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Abstract— This study identifies environmental determinants of
paprika growth across developmental stages and evaluates state-
of-the-art AI models using high-resolution time-series data from
commercial smart greenhouses. Hourly environmental data and
weekly or daily growth indicators were integrated using a 72-h
windowing framework. PatchTST, TimesNet, and N-HiTS were
applied to predict growth increments, while TabNet, SAINT, and
TabTransformer with SHAP analysis identified stage-specific
drivers. All models achieved strong accuracy (R? > 0.80), with N-
HiTS performing best (RMSE = 8.96, R* = 0.873). SHAP showed
temperature and humidity dominating early growth, CO: mid-
stage, and root-zone drivers with higher stability in Jeonnam
region.
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L INTRODUCTION (HEADING 1)

Smart farm technologies have enabled the continuous
acquisition of high resolution environmental and growth data,
providing a foundation for more systematic and data driven
crop management[1].

With the integration of advanced sensors, automated
climate control systems, and real time data platforms,
greenhouse operations now collect a wider range of variables
than ever before[2].

This expansion in data availability increases the potential to
understand complex crop—environment interactions and to
optimize cultivation strategies based on empirical evidence
rather than intuition[3].

Paprika, a major greenhouse fruiting vegetable, exhibits

strong sensitivity to temperature, humidity, CO2 concentration,

radiation, and nutrient solution properties, and its optimal
environmental  requirements  differ markedly  across
developmental stages[4].
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These stage dependent physiological responses require
finely tuned environmental control, although conventional
management practices often struggle to accommodate such
dynamic needs[5].

Despite significant advances in sensing and automation
technologies, practical greenhouse management still relies
heavily on heuristics or grower experience, which limits the
quantitative understanding of stage specific environmental
drivers and their interactions[6].

Previous studies have investigated the effects of individual
environmental variables or applied classical machine learning
models such as RandomForest and XGBoost to crop growth
prediction[7].

While these approaches have provided useful insights, they
generally do not fully capture long term temporal dependencies,
nonlinear interactions, or region specific variability present in
real cultivation environments[8].

Many existing studies also rely on controlled or single site
datasets, making it difficult to generalize findings across
different greenhouse conditions[9].

Although recent time series deep learning models such as
PatchTST, TimesNet, and N HiTS have demonstrated strong
predictive performance in various domains, their application to
horticultural crop growth prediction remains limited, and their
ability to model stage specific growth behavior has not been
sufficiently examined[10].

Explainable Al techniques have become increasingly
important for interpreting complex predictive models, yet only
a small number of studies have combined these methods with
modern deep learning frameworks to identify the key
environmental factors that influence each growth stage. As a
result, the mechanisms through which environmental variables
shape paprika growth over time are still not well understood,
highlighting the need for a more comprehensive and data
driven analytical approach[11].



To address these gaps, this study applies state of the art
time series deep learning models and tabular deep learning
frameworks to paprika datasets collected from greenhouse
facilities in Gyeongsangnam do and Jeonnam.

Growth stages are segmented using a combination of
domain knowledge and K means clustering to ensure objective
data driven categorization.

By comparing model performance across regions and
growth stages and by analyzing SHAP based feature
contributions, this study provides a comprehensive
characterization of the dynamic and stage specific
environmental mechanisms that influence paprika growth.

The findings contribute to the development of data driven
cultivation strategies and provide a foundation for intelligent
environmental control in next generation smart farm systems

II. EASE OF USE

A. Collection and Structuring of Crop Growth Environment
Data

The data used in this study consist of environmental
measurements and paprika growth records collected from
smart-farm greenhouse facilities in Gyeongsangnam-do and
Jeollanam-do.
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Figure 1. Figure 1. Collection of Crop Data

Figure 1 shows a photograph of paprika data obtained from
an actual facility horticulture environment.

The environmental data were measured as hourly time-
series observations and include variables such as internal
temperature, internal humidity, CO, concentration, external
and internal solar radiation, cumulative solar radiation, wind
direction and speed, and soil and nutrient-solution EC and pH.

The growth data consist of key growth indicators measured
on a weekly or daily basis, including fresh weight, plant height,
leaf count, and fruit weight.

TABLE L SENSORS USED AND ENVIRONMENTAL DATA ITEMS

COLLECTED

Environmental data information

Variable Description Datatype Unit
Timestamp Data collection date datetime -
(yyyy-mm-dd)
Internal Data collection float64 oC
temperature timestamp
Inter_nql Temperature inside the float64 %
humidity greenhouse
CO: Relative humidity inside
concentration | the greenhouse float64 ppm
Intgmgl solar | CO: concentration inside float64 W/m?
radiation the greenhouse
External solar | Solar radiation measured W/m
. S float64
radiation inside 2
Cumulative Solar radiation measured W-h/
o . float64
solar radiation | outside m?
Wmdb Dal.ly. accumulated solar float64 °
direction radiation
Wind speed Outdoor wind direction float64 m/s
. . ds/
Nutrient EC Outdoor wind speed float64 m
Nutrient pH EC of nutrient solution float64 -
. . . ds/
Soil EC pH of nutrient solution float64 m
- EC measured in
Soil pH substrate/soil float64 -
TABLE II. SENSORS USED AND GROWTH DATA ITEMS COLLECTED
Growth Data Information
Variable Description Datatype Unit
datetime
Timestamp Date of measurement for (YYYY-MM- )
crop growth parameters DD)
StemHeight Vertical height of the float mm
plant from base to apex
GrowthLen Ipcremental stem gro_wth
since previous float mm
gth
measurement
Leaf count Total number of leaves integer count
per plant
Leaf Length Length . of the float mm
representative leaf
LeafWidth Width . of the float mm
representative leaf
StemDiamet Diameter of the main
stem measured at fixed float mm
er .
height

B. Data Preprocessing Methods and Procedures

Missing values in the environmental datasets from both
regions were corrected using interpolation after removing non
essential metadata columns.

Growth datasets showed no missing values in the major

growth indicators.

Outlier screening was performed by




applying physically plausible ranges based on paprika

cultivation conditions. Temperature, humidity, and most CO2
readings fell within valid limits, and only a small number of
CO2 peaks corresponding to short enrichment events were
retained as valid measurements.

For growth variables, unrealistic plant height values in the
Gyeongnam dataset were identified as recording errors and
removed. All remaining environmental and growth variables
were aligned to ensure consistency in subsequent model
training.

C. Integration of Environmental and Growth Data

Since the growth data were measured on a daily or weekly
basis whereas the environmental data were recorded hourly, a
preprocessing step was required to reconcile the differing
temporal resolutions before merging the two datasets. In this
study, an integrated table was constructed by summarizing the
environmental conditions over a defined period preceding each
growth measurement and matching these summarized
environmental features to the corresponding growth
observations on a one to one basis.

Although growth indicators represent the plant’s condition
at a specific measurement time, that condition is shaped not by
a single momentary environment but by the cumulative
environmental conditions over a preceding period. Therefore,
in this study, a standard observation window of seventy two
hours, corresponding to the three days prior to each growth
measurement, was established.

Within this seventy two hour window, the environmental
data were summarized as follows.

TABLE III. ENVIRONMENTAL VARIABLES AND SUMMARY METRICS
Envi tal . ,
nvtm{tmen a Summary metric Interpretation
variable
. Temperature
Internal Mean, maximum, P
. . stress and
temperature (T in) minimum .
- variability

Transpiration

Internal humidity and moisture

Mean, standard deviation

(RH_in) status
Solar radiation Total amount, maximum QZ?;;?;
(Rad_in, Rad_out) value photosynthesis
CO: concentration Mean Photosynthetic

(CO2_in) efficiency
Soil or substrate
variables (T _soil, Mean Root-zone
WC _soil, EC_soil, environment
etc.)
Nutrient solution
variables .
(T_nutrient, Mean, change A Sta‘pﬂlty of the
EC nutrient nutrient solution

pH_nutrient)

To integrate the growth and environmental datasets, this
study employed a growth environment matching algorithm.
The matching procedure began by identifying the midnight

time point corresponding to each growth measurement based
on its recorded timestamp.

From this reference point, a seventy two hour window
preceding the measurement time was defined, and all
environmental observations falling within this interval were
extracted.

Various summary statistics, including mean, maximum, and
cumulative values, were then calculated for the environmental
time series within this window.

The resulting summarized environmental variables were
subsequently merged with the corresponding row of the growth
dataset, enabling each growth observation to be linked with
representative  environmental features that reflect the
cumulative conditions immediately prior to the measurement.

In the final integrated dataset, each row consists of a
feature set that includes the summarized environmental
characteristics and a target set that contains the corresponding
growth outcomes.

D. Growth Stage Segmentation

Paprika requires different environmental conditions across
its developmental stages, making accurate stage definition
essential for analyzing environmental influence factors. In this
study, growth stages were defined by combining domain based
classification with K means clustering, and the growth process
was divided into three stages: early, middle, and late.

While domain based definitions provide physiological
validity, actual growth rates vary depending on cultivation
conditions and regional environments.

To reflect these differences in the observed data, K means
clustering was used as a complementary data driven approach.
Clustering was conducted using key growth indicators,
including stem height, growth length, leaf count, stem diameter,
and the growth rate expressed as AStemHeight. The number of
clusters was set to three to match the three developmental
stages considered in this study.

TABLE IV. SUMMARY OF CLUSTER CHARACTERISTICS AND

CORRESPONDENCE TO GROWTH STAGES

Summary of
Characteristics
Rapid increases in plant
height and leaf count,
with growth concentrated
in the early phase
Large increments in
growth length and the
appearance of an
inflection point similar to
the onset of fruit set
Slower growth rate with
stabilization of leaf count
and plant height

Corresponding

Cluster Growth Stage

Cluster 0 Early stage

Cluster 1 Middle stage

Cluster 2 Late stage

As shown in Figure 2, the clustering results showed high
agreement with the domain-based stage definition, confirming
that the two criteria function complementarily.



K-means Growth Stage Clustering
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Figure 2. Figure 2. K-means Growth Stage Clustering

E.  Time-series Window Construction for Forecasting Models

Environmental data are recorded continuously on an hourly
basis and serve as essential input features that determine crop
growth responses.

In contrast, growth data represent single observations
measured on specific days or at weekly intervals. Due to this
difference in temporal resolution, a transformation process is
required to convert the environmental data into a time-series
input format suitable for modeling.

In this study, a windowing approach was developed to
transform the environmental data into fixed-length input
sequences, reflecting the structural characteristics of the time-
series prediction models employed, including PatchTST,
TimesNet, and N-HiTS.

The design components used to transform the
environmental data into time-series inputs are summarized in
the following table.

TABLE V. WINDOW CONFIGURATION SUMMARY
Cluster Summary of Characteristics
Input data Environmental data (time-series, 1-

hour resolution)
T in, RH in, CO2 _in, Rad_in/out,
T out, wind variables, soil/media
EC and pH, etc.

Variables included

Window length 72 hours (3 days)
The 72-hour period immediately
Window range preceding each growth

measurement date
Approximately 18 to 22
environmental variables depending
on region
AStemHeight, AGrowthLength,
ALeafCount

Number of features (F)

Prediction targets

StandardScaler (mean—standard

Normalization method L L
deviation normalization)

Cluster Summary of Characteristics

Regression (prediction of

Output format continuous growth increments)

The structural differences in the input configurations of
PatchTST, TimesNet, and N-HiTS are summarized in the
following table.

TABLE VI STRUCTURAL CHARACTERISTICS OF MODEL INPUT TENSORS

Summary of
characteristics
Strong capability in
learning long-term
patterns through
patch-wise
segmentation
Specialized in
extracting periodicity
patterns
Learns multi-scale
residual
representations

Model Input tensor format

X € R(T x F) — Patchify —

PatchTST (Patches x Patch_size x F)

TimesNet X € R(T x F)

N-HiTS X € R(T x F)

The environmental variables used as model inputs are listed
in the following table.

TABLE VII.  ENVIRONMENTAL VARIABLES USED AS MODEL INPUTS
Category Variables
Internal T in, RH in, Tdew_in, CO2_in, AH_in
environment (Jeonnam), Rad_in, RadAccum_in
External T out, Rad_out, RadAccum_out,
environment WindSpeed out, WindDir out, Rain_out

Soil or substrate T _soil, WC_soil, EC_soil, pH_soil

Nutrient solution T _nutrient, EC_nutrient, pH_nutrient

The target composition is defined as follows, and because
growth responses are generally predicted more accurately using
increments rather than absolute values, each target variable was
expressed in its delta form.

TABLE VIII.  DEFINITION OF GROWTH TARGETS
Target Formula Meaning
AStemHeight Stemoight 11 | Stom height
AGrowthLength grrg::ttg::ggg:}}: __tt—_l Growth rate
acoms | [eoncts | e il

F. Summary of Results

In this study, we applied advanced time series models,
including PatchTST, TimesNet, and N HiTS, to predict paprika



growth increments. To ensure a fair comparison, all models
were trained and evaluated under identical data splits (80
percent training, 10 percent validation, 10 percent testing) and
consistent training settings.

All experiments used the AdamW optimizer with a learning

rate of 1x1074, a batch size of 32, and Mean Squared Error as
the loss function.

Early stopping was applied based on validation loss. Model
specific  hyperparameters followed the recommended
configurations for each architecture, such as the patch structure
in PatchTST, the multi scale blocks in TimesNet, and the
stacking design in N HiTS.

Model performance was evaluated using RMSE, MAE, and
R?, which are standard regression metrics. The comparative
results for the full growth dataset are summarized in the table
below.

TABLE IX. MODEL PERFORMANCE COMPARISON BASED ON THE FULL
GROWTH DATASET
Model RMSE MAE R?
PatchTST 9.84 7.12 0.842
TimesNet 10.27 7.45 0.811
N-HiTS 8.96 6.88 0.873

All three models achieved strong predictive performance
across the full dataset, with R? values equal to or exceeding
0.80.

Among them, N-HiTS demonstrated the best overall
performance, attaining the lowest RMSE of 8.96 and the
highest R? of 0.873, attributable to its multi-resolution
architectural design.

PatchTST showed stable and well-balanced performance by
effectively capturing long-range temporal patterns. TimesNet
also maintained high accuracy by leveraging its strong ability
to model inherent periodic structures within the environmental
time series.

The following table presents a comparison of RMSE values
across the different growth stages.

TABLE X. RMSE COMPARISON ACROSS GROWTH STAGES
Growth PatchTST TimesNet N-HiTS
Stage
Early 12.44 13.28 11.87
Middle 8.91 7.84 7.52
Late 7.32 7.65 6.98

The early growth stage exhibited relatively high RMSE
values across all models, which can be attributed to increased
environmental variability and higher measurement noise during
this period.

In contrast, the middle and late stages showed substantially
lower errors as growth patterns became more stable and
structured.

Notably, N-HiTS achieved the lowest RMSE in all three
stages, demonstrating its superior capability in modeling multi-
scale temporal dynamics.
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Figure 3. Figure 3.Comparison of Predicted and Actual Growth Values
Across Time-Series Models

Figure 3 presents a comparison between the predicted
values and the actual observations for each model.

As shown in the graph, PatchTST closely tracks the overall
trend of the true values and exhibits the smallest prediction
deviation among the models, particularly in the later periods.

TimesNet demonstrates strong performance in intervals
where growth rates remain relatively stable, owing to its ability
to effectively capture periodic structures in the time series,
resulting in smooth reproduction of the actual changes.

N-HiTS, leveraging its architectural capability to learn
both high- and low-frequency components simultaneously,
achieves the lowest residual distribution across the entire
sequence and provides stable and consistent estimates even in
segments characterized by abrupt changes.



Stage-wise Feature Importance
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Figure 4 presents the SHAP analysis results obtained from
the TabNet, SAINT, and TabTransformer models.

The analysis shows that during the early growth stage,
temperature and humidity variables (T in and RH_in) had the
greatest influence on growth responses. In the middle stage,
CO: concentration and light-related variables emerged as the
dominant factors, reflecting the increased importance of
photosynthetic activity.

In the Ilate stage, the contribution of root-zone
environmental variables, such as soil temperature (T _soil) and
soil water content (WC soil), became relatively more
pronounced.

The table and figure 5 below present the model prediction
performance for the two regions as well as the key influencing
factors identified for each growth stage.

TABLE XI. MODEL PERFORMANCE AND INTERPRETATION BY REGION

Region Model RMSE MAE R

PatchTST 9.84 7.12 0.842
Gyeong .

nam TimesNet 10.27 7.45 0.811
N-HiTS 8.96 6.88 0.873
PatchTST 9.12 6.85 0.861
Jeonnam TimesNet 9.76 6.92 0.838
N-HiTS 8.42 6.21 0.889
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Figure 5. Figure 5. Regional Comparison of Feature Importance

The same time-series models (PatchTST, TimesNet, N-
HiTS) and tabular models (TabNet, SAINT, TabTransformer)
were independently applied to the two regions, Gyeongnam
and Jeonnam, to analyze regional differences in key
environmental factors and model performance.

Overall, the Jeonnam region exhibited higher prediction
stability in the time-series models, which can be attributed to
its lower variability in CO. concentration and external light
conditions compared with Gyeongnam. Both PatchTST and N-
HiTS achieved higher R? values and lower RMSE in Jeonnam,
suggesting that the environmental control system in Jeonnam
greenhouses operates with smoother and more consistent
periodic patterns.

In contrast, the Gyeongnam region exhibited larger diurnal
fluctuations in solar radiation (Rad in and Rad out) and
internal temperature (T in), which made long-term pattern
learning more challenging for the models. As a result,
TimesNet showed a relative decrease in predictive performance
during the middle growth stage. This suggests that abrupt
changes in light and temperature increase the nonlinearity of
short-term growth responses, thereby reducing the model’s
ability to generalize effectively.

III. CONCLUSION

This study investigated the environmental factors affecting
paprika growth across developmental stages by applying state
of the art deep learning models including PatchTST, TimesNet,
and N HiTS to time series environmental data collected from
smart greenhouse facilities in two regions of Korea. In addition,
tabular deep learning models such as TabNet, SAINT, and
TabTransformer were used together with SHAP based
interpretation to identify key environmental drivers at each
stage. All three time series models showed strong predictive
performance with R? values above 0.80. Among them, N HiTS
achieved the highest overall accuracy with the lowest RMSE of
8.96 and an R? of 0.873, demonstrating its ability to capture
multi scale temporal patterns in paprika growth. PatchTST
effectively followed long term growth trends, whereas
TimesNet performed well in periods characterized by stable
periodic behavior. Stage wise analysis showed that prediction
errors were highest in the early stage due to strong
environmental fluctuations, while the middle and late stages
showed significantly improved accuracy as growth patterns
became more stable. SHAP based interpretation indicated that
temperature and humidity were the most influential factors

during the early stage. CO2 concentration and radiation related

variables played major roles in the middle stage as
photosynthetic activity increased. In the late stage, root zone
conditions, including soil temperature and soil water content,
became more influential, reflecting their contribution to stable
growth. Regional comparison showed that Jeonnam provided
more stable model performance because of lower variability in

CO2 levels and solar radiation. PatchTST and N HiTS achieved

higher R? values and lower RMSE in Jeonnam compared with
Gyeongnam. In contrast, Gyeongnam exhibited larger diurnal
fluctuations in temperature and radiation, which reduced the
performance of TimesNet during the middle stage. Overall, this
study demonstrates the effectiveness of advanced deep learning



approaches for predicting paprika growth and reveals stage
specific and region specific environmental mechanisms. The
findings offer useful guidance for optimizing environmental
control, improving resource efficiency, and enhancing
production stability in next generation smart farming systems.
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