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Abstract— This study identifies environmental determinants of 

paprika growth across developmental stages and evaluates state-

of-the-art AI models using high-resolution time-series data from 

commercial smart greenhouses. Hourly environmental data and 

weekly or daily growth indicators were integrated using a 72-h 

windowing framework. PatchTST, TimesNet, and N-HiTS were 

applied to predict growth increments, while TabNet, SAINT, and 

TabTransformer with SHAP analysis identified stage-specific 

drivers. All models achieved strong accuracy (R² ≥ 0.80), with N-

HiTS performing best (RMSE = 8.96, R² = 0.873). SHAP showed 

temperature and humidity dominating early growth, CO₂ mid-

stage, and root-zone drivers with higher stability in Jeonnam 

region. 
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I.  INTRODUCTION (HEADING 1) 

Smart farm technologies have enabled the continuous 
acquisition of high resolution environmental and growth data, 
providing a foundation for more systematic and data driven 
crop management[1]. 

With the integration of advanced sensors, automated 
climate control systems, and real time data platforms, 
greenhouse operations now collect a wider range of variables 
than ever before[2]. 

This expansion in data availability increases the potential to 
understand complex crop–environment interactions and to 
optimize cultivation strategies based on empirical evidence 
rather than intuition[3]. 

Paprika, a major greenhouse fruiting vegetable, exhibits 

strong sensitivity to temperature, humidity, CO₂ concentration, 

radiation, and nutrient solution properties, and its optimal 
environmental requirements differ markedly across 
developmental stages[4]. 

These stage dependent physiological responses require 
finely tuned environmental control, although conventional 
management practices often struggle to accommodate such 
dynamic needs[5]. 

Despite significant advances in sensing and automation 
technologies, practical greenhouse management still relies 
heavily on heuristics or grower experience, which limits the 
quantitative understanding of stage specific environmental 
drivers and their interactions[6]. 

Previous studies have investigated the effects of individual 
environmental variables or applied classical machine learning 
models such as RandomForest and XGBoost to crop growth 
prediction[7]. 

While these approaches have provided useful insights, they 
generally do not fully capture long term temporal dependencies, 
nonlinear interactions, or region specific variability present in 
real cultivation environments[8]. 

Many existing studies also rely on controlled or single site 
datasets, making it difficult to generalize findings across 
different greenhouse conditions[9]. 

Although recent time series deep learning models such as 
PatchTST, TimesNet, and N HiTS have demonstrated strong 
predictive performance in various domains, their application to 
horticultural crop growth prediction remains limited, and their 
ability to model stage specific growth behavior has not been 
sufficiently examined[10]. 

Explainable AI techniques have become increasingly 
important for interpreting complex predictive models, yet only 
a small number of studies have combined these methods with 
modern deep learning frameworks to identify the key 
environmental factors that influence each growth stage. As a 
result, the mechanisms through which environmental variables 
shape paprika growth over time are still not well understood, 
highlighting the need for a more comprehensive and data 
driven analytical approach[11]. 



To address these gaps, this study applies state of the art 
time series deep learning models and tabular deep learning 
frameworks to paprika datasets collected from greenhouse 
facilities in Gyeongsangnam do and Jeonnam. 

Growth stages are segmented using a combination of 
domain knowledge and K means clustering to ensure objective 
data driven categorization. 

By comparing model performance across regions and 
growth stages and by analyzing SHAP based feature 
contributions, this study provides a comprehensive 
characterization of the dynamic and stage specific 
environmental mechanisms that influence paprika growth. 

 The findings contribute to the development of data driven 
cultivation strategies and provide a foundation for intelligent 
environmental control in next generation smart farm systems 

II. EASE OF USE 

A. Collection and Structuring of Crop Growth Environment 

Data 

The data used in this study consist of environmental 
measurements and paprika growth records collected from 
smart-farm greenhouse facilities in Gyeongsangnam-do and 
Jeollanam-do. 

 

Figure 1.  Figure 1. Collection of Crop Data 

Figure 1 shows a photograph of paprika data obtained from 
an actual facility horticulture environment. 

The environmental data were measured as hourly time-
series observations and include variables such as internal 
temperature, internal humidity, CO₂ concentration, external 
and internal solar radiation, cumulative solar radiation, wind 
direction and speed, and soil and nutrient-solution EC and pH. 

 The growth data consist of key growth indicators measured 
on a weekly or daily basis, including fresh weight, plant height, 
leaf count, and fruit weight. 

TABLE I.  SENSORS USED AND ENVIRONMENTAL DATA ITEMS 

COLLECTED 

Environmental data information 

Variable Description Datatype Unit 

Timestamp Data collection date 
datetime 

(yyyy-mm-dd) 
- 

Internal 

temperature 

Data collection 

timestamp 
float64 °C 

Internal 

humidity 

Temperature inside the 

greenhouse 
float64 % 

CO₂ 

concentration 

Relative humidity inside 

the greenhouse 
float64 ppm 

Internal solar 

radiation 

CO₂ concentration inside 

the greenhouse 
float64 W/m² 

External solar 

radiation 

Solar radiation measured 

inside 
float64 

W/m

² 

Cumulative 
solar radiation 

Solar radiation measured 
outside 

float64 
W·h/

m² 

Wind 
direction 

Daily accumulated solar 
radiation 

float64 ° 

Wind speed Outdoor wind direction float64 m/s 

Nutrient EC Outdoor wind speed float64 
dS/

m 

Nutrient pH EC of nutrient solution float64 - 

Soil EC pH of nutrient solution float64 
dS/

m 

Soil pH 
EC measured in 

substrate/soil 
float64 - 

TABLE II.  SENSORS USED AND GROWTH DATA ITEMS COLLECTED 

Growth Data Information 

Variable Description Datatype Unit 

Timestamp 

Date of measurement for 

crop growth parameters 

datetime 

(YYYY-MM-
DD) 

- 

StemHeight 
Vertical height of the 

plant from base to apex 
float mm 

GrowthLen

gth 

Incremental stem growth 

since previous 
measurement 

float mm 

Leaf count 
Total number of leaves 

per plant 
integer count 

Leaf Length 
Length of the 

representative leaf 
float mm 

LeafWidth 
Width of the 

representative leaf 
float mm 

StemDiamet

er 

Diameter of the main 

stem measured at fixed 
height 

float mm 

 

B. Data Preprocessing Methods and Procedures  

Missing values in the environmental datasets from both 
regions were corrected using interpolation after removing non 
essential metadata columns. 

Growth datasets showed no missing values in the major 
growth indicators. Outlier screening was performed by 



applying physically plausible ranges based on paprika 

cultivation conditions. Temperature, humidity, and most CO₂ 
readings fell within valid limits, and only a small number of 

CO₂ peaks corresponding to short enrichment events were 

retained as valid measurements. 

For growth variables, unrealistic plant height values in the 
Gyeongnam dataset were identified as recording errors and 
removed. All remaining environmental and growth variables 
were aligned to ensure consistency in subsequent model 
training. 

C. Integration of Environmental and Growth Data 

Since the growth data were measured on a daily or weekly 
basis whereas the environmental data were recorded hourly, a 
preprocessing step was required to reconcile the differing 
temporal resolutions before merging the two datasets. In this 
study, an integrated table was constructed by summarizing the 
environmental conditions over a defined period preceding each 
growth measurement and matching these summarized 
environmental features to the corresponding growth 
observations on a one to one basis. 

Although growth indicators represent the plant’s condition 
at a specific measurement time, that condition is shaped not by 
a single momentary environment but by the cumulative 
environmental conditions over a preceding period. Therefore, 
in this study, a standard observation window of seventy two 
hours, corresponding to the three days prior to each growth 
measurement, was established.  

Within this seventy two hour window, the environmental 
data were summarized as follows. 

TABLE III.  ENVIRONMENTAL VARIABLES AND SUMMARY METRICS 

Environmental 

variable 
Summary metric Interpretation 

Internal 
temperature (T_in) 

Mean, maximum, 
minimum 

Temperature 

stress and 

variability 

Internal humidity 
(RH_in) 

Mean, standard deviation 

Transpiration 

and moisture 

status 

Solar radiation 
(Rad_in, Rad_out) 

Total amount, maximum 
value 

Available 

energy for 

photosynthesis 

CO₂ concentration 
(CO2_in) 

Mean 
Photosynthetic 

efficiency 

Soil or substrate 

variables (T_soil, 

WC_soil, EC_soil, 
etc.) 

Mean 
Root-zone 

environment 

Nutrient solution 

variables 
(T_nutrient, 

EC_nutrient, 

pH_nutrient) 

Mean, change Δ 
Stability of the 

nutrient solution 

 

To integrate the growth and environmental datasets, this 
study employed a growth environment matching algorithm. 
The matching procedure began by identifying the midnight 

time point corresponding to each growth measurement based 
on its recorded timestamp. 

From this reference point, a seventy two hour window 
preceding the measurement time was defined, and all 
environmental observations falling within this interval were 
extracted. 

Various summary statistics, including mean, maximum, and 
cumulative values, were then calculated for the environmental 
time series within this window. 

The resulting summarized environmental variables were 
subsequently merged with the corresponding row of the growth 
dataset, enabling each growth observation to be linked with 
representative environmental features that reflect the 
cumulative conditions immediately prior to the measurement. 

 In the final integrated dataset, each row consists of a 
feature set that includes the summarized environmental 
characteristics and a target set that contains the corresponding 
growth outcomes. 

D. Growth Stage Segmentation 

Paprika requires different environmental conditions across 
its developmental stages, making accurate stage definition 
essential for analyzing environmental influence factors. In this 
study, growth stages were defined by combining domain based 
classification with K means clustering, and the growth process 
was divided into three stages: early, middle, and late. 

While domain based definitions provide physiological 
validity, actual growth rates vary depending on cultivation 
conditions and regional environments. 

To reflect these differences in the observed data, K means 
clustering was used as a complementary data driven approach. 
Clustering was conducted using key growth indicators, 
including stem height, growth length, leaf count, stem diameter, 
and the growth rate expressed as ΔStemHeight. The number of 
clusters was set to three to match the three developmental 
stages considered in this study. 

TABLE IV.  SUMMARY OF CLUSTER CHARACTERISTICS AND 

CORRESPONDENCE TO GROWTH STAGES 

Cluster 
Summary of 

Characteristics 

Corresponding 

Growth Stage 

Cluster 0 

Rapid increases in plant 

height and leaf count, 

with growth concentrated 
in the early phase 

Early stage 

Cluster 1 

Large increments in 

growth length and the 
appearance of an 

inflection point similar to 

the onset of fruit set 

Middle stage 

Cluster 2 

Slower growth rate with 

stabilization of leaf count 

and plant height 

Late stage 

 

As shown in Figure 2, the clustering results showed high 
agreement with the domain-based stage definition, confirming 
that the two criteria function complementarily. 



 

Figure 2.  Figure 2. K-means Growth Stage Clustering 

E. Time-series Window Construction for Forecasting Models 

Environmental data are recorded continuously on an hourly 
basis and serve as essential input features that determine crop 
growth responses.  

In contrast, growth data represent single observations 
measured on specific days or at weekly intervals. Due to this 
difference in temporal resolution, a transformation process is 
required to convert the environmental data into a time-series 
input format suitable for modeling.  

In this study, a windowing approach was developed to 
transform the environmental data into fixed-length input 
sequences, reflecting the structural characteristics of the time-
series prediction models employed, including PatchTST, 
TimesNet, and N-HiTS. 

The design components used to transform the 
environmental data into time-series inputs are summarized in 
the following table. 

TABLE V.  WINDOW CONFIGURATION SUMMARY 

Cluster Summary of Characteristics 

Input data 

Environmental data (time-series, 1-

hour resolution) 

Variables included 

T_in, RH_in, CO2_in, Rad_in/out, 

T_out, wind variables, soil/media 
EC and pH, etc. 

Window length 72 hours (3 days) 

Window range 

The 72-hour period immediately 

preceding each growth 

measurement date 

Number of features (F) 

Approximately 18 to 22 

environmental variables depending 

on region 

Prediction targets 
ΔStemHeight, ΔGrowthLength, 

ΔLeafCount 

Normalization method 
StandardScaler (mean–standard 

deviation normalization) 

Cluster Summary of Characteristics 

Output format 
Regression (prediction of 

continuous growth increments) 

 

The structural differences in the input configurations of 
PatchTST, TimesNet, and N-HiTS are summarized in the 
following table. 

TABLE VI.  STRUCTURAL CHARACTERISTICS OF MODEL INPUT TENSORS 

Model Input tensor format 
Summary of 

characteristics 

PatchTST 
X ∈ ℝ(T × F) → Patchify → 
(Patches × Patch_size × F) 

Strong capability in 

learning long-term 
patterns through 

patch-wise 

segmentation 

TimesNet X ∈ ℝ(T × F) 

Specialized in 

extracting periodicity 

patterns 

N-HiTS X ∈ ℝ(T × F) 

Learns multi-scale 

residual 

representations 

 

The environmental variables used as model inputs are listed 
in the following table. 

TABLE VII.  ENVIRONMENTAL VARIABLES USED AS MODEL INPUTS 

Category Variables 

Internal 

environment 

T_in, RH_in, Tdew_in, CO2_in, AH_in 

(Jeonnam), Rad_in, RadAccum_in 

External 

environment 

T_out, Rad_out, RadAccum_out, 

WindSpeed_out, WindDir_out, Rain_out 

Soil or substrate T_soil, WC_soil, EC_soil, pH_soil 

Nutrient solution T_nutrient, EC_nutrient, pH_nutrient 

 

The target composition is defined as follows, and because 
growth responses are generally predicted more accurately using 
increments rather than absolute values, each target variable was 
expressed in its delta form. 

TABLE VIII.  DEFINITION OF GROWTH TARGETS 

Target Formula Meaning 

ΔStemHeight 

StemHeight_t − 

StemHeight_t−1 

Increment in 

stem height 

ΔGrowthLength 
GrowthLength_t − 

GrowthLength_t−1 
Growth rate 

ΔLeafCount 
LeafCount_t − 

LeafCount_t−1 

Increase in leaf 

count 

 

F. Summary of Results 

In this study, we applied advanced time series models, 
including PatchTST, TimesNet, and N HiTS, to predict paprika 



growth increments. To ensure a fair comparison, all models 
were trained and evaluated under identical data splits (80 
percent training, 10 percent validation, 10 percent testing) and 
consistent training settings. 

All experiments used the AdamW optimizer with a learning 

rate of 1×10⁻⁴, a batch size of 32, and Mean Squared Error as 

the loss function. 

Early stopping was applied based on validation loss. Model 
specific hyperparameters followed the recommended 
configurations for each architecture, such as the patch structure 
in PatchTST, the multi scale blocks in TimesNet, and the 
stacking design in N HiTS. 

Model performance was evaluated using RMSE, MAE, and 
R², which are standard regression metrics. The comparative 
results for the full growth dataset are summarized in the table 
below. 

TABLE IX.  MODEL PERFORMANCE COMPARISON BASED ON THE FULL 

GROWTH DATASET 

Model RMSE MAE R² 

PatchTST 9.84 7.12 0.842 

TimesNet 10.27 7.45 0.811 

N-HiTS 8.96 6.88 0.873 

 

All three models achieved strong predictive performance 
across the full dataset, with R² values equal to or exceeding 
0.80.  

Among them, N-HiTS demonstrated the best overall 
performance, attaining the lowest RMSE of 8.96 and the 
highest R² of 0.873, attributable to its multi-resolution 
architectural design.  

PatchTST showed stable and well-balanced performance by 
effectively capturing long-range temporal patterns. TimesNet 
also maintained high accuracy by leveraging its strong ability 
to model inherent periodic structures within the environmental 
time series. 

The following table presents a comparison of RMSE values 
across the different growth stages. 

TABLE X.  RMSE COMPARISON ACROSS GROWTH STAGES 

Growth 

Stage 
PatchTST TimesNet N-HiTS 

Early 12.44 13.28 11.87 

Middle 8.91 7.84 7.52 

Late 7.32 7.65 6.98 

 

The early growth stage exhibited relatively high RMSE 
values across all models, which can be attributed to increased 
environmental variability and higher measurement noise during 
this period. 

In contrast, the middle and late stages showed substantially 
lower errors as growth patterns became more stable and 
structured. 

Notably, N-HiTS achieved the lowest RMSE in all three 
stages, demonstrating its superior capability in modeling multi-
scale temporal dynamics. 

 

Figure 3.  Figure 3.Comparison of Predicted and Actual Growth Values 

Across Time-Series Models 

Figure 3 presents a comparison between the predicted 
values and the actual observations for each model. 

As shown in the graph, PatchTST closely tracks the overall 
trend of the true values and exhibits the smallest prediction 
deviation among the models, particularly in the later periods. 

 TimesNet demonstrates strong performance in intervals 
where growth rates remain relatively stable, owing to its ability 
to effectively capture periodic structures in the time series, 
resulting in smooth reproduction of the actual changes. 

 N-HiTS, leveraging its architectural capability to learn 
both high- and low-frequency components simultaneously, 
achieves the lowest residual distribution across the entire 
sequence and provides stable and consistent estimates even in 
segments characterized by abrupt changes. 



 

Figure 4.  Figure 4. Stage-wise Feature Importance 

Figure 4 presents the SHAP analysis results obtained from 
the TabNet, SAINT, and TabTransformer models. 

The analysis shows that during the early growth stage, 
temperature and humidity variables (T_in and RH_in) had the 
greatest influence on growth responses. In the middle stage, 
CO₂ concentration and light-related variables emerged as the 
dominant factors, reflecting the increased importance of 
photosynthetic activity. 

In the late stage, the contribution of root-zone 
environmental variables, such as soil temperature (T_soil) and 
soil water content (WC_soil), became relatively more 
pronounced. 

The table and figure 5 below present the model prediction 
performance for the two regions as well as the key influencing 
factors identified for each growth stage. 

TABLE XI.  MODEL PERFORMANCE AND INTERPRETATION BY REGION 

Region Model RMSE  MAE  R²  

Gyeong 

nam 

 

PatchTST 9.84 7.12 0.842 

TimesNet 10.27 7.45 0.811 

N-HiTS 8.96 6.88 0.873 

Jeonnam 

PatchTST 9.12 6.85 0.861 

TimesNet 9.76 6.92 0.838 

N-HiTS 8.42 6.21 0.889 

 

 

Figure 5.  Figure 5. Regional Comparison of Feature Importance 

The same time-series models (PatchTST, TimesNet, N-
HiTS) and tabular models (TabNet, SAINT, TabTransformer) 
were independently applied to the two regions, Gyeongnam 
and Jeonnam, to analyze regional differences in key 
environmental factors and model performance. 

Overall, the Jeonnam region exhibited higher prediction 
stability in the time-series models, which can be attributed to 
its lower variability in CO₂ concentration and external light 
conditions compared with Gyeongnam. Both PatchTST and N-
HiTS achieved higher R² values and lower RMSE in Jeonnam, 
suggesting that the environmental control system in Jeonnam 
greenhouses operates with smoother and more consistent 
periodic patterns. 

In contrast, the Gyeongnam region exhibited larger diurnal 
fluctuations in solar radiation (Rad_in and Rad_out) and 
internal temperature (T_in), which made long-term pattern 
learning more challenging for the models. As a result, 
TimesNet showed a relative decrease in predictive performance 
during the middle growth stage. This suggests that abrupt 
changes in light and temperature increase the nonlinearity of 
short-term growth responses, thereby reducing the model’s 
ability to generalize effectively. 

III. CONCLUSION 

This study investigated the environmental factors affecting 
paprika growth across developmental stages by applying state 
of the art deep learning models including PatchTST, TimesNet, 
and N HiTS to time series environmental data collected from 
smart greenhouse facilities in two regions of Korea. In addition, 
tabular deep learning models such as TabNet, SAINT, and 
TabTransformer were used together with SHAP based 
interpretation to identify key environmental drivers at each 
stage. All three time series models showed strong predictive 
performance with R² values above 0.80. Among them, N HiTS 
achieved the highest overall accuracy with the lowest RMSE of 
8.96 and an R² of 0.873, demonstrating its ability to capture 
multi scale temporal patterns in paprika growth. PatchTST 
effectively followed long term growth trends, whereas 
TimesNet performed well in periods characterized by stable 
periodic behavior. Stage wise analysis showed that prediction 
errors were highest in the early stage due to strong 
environmental fluctuations, while the middle and late stages 
showed significantly improved accuracy as growth patterns 
became more stable. SHAP based interpretation indicated that 
temperature and humidity were the most influential factors 

during the early stage. CO₂ concentration and radiation related 

variables played major roles in the middle stage as 
photosynthetic activity increased. In the late stage, root zone 
conditions, including soil temperature and soil water content, 
became more influential, reflecting their contribution to stable 
growth. Regional comparison showed that Jeonnam provided 
more stable model performance because of lower variability in 

CO₂ levels and solar radiation. PatchTST and N HiTS achieved 

higher R² values and lower RMSE in Jeonnam compared with 
Gyeongnam. In contrast, Gyeongnam exhibited larger diurnal 
fluctuations in temperature and radiation, which reduced the 
performance of TimesNet during the middle stage. Overall, this 
study demonstrates the effectiveness of advanced deep learning 



approaches for predicting paprika growth and reveals stage 
specific and region specific environmental mechanisms. The 
findings offer useful guidance for optimizing environmental 
control, improving resource efficiency, and enhancing 
production stability in next generation smart farming systems. 
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