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Abstract—Voice information is now more vulnerable to misuse,
ranging from traditional copyright theft to emerging threats in the
era of artificial intelligence (AI), where voice cloning and deepfake
synthesis can easily bypass conventional verification methods. The
problem of voice verification and protection against copyright
infringement can be addressed with this paper through the
development of a neural watermarking model inspired by
AudioSeal, an advanced deep learning watermarking system. We
train and fine-tune AudioSeal for offline, pre-recorded speech,
inserting watermarks that are both imperceptible as well as
resilient against typical audio processing attacks. The system was
developed for a proof-of-concept application to support end-to-
end watermark embedding and detection within actual user
workflows. Experimental outcomes demonstrate that our model
attains high imperceptibility (PESQ ~ 4.272, SI-SNR ~ 39.335)
with competitive robustness against compression, resampling, and
noise attacks. These findings indicate the ability of watermarking
based on deep learning to secure voice data for security-critical
and copyright-related applications.
audio

Keywords—voice  watermarking, authentication,

robustness, imperceptibility, AI model

I. INTRODUCTION

The rapid development of digital audio data has boosted the
demand for secure voice data protection and authentication.
Digital watermarking as a whole has emerged as an effective
tool for copyright protection, tampering detection, and security
confirmation. However, voice data, as compared with text or
image, comes with unique challenges in its temporal nature,
perceptual sensitivity, and need for on-the-fly use. These issues
are even more prevalent in the Al era as voice cloning and voice
synthesis introduce huge risks of impersonation and
unauthorized use.

Using synthetic audio in the wrong way, especially with
deepfake technologies, has become a big security and trust issue.
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High-profile cases show how convincingly cloned voices can be
used to commit fraud, impersonate someone else, and spread
false information. For instance, in 2019, criminals used Al-
generated voice to pretend to be a CEO and tricked a UK energy
firm into sending about $243,000 to the bank account of a
Hungarian supplier [1]. Deepfake audio clips have been used in
politics and media to spread misinformation and cause false
doubt and fear for the public. Recent surveys show that
improvements in text-to-speech and voice cloning have made it
possible to copy not only the words but also the tone, accent, and
way of speaking of targeted people with high accuracy [2].

This paper contributes to addressing these challenges by
designing, implementing, and evaluating a neural watermarking
system specialized for voice audio. Specifically, we adapt
AudioSeal, a deep learning watermarking model originally
proposed for general audio, and retrain it on speech-focused
datasets to improve its imperceptibility-robustness balance in
voice-specific contexts.

The contributions of this paper are as follows:

1. Model adaptation: We retrain AudioSeal with speech-
focused datasets to extend its capabilities to voice
authentication.

2. Prototype application: We develop VoiceMark, a web-
based system demonstrating practical deployment of
watermark embedding and detection.

3. Evaluation: We compare our retrained model against
classical watermarking methods, assessing
imperceptibility, robustness, and detection accuracy
under real-world audio edits.

The remainder of the paper is structured as follows: Section
IT reviews related work on classical and deep learning-based
watermarking. Section III details the system design and



methodology, including dataset preparation, model training.
Section IV describes the experimental setup and evaluation
metrics. Section V presents results and discussion, while Section
VI concludes with key findings and outlines directions for future
research.

II. RELATED WORK

Audio watermarking techniques can be broadly divided into
classical signal processing and deep learning-based approaches.
Among the classical approaches, Singular Value Decomposition
(SVD)-based watermarking [3] — [6] has been widely studied
due to its robustness against noise and compression. In these
methods, audio frames or transformed coefficients are
decomposed into singular values and vectors, and watermark
bits are embedded by modifying selected singular values.
Because singular values represent intrinsic structure, such
perturbations remain stable against many distortions. Early work
by Ozer et al. [3] applied SVD directly to the Short-Time Fourier
Transform (STFT) spectrogram, embedding watermarks by
adaptively modifying singular values, which proved robust to
filtering and compression while preserving imperceptibility.
More recent advances include SVD combined with frequency
transforms, such as DCT-SVD [4] and DWT-SVD approaches
[5], and adaptive frameworks that adjust embedding strength to
maximize inaudibility while maintaining resilience [6]. Liu et al.
[6] proposed a DWT-SVD scheme with differential embedding,
which dynamically tunes parameters per frame, achieving strong
resistance to noise and re-encoding.

The Short-Time Fourier Transform (STFT) is also a popular
time-frequency domain for audio watermarking since it provides
a joint time—frequency representation aligned with human
auditory perception. By embedding bits into selected STFT
coefficients, watermarking systems can exploit psychoacoustic
masking while distributing redundancy across time frames.
Jayarani et al. [7] proposed a zero-watermarking approach based
on STFT, extracting signatures without altering the host audio.
More recently, Liu et al. [8] introduced Timbre Watermarking,
which embeds a secret bitstring in the STFT spectrogram of
speech and survives state-of-the-art voice cloning pipelines. Gan
et al. [9] extended this with SyncGuard, a deep learning
watermark embedded across STFT frames to resist
desynchronization attacks such as cropping and time-scaling.

Spread-spectrum watermarking is another traditional
method that aims to make things more stable. This method uses
pseudo-random sequences to spread a narrow-band watermark
signal across wide frequency bins, which makes it resistant to
filtering and compression [10]. The embedded signal is hard to
get rid of because it spreads energy over a wide area, which
would ruin the host audio. But this strength comes at the cost of
payload capacity, since each bit needs to be embedded in many
samples.

Invariant-feature methods build on classical methods by
using signal features that don't change when they are distorted.
SVD has been a popular choice because changing the singular
values of audio frames usually keeps them strong against
common signal processing [3] — [6]. Zhao et al. recently came
up with the Frequency Singular Value Coefficient (FSVC),
which encodes watermark bits in the ratio of singular values
between two segments. FSVC is resistant to desynchronization

attacks like time-scale modification or cropping, while earlier
SVD-based schemes were not [11].

While these classical techniques achieve varying degrees of
imperceptibility and robustness, they are often constrained by
limited payload capacity, vulnerability to desynchronization, or
high computational cost. To overcome these limitations, recent
research has shifted toward a more modern approach: in the past
five years, deep learning-based watermarking has emerged as
the state of the art. Pavlovi¢ et al. [12] demonstrated a Deep
Neural Network (DNN) embedder - detector achieving <1% Bit
Error Rate (BER) on speech with high imperceptibility
(Perceptual Evaluation of Speech Quality (PESQ) = 4.33,
Signal-to-Noise Ratio (SNR) > 38 dB). Singh et al. [13]
proposed SilentCipher, which further improved imperceptibility
by incorporating psychoacoustic masking and pseudo-
differentiable compression layers. Timbre watermarking [8],
presented at NDSS 2024, specifically targets voice cloning
attacks, embedding repeated cues in the frequency domain that
persist through cloning pipelines.

AudioSeal [14], presented at ICML 2024, represents a
milestone, introducing a generator—detector architecture with
perceptual masking and localized detection. It enables segment-
level watermark identification and achieves detection speeds
two orders of magnitude faster than prior neural methods [14].
However, AudioSeal’s pretrained models are trained on general
audio, and its robustness against adaptive Artificial Intelligence
(Al)-driven manipulations (e.g., cloned voices) remains
underexplored.

To address this gap, our project builds directly on AudioSeal,
retraining and fine-tuning it for offline, prerecorded voice
watermarking. By tailoring datasets and evaluations to voice-
specific challenges - including cloned and accented speech - we
extend AudioSeal’s imperceptibility-robustness balance into
new contexts. This positions our work as a step towards
specialized, voice-focused watermarking that is inaudible and
practical for real world deployment.

III. METHODOLOGY / SYSTEM DESIGN

A. Model Methodology

AudioSeal’s architecture [14] is based on the EnCodec [15]
and the framework is a deep learning-based system built on a
jointly trained generator and detector architecture. It is designed
to be a proactive solution for Al-generated audio detection by
embedding a watermark directly into the audio at the time of its
creation.

1) Datasets and preprocessing

For training and evaluation, the English subset of the
VoxPopuli corpus was used [16], which comprises 543 hours of
speech at 16 kHz, and contributed by approximately 1,300
unique speakers. The dataset was divided into training,
validation, and test splits following the official VoxPopuli
partition.

2) Watermark Embedding Process (Generator)
The Generator [14] is the component responsible for
embedding the watermark. It takes an audio signal, input is

denoted as s . The generator then predicts a watermark
waveform § of the same size. The watermarked audio, s,,, is



created by simply adding the watermark to the original audio,
following the equation:

Sw=5+6 €))

The generator can optionally encode a secret message of 16
bits into the watermark, providing 65,536 possible choices.

3) Watermark Extraction Process (Detector)

The Detector [14] analyzes the watermarked audio, sw. It
outputs a probability score between 0 and 1, for each time step.
This probability indicates the likelihood of a watermark being
present at that specific sample. The detector can also extract the
secret 16-bit message if one is embedded in the watermark.

4) Training and Optimization

AudioSeal's generator and detector are trained
simultaneously in a joint optimization process [14]. This co-
training ensures that the generator creates a watermark that is
both imperceptible to human ears and highly detectable by the
detector.

e Imperceptibility: A key optimization is a novel
perceptual loss function inspired by auditory
masking. This custom loudness-based loss
minimizes the audible difference between the
original and watermarked audio, ensuring minimal
signal alteration.

® Localized detection: The model is trained with a
specific augmentation strategy where random
segments of watermarked audio are replaced with
silence or non-watermarked audio from the same
batch.

e Robustness: To maximize its resilience, the training
includes a regimen of audio distortions, such as
compression, noise addition, resampling, and
others. This "resilient by design" approach ensures
the watermark remains detectable even after
manipulation.

5) Technical Environment

AudioSeal requires Python version 3.8 or higher and
PyTorch version 1.13.0 or higher. Other necessary libraries
include omegaconf, julius, ffmpeg and numpy. The opensource
code is available on GitHub [17].

6) Training details

Our model was trained from scratch at a 16 kHz sampling
rate. The training run for 100 epochs using the Adam optimizer,
batch size 12 (limited by the 40 GB GPU memory of a single
NVIDIA A100), update interval 2,000 steps, a sample pool of
35,000 training samples for each epoch was randomly selected
from the dataset (num_sample (train) = 35,000) and learning rate
at 4x107°. To encourage stable convergence, training was
conducted in two phases. During the first 70 epochs, only the
localization and detection losses were weighted, while
perceptual losses were disabled. This allowed the model to
prioritize accurate watermark localization and detection.
Moreover, we fine-tuned the model from epoch 70 to 100,
during which the learning rate was reduced to 1x107°. The
checkpoint obtained after the initial 70 epochs was primarily
optimized for the core functions of watermark embedding and

detection with speed and precision. In the fine-tuning stage, the
model was further trained to enhance imperceptibility and
robustness by gradually introducing perceptual losses and
increasing them to their final weights: adversarial loss (adv) =
4.0, feature-matching loss (feat) = 4.0, L1 reconstruction loss
(11) = 0.1, multi-scale spectrogram loss (msspec) = 2.0, and
time-frequency loudness ratio loss (tf loudnessratio) = 10.0. All
other augmentations and hyperparameters followed the default
settings provided in the AudioCraft GitHub [18].

B. Prototype application

To make our watermarking model feasible, we built a
prototype web application, VoiceMark, that integrated the
embedding and detection modules into a complete system for
end user. The application contains a React/Next.ts frontend and
a Node.js backend interacting with the watermarking engine via
REST APIs. The backend handles the audio watermark
embedding/detection procedures, as well as management of files
and user data. The frontend provides a user-friendly interface to
allow users of all background easily access the tool.

The above system-level deployment is not the main
contribution of the paper but demonstrates the realizability of
using our watermarking scheme in a real environment. It also
facilitates end-to-end testing with real user interaction, i.e., the
watermarking pipeline is not merely theoretically correct but
practically feasible as well.

IV. EXPERIMENTAL SETUP

A. Evaluation dataset

The dataset used for evaluating the models' performance
consisted of 100 unseen audio samples, each one minute in
length: 50 music samples from the Free Music Archive [19] and
50 speech samples from English public-domain LibriVox [20].
Each sample was then watermarked using our trained AudioSeal
model and the baseline method (hybrid SVD with STFT). To
assess audio quality, we compared the 100 watermarked audio
samples against their corresponding non-watermarked original
using the established comparative metrics. For detection
evaluation, we applied various edits to the watermarked samples
to simulate common attacks and then measured detection
performance using the chosen metrics.

B. Audio quality assessment

We evaluate the audio quality of our trained AudioSeal
model against the baseline hybrid method of SVD and STFT
using two metrics: Scale-Invariant Signal-to-Noise Ratio
(SISNR) [21] and Perceptual Evaluation of Speech Quality
(PESQ) [22] with 100 watermarked samples and 100 original
samples (non-watermarked).

SI-SNR is a fidelity metric that measures how much
distortion is introduced into an audio signal after processing
[21]. The output is expressed in decibels (dB) and the range is
unbound. A score of 0 dB means the distortion energy is equal
to the signal energy, indicating poor quality. Positive values
between 10 to 20 dB indicate good quality, and values above 20
dB are considered very high quality. In general, higher SI-SNR
corresponds to better preservation of the original audio.



PESQ is an objective perceptual quality metric standardized
by ITU-T [22]. It estimates how a human listener would rate the
quality of audio after degradation by watermarking,
compression, or other edits. PESQ produces scores between —
0.5 and 4.5, with higher values indicating better perceptual
quality. A score closes to 4.5 reflects transparent audio quality,
while scores near 1.0 or lower reflect heavily degraded audio.

C. Detection robustness evaluation

This section discusses the robustness evaluation of our
trained AudioSeal model and the baseline hybrid SVD with
STFT method against various common audio distortions as
follows:

e  MP3 Compression (32 kbps): The audio samples
were compressed to a low bitrate of 32 kbps,
simulating lossy distribution over bandwidth
limited channels.

e Resampling (32 kHz): Each sample was resampled
from 16 kHz to 32 kHz and back to 16 kHz.

e  Speed Change (1.25%): The playback speed of each
sample was increased by a factor of 1.25.

e Additive White Gaussian Noise (o = 0.05):
Random Gaussian noise was added directly to the
waveform with a fixed deviation of 0.05.

e Additive Pink Noise (¢ = 0.01): Pink noise with a
standard deviation of 0.01 was added to the
waveform.

Evaluation performance was quantified using the following
evaluation metrics:

e Accuracy (Acc): The average of detection success
on positives (TPR) and success on negatives
(1FPR). Ranges from 0.0 to 1.0, with higher values
indicating better overall detection accuracy.

e True Positive Rate (TPR): Measures the
watermarked audio correctly identified as
containing a watermark. Ranges from 0.0 to 1.0,
with higher values indicating fewer missed
detections.

e False Positive Rate (FPR): Measures the proportion
of non-watermarked audio incorrectly classified as
watermarked. Ranges from 0.0 to 1.0, with lower
values indicating fewer false detection.

e Bit Error Rate (BER): Measures the watermark bits
incorrectly decoded. Values range from 0.0 to 1.0,
with lower values indicating higher decoding
fidelity.

V. RESULTS AND DISCUSSION

This section presents and analyzes the experimental results
obtained from evaluating our custom AudioSeal model against
the baseline hybrid SVD with STFT method.

Table I shows the comparison between AudioSeal versus
SVD & STFT in term of audio quality using SI-SNR and PESQ.

TABLE L AUDIO QUALITY ASSESSMENT

Methods SI-SNR PESQ
AudioSeal 40.208 4.354
SVD & STFT 35.225 4.162

For audio quality assessment, Table I shows that our custom
AudioSeal model outperforms the baseline SVD with STFT
method in terms of SI-SNR and PESQ. This shows that the
watermark embedding process brings very minimal perceptual
distortion. Fig.1 and Fig.2 further support this finding by
comparing the spectrograms of non-watermarked and
watermarked sample audio. The overall spectral structure is
preserved, with only subtle, imperceptible changes which is the
watermark itself, which can barely be seen as a horizontal line
in between 4096 to 8192 Hz, confirming that the watermark does
not noticeably degrade audio quality.
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Fig. 1. Spectrogram of non-watermarked audio, used as a baseline for
comparison with the watermarked version.
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Fig. 2. Spectrogram of watermarked audio, showing the preserved structure
even after watermarking.

Table II shows the detection performance of AudioSeal
model under common audio edits and attacks, including MP3
compression, resampling, speed change, white noise, and pink
noise.

TABLE IL DETECTION PERFORMANCE OF CUSTOM MODEL UNDER
COMMON EDITS AND ATTACKS
AudioSeal
Edit/Attacks Ace. TPR/FPR BER
MP3 0.94 0.89/0.00 0.109
Resampling 0.96 0.92/0.00 0.093




AudioSeal
Edit/Attacks Acc. TPR/FPR BER
Speed 0.56 0.22/0.10 0.282
White Noise 091 0.92/0.10 0.088
Pink Noise 0.97 0.95/0.00 0.089

Table III shows the detection performance of the baseline
SVD with STFT approach under the same set of audio edits and
attacks.

TABLE IIL DETECTION PERFORMANCE OF SVD WITH STFT UNDER
COMMON EDITS AND ATTACKS
SVD with STFT

Edit/Attacks Acc. TPR/FPR BER
MP3 0.76 0.62/0.10 0.228
Resampling 0.77 0.60/0.11 0.236
Speed 0.70 0.50/0.12 0.247
White Noise 0.70 0.55/0.14 0.268
Pink Noise 0.73 0.58/0.12 0.249

For robustness assessment, Table II and III shows that the
custom model consistently performs better than most common
audio edits and attacks. The only exception is the Speed edit,
where the baseline SVD/STFT achieves up to 0.70 accuracy
compared to only 0.56 for AudioSeal. Figs. 3—7 support these
results by visualizing the effect of an attack through
spectrograms. In Figs. 3-5, the aforementioned watermark can
still be seen and perfectly preserved after the attacks. Note that
in Figs. 67, even though the watermark cannot be seen with this
form of visualization due to the nature of the attack, the result
measured in Table II still prove the robustness of the watermark
against them.
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Fig. 3. Spectrogram of the watermarked audio after a MP3 compression attack,
showing the preserved watermark.
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Fig. 4. Spectrogram of the watermarked audio after resampling, showing the
preserved watermark.
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Fig. 5. Spectrogram of the watermarked audio after a speed edit, showing the
preserved watermark.
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Fig. 6. Spectrogram of the watermarked audio after a white noise edit.
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Fig. 7. Spectrogram of the watermarked audio after a pink noise edit.

For the trade-off, we prioritized the AudioSeal model’s core
performance: embedding an imperceptible watermark into the
audio waveform and ensuring reliable detection, extraction, and
bit decoding from the watermarked audio. Robustness was
considered secondary and was fine-tuned only after optimizing
these primary aspects.

VI. CONCLUSION AND FUTURE WORK

Our results show that classical watermarking methods
generally underperform compared to neural network-based
approaches such as AudioSeal. Although our implementation of
AudioSeal was not trained to the fullest extent recommended by



its developers and in the AudioSeal paper [14], this was
primarily due to hardware and time constraints. Our experiments
were limited to a single NVIDIA A100 GPU with 40 GB of
memory and 250 GB of storage, which restricted the size of the
dataset we could process and required extensive pilot runs to
identify hyperparameters and training settings suitable for our
hardware. Combined with a timeframe of only four months for
both training and research, these factors prevented us from
training the model to its full capacity. Nevertheless, the model
still outperformed classical techniques. This highlights the
promise of deep learning-based watermarking for enhancing
voice data protection.

While our implementation demonstrates that AudioSeal can
be adapted under limited hardware and time constraints, future
work should focus on scaling training to more closely match the
setup in the AudioSeal paper [14]. Specifically, although our
model was trained for 100 epochs, the detector network
continued to show improvements beyond this point, suggesting
that extended training (120 epochs or more) could further
enhance performance. Additionally, the hyperparameter
num_sample (train) was fixed at 35,000 in our experiments
(compared to the default of 500,000). Since this parameter
controls the number of training samples drawn per epoch,
systematically exploring different values may lead to better
trade-offs between training speed and model performance.
Finally, leveraging larger computational resources (e.g., multi-
GPU setups) would allow longer training schedules, larger
datasets, and closer adherence to the AudioSeal setting. These
directions would help unlock the full potential of the model in
terms of imperceptibility and robustness.
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