under the
following steps:

o Real-time Event Generation: Each model processes
IIoT traffic samples and outputs predictions with a con-
fidence score.

o SHAP Explanation Mapping: Each prediction is imme-
diately interpreted using SHAP, producing contribution
scores that describe the significance of each feature.

o PureChain Logging: Model outputs and explanation
metadata are serialized and transmitted to the PureChain
network.

o PoA? Validator Verification: Trusted validators authen-
ticate, sign, and finalize each event through authority and
reputation-based association.

o Event Finalization and Auditing: Upon consensus ap-
proval, the event becomes an immutable ledger entry,
forming the basis for resilience analysis and performance
tracking.



This tightly coupled workflow ensures that detection, expla-
nation, and logging occur in a synchronized sequence rather
than in a delayed or decoupled manner.

B. ML-Based Intrusion Detection Layer

Modeling the data as a multivariate time series, the mapping
process begins with feature reduction and normalization to
ensure the dataset is suitable for input to the 1D-CNN and
LSTM networks. Let the raw IIoT traffic be represented
as D = {di,da,...,dt}, d; € R™. A preprocessing
function ® extracts normalized temporal windows as X; =
O(di—,...,dt), Xy € R™ Each model My computes
class probabilities over C' = {¢pnormai; Cattack s - -
expressed in Equation 1.

L) Cattackp },

Cnorma Cattackyp T
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After preprocessing, the dataset is split at a 70%/30% ratio
to train 1D-CNN and LSTM models to classify samples into
normal or attack categories. Each prediction is accompanied
by real-time SHAP values that quantify feature contributions,
thereby enhancing model interpretability. The final prediction
is y; = argmax.cc P(¢ | X¢). The models’ outputs and
SHAP explanations are logged on the PureChain blockchain,
ensuring immutability and auditability. This integrated pipeline
of data processing, model predictions, explanation generation,
and blockchain logging guarantees reproducibility and verifi-
ability at each step.

C. PureChain PoA? Logging Process

PureChain receives model outputs and explanation results
as security events. Each event is validated using PoA?, which
combines validator authority and reputation. The PureChain
ledger, as an immutable state machine, stores each finalized
event as E, = {7, H(Ek-1),Ys pt, metadata,ov,}. The
validator selection probability is based on Equation 2.

__ Rep(V))
Z;'n:1 Rep(V;)’

where Rep(V;) denotes the reputation value assigned to val-
idator V;, and the denominator represents the cumulative repu-
tation of all m validators. A higher reputation score increases
selection probability, ensuring that trustworthy and consistent
validators play a more influential role in consensus formation.
Logging latency is computed as Ljog = Tfinality — Tereation-
The deterministic response layer activates system actions using
a confidence-based policy defined as a; = A(St, (yt, pt), IT),
where the selected action depends on the model prediction and
its corresponding explanation confidence. The control logic is
formalized as in Equation 3.

P(Vi) )

quarantinev Yt = Cmalicious /\pt Z Thigh
a; = { throttle, Yt = Csuspicious \ Tlow <pt < Thigh
allow, otherwise

(3)
where y; is the predicted class label at time ¢, p; is the ex-
planation confidence score, and 734, and 7;,,, are predefined

confidence thresholds. The classes caiicious aNd Csuspicious
correspond to critical and moderate threat levels, respectively.
This policy ensures that high-confidence malicious events
trigger immediate isolation (quarantine), medium-confidence
threats invoke rate limiting (throttle), and low-risk or un-
certain events are permitted (allow). End-to-end latency is
LEsr = tresponse — toccurrence- The system dynamics evolve
as Siy1 = G(Sy, ae, Ex), while the blockchain ledger B =
(E1,Es, ..., Ey) forms a permanent audit trail used for re-
silience evaluation.

IV. EXPERIMENTAL SETUP AND CASE STUDIES
A. System Implementation

The experimental setup was implemented in Python 3.10,
with initial development on Google Colab and final deploy-
ment on a Windows 11 workstation with an Intel Core i5-
12400F processor, 32 GB RAM, and an NVIDIA GeForce
RTX 3050 GPU. This configuration supported concurrent
machine learning and blockchain operations. The blockchain
was simulated with seven validator nodes and a quorum of five
for consensus, as is typical for medium-scale IIoT systems.
The PureChain SDK was integrated with web3.py and a
custom wrapper to encrypt and encode client data into blocks.
Experiments used public benchmark datasets in a simulated
environment, rather than a physical IIoT testbed.

B. Dataset Description

The proposed framework was evaluated using the [oT-CAD
dataset [17], a large-scale IoT forensics resource designed
for cyberattack detection and attribution. The dataset includes
over 530,000 samples from Windows (61 features) and Linux
(76 features), covering system, process, and network activity.
It spans seven attack classes and fourteen subtypes, with
each sample labeled to support fine-grained attribution (What,
How, Why). IoT-CAD promotes deep learning, explainable
Al, and federated IDS research and underwent preprocessing,
including feature reduction, normalization, and redundancy
removal, to improve model efficiency.

C. SHAP Case Studies

Fig. 2  presents the

that

SHAP  summary plot,
which reveals network-intensive fea-
tures—particularly Ethernet0_bytes_sent,
disk_read_time_percent,
swap_memory_percent_used, and
virtual memory_percent_used—exert the most
decisive influence on the model’s predictions. High feature
values (red) consistently push outputs toward higher anomaly
likelihoods, while CPU-related metrics and differential
network-byte changes contribute moderately with bidirectional
effects. Collectively, these patterns indicate that the model
predominantly relies on memory pressure and network
throughput characteristics to distinguish between normal and
anomalous IToT system states.

Fig. 3 presents the SHAP bar plot, which shows that
Ethernet0_bytes_sent overwhelmingly dominates
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Fig. 2.
detection.

SHAP summary plot showing feature contributions for intrusion

feature importance (mean [SHAP| ~ 4.61), followed by sub-
stantial contributions from disk_read_time_percent,
swap_memory_percent_used,
virtual_memory_percent_used, and
disk_read_count_percent. Secondary network metrics
such as Ethernetl_Network_bytes_recv_dif and
Ethernetl_bytes_sent_percent, along with CPU
idle percentages, exhibit comparatively minor influence.
Overall, this indicates that the model primarily relies on
network throughput and patterns of memory/disk activity to
differentiate anomalous from normal IIoT behavior.
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Fig. 3. SHAP feature importance bar plot for the intrusion detection model.

Fig. 4 presents the normalized mean
absolute SHAP analysis, which reveals
that network-traffic differentials—particularly
Ethernetl_Network_bytes_recv_dif and
Ethernetl_Network_bytes_sent_dif—are the
most influential predictors across both classes. For

Class 1, the model relies more heavily on anomalous
send/receive  patterns, indicative of potential data
exfiltration or command-and-control behavior. In contrast,
Class 0 is more strongly influenced by system-level
metrics such as cpu_usage_idle_percentage,
virtual_memory_percent_used, and
disk_read_time_percent. These results demonstrate
that effective IDS design requires integrating high-granularity
network telemetry with host-resource indicators to capture
class-specific attack signatures and enhance detection
robustness.
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Fig. 4. Normalized mean absolute SHAP values for Class 0 and Class 1.

Fig. 5 shows that cpu_usage_user_percentage ex-
hibits a nonlinear, threshold-like influence on the model’s pre-
dictions, increasing sharply within the 20-60% range before
reaching saturation. This effect becomes substantially more
pronounced when virtual_ memory_percent_used is
simultaneously high, revealing a strong interaction between
CPU load and memory pressure. These results suggest that
concurrent stress on both computational and memory resources
provides a more reliable indicator of anomalous IIoT behavior
than either metric considered independently.
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Fig. 5. SHAP dependence plot for cpu_usage_user_percentage vs.
virtual_memory_percent_used.

D. Blockchain Case Studies

Fig. 6 depicts latency analysis, revealing heterogeneous
delays across processing stages: explanation generation incurs
minimal overhead (~ 3 ms), serialization & hashing introduces
moderate cryptographic delay (~ 15 ms), IPFS uploading
contributes significant network-dependent latency (~ 20 ms),
transaction submission remains nearly instantaneous (~ 0.3
ms), and block creation produces the highest consensus-related
delay (~ 25 ms). Collectively, these results show that end-to-
end latency remains within acceptable limits for secure, near-
real-time IloT operations.

Fig. 7 presents the blockchain growth timeline, showing a
stable linear increase in block height with uniformly spaced
blocks. This indicates deterministic PoA? consensus, where

2 20.1ms |
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i}
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Transaction Block
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Upload to
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Fig. 6. End-to-end latency breakdown for blockchain logging stages.

blocks are created every ~ 3—4 seconds, which is significantly
faster than on public chains. The absence of forks or reorder-
ing confirms an uncongested, reliable environment, demon-
strating that the proposed blockchain configuration supports
predictable, efficient, and real-time-compatible logging, which
is essential for IloT security operations.
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Fig. 7. Block creation timeline showing linear growth under PoA? consensus.

E. Overall System Case Studies

Table I presents overall system operational, resilience, and
security metrics. The operational metrics show efficient ex-
ecution of model explanation, data upload, and blockchain
transaction submission. Throughput is high at 39.17 TPS, in-
dicating strong processing capability. Explanation time is low,
showing that SHAP generation does not create bottlenecks.
Upload and submission times remain minimal, meaning the
system can quickly serialize and commit results to PureChain.
The efficiency gain, Mean Time To Repair (MTTR) value of
0.33, suggests moderate improvement in recovery speed across
operations. Mean detection time is low, indicating fast threat
identification. The MTTR value of 0.48 suggests moderate
time to restore functionality after disruptions.

Auvailability is zero due to simulation conditions, meaning
no uptime window was measured. Explanation stability is high
at 0.98, meaning interpretability remains consistent across re-
peated samples. The attack detection rate is fair at 0.67, mean-
ing two-thirds of malicious events were correctly identified.
The false-positive rate is high at 0.58, indicating that many



TABLE I
SYSTEM SECURITY, RESILIENCE, AND OPERATIONAL METRICS

Metric Value

Operational Metrics

Throughput (TPS) 39.174
Explain Time Mean 0.01525
Upload Time Mean 0.00348
Submission Time Mean 0.00000395
Efficiency Gain MTTR 0.33333

Resilience Metrics

Detection Time Mean 0.01525
MTTR Mean 0.48378
Availability 0.0

Explanation Stability Proxy 0.98665

Security Metrics

Attack Detection Rate 0.67153
False Positive Rate 0.58730
False Negative Rate 0.32846
Tamper Attempts 6.0
Tamper Detected 1.0
Tamper Detection Rate 0.16666
Unauthorized Attempts 2.0
Unauthorized Blocked 2.0
Access Control Efficacy 1.0
Explainability Fidelity Corr. 0.98265

regular events were incorrectly flagged. The false negative
rate is also significant at 0.32. Tamper attempts reached six,
with only one detected, yielding a low tamper detection rate.
Unauthorized attempts were successfully blocked, demonstrat-
ing strong access controls. The explainability fidelity score of
0.98 indicates that explanations remain firmly aligned with the
underlying model behavior.

V. CONCLUSION

The integration of XAI and blockchain in industrial IoT
systems presents both unprecedented opportunities and crit-
ical challenges. When synergized with robust cybersecurity
and transparent governance, machine learning can catalyze a
new generation of intelligent, resilient systems. Drawing on
our foundational work in hybrid deep learning, blockchain-
enhanced intrusion detection, and federated model aggrega-
tion, this study presents a coherent framework for secure
industrial operations. Through structured experiments, this
work provides actionable insights and replicable templates for
industry adoption.

Future work will refine the ML models to minimize false
positives and negatives, improve explanation fidelity through
more advanced XAI methods, and strengthen system secu-
rity with additional protective layers. Incorporating contin-
uous learning mechanisms will further enhance adaptability
to evolving industrial cyber threats while preserving both
robustness and interpretability.
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