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Abstract—Voice information is now more vulnerable to misuse, 

ranging from traditional copyright theft to emerging threats in the 

era of artificial intelligence (AI), where voice cloning and deepfake 

synthesis can easily bypass conventional verification methods. The 

problem of voice verification and protection against copyright 

infringement can be addressed with this paper through the 

development of a neural watermarking model inspired by 

AudioSeal, an advanced deep learning watermarking system. We 

train and fine-tune AudioSeal for offline, pre-recorded speech, 

inserting watermarks that are both imperceptible as well as 

resilient against typical audio processing attacks. The system was 

developed for a proof-of-concept application to support end-to-

end watermark embedding and detection within actual user 

workflows. Experimental outcomes demonstrate that our model 

attains high imperceptibility (PESQ ≈ 4.272, SI-SNR ≈ 39.335) 

with competitive robustness against compression, resampling, and 

noise attacks. These findings indicate the ability of watermarking 

based on deep learning to secure voice data for security-critical 

and copyright-related applications.  

Keywords—voice watermarking, audio authentication, 

robustness, imperceptibility, AI model 

I. INTRODUCTION 

The rapid development of digital audio data has boosted the 
demand for secure voice data protection and authentication. 
Digital watermarking as a whole has emerged as an effective 
tool for copyright protection, tampering detection, and security 
confirmation. However, voice data, as compared with text or 
image, comes with unique challenges in its temporal nature, 
perceptual sensitivity, and need for on-the-fly use. These issues 
are even more prevalent in the AI era as voice cloning and voice 
synthesis introduce huge risks of impersonation and 
unauthorized use.    

Using synthetic audio in the wrong way, especially with 
deepfake technologies, has become a big security and trust issue. 

High-profile cases show how convincingly cloned voices can be 
used to commit fraud, impersonate someone else, and spread 
false information. For instance, in 2019, criminals used AI-
generated voice to pretend to be a CEO and tricked a UK energy 
firm into sending about $243,000 to the bank account of a 
Hungarian supplier [1]. Deepfake audio clips have been used in 
politics and media to spread misinformation and cause false 
doubt and fear for the public. Recent surveys show that 
improvements in text-to-speech and voice cloning have made it 
possible to copy not only the words but also the tone, accent, and 
way of speaking of targeted people with high accuracy [2].  

This paper contributes to addressing these challenges by 
designing, implementing, and evaluating a neural watermarking 
system specialized for voice audio. Specifically, we adapt 
AudioSeal, a deep learning watermarking model originally 
proposed for general audio, and retrain it on speech-focused 
datasets to improve its imperceptibility-robustness balance in 
voice-specific contexts.   

The contributions of this paper are as follows:  

1. Model adaptation: We retrain AudioSeal with speech-
focused datasets to extend its capabilities to voice 
authentication.  

2. Prototype application: We develop VoiceMark, a web-
based system demonstrating practical deployment of 
watermark embedding and detection.  

3. Evaluation: We compare our retrained model against 
classical watermarking methods, assessing 
imperceptibility, robustness, and detection accuracy 
under real-world audio edits.  

The remainder of the paper is structured as follows: Section 
II reviews related work on classical and deep learning-based 
watermarking. Section III details the system design and 



methodology, including dataset preparation, model training. 
Section IV describes the experimental setup and evaluation 
metrics. Section V presents results and discussion, while Section 
VI concludes with key findings and outlines directions for future 
research. 

II. RELATED WORK 

Audio watermarking techniques can be broadly divided into 
classical signal processing and deep learning-based approaches. 
Among the classical approaches, Singular Value Decomposition 
(SVD)-based watermarking [3] – [6] has been widely studied 
due to its robustness against noise and compression. In these 
methods, audio frames or transformed coefficients are 
decomposed into singular values and vectors, and watermark 
bits are embedded by modifying selected singular values. 
Because singular values represent intrinsic structure, such 
perturbations remain stable against many distortions. Early work 
by Özer et al. [3] applied SVD directly to the Short-Time Fourier 
Transform (STFT) spectrogram, embedding watermarks by 
adaptively modifying singular values, which proved robust to 
filtering and compression while preserving imperceptibility. 
More recent advances include SVD combined with frequency 
transforms, such as DCT-SVD [4] and DWT-SVD approaches 
[5], and adaptive frameworks that adjust embedding strength to 
maximize inaudibility while maintaining resilience [6]. Liu et al. 
[6] proposed a DWT-SVD scheme with differential embedding, 
which dynamically tunes parameters per frame, achieving strong 
resistance to noise and re-encoding.  

The Short-Time Fourier Transform (STFT) is also a popular 
time-frequency domain for audio watermarking since it provides 
a joint time–frequency representation aligned with human 
auditory perception. By embedding bits into selected STFT 
coefficients, watermarking systems can exploit psychoacoustic 
masking while distributing redundancy across time frames. 
Jayarani et al. [7] proposed a zero-watermarking approach based 
on STFT, extracting signatures without altering the host audio. 
More recently, Liu et al. [8] introduced Timbre Watermarking, 
which embeds a secret bitstring in the STFT spectrogram of 
speech and survives state-of-the-art voice cloning pipelines. Gan 
et al. [9] extended this with SyncGuard, a deep learning 
watermark embedded across STFT frames to resist 
desynchronization attacks such as cropping and time-scaling.  

Spread-spectrum watermarking is another traditional 
method that aims to make things more stable. This method uses 
pseudo-random sequences to spread a narrow-band watermark 
signal across wide frequency bins, which makes it resistant to 
filtering and compression [10]. The embedded signal is hard to 
get rid of because it spreads energy over a wide area, which 
would ruin the host audio. But this strength comes at the cost of 
payload capacity, since each bit needs to be embedded in many 
samples.  

Invariant-feature methods build on classical methods by 
using signal features that don't change when they are distorted. 
SVD has been a popular choice because changing the singular 
values of audio frames usually keeps them strong against 
common signal processing [3] – [6]. Zhao et al. recently came 
up with the Frequency Singular Value Coefficient (FSVC), 
which encodes watermark bits in the ratio of singular values 
between two segments. FSVC is resistant to desynchronization 

attacks like time-scale modification or cropping, while earlier 
SVD-based schemes were not [11].  

While these classical techniques achieve varying degrees of 
imperceptibility and robustness, they are often constrained by 
limited payload capacity, vulnerability to desynchronization, or 
high computational cost. To overcome these limitations, recent 
research has shifted toward a more modern approach: in the past 
five years, deep learning-based watermarking has emerged as 
the state of the art. Pavlović et al. [12] demonstrated a Deep 
Neural Network (DNN) embedder - detector achieving <1% Bit 
Error Rate (BER) on speech with high imperceptibility 
(Perceptual Evaluation of Speech Quality (PESQ) ≈ 4.33, 
Signal-to-Noise Ratio (SNR) > 38 dB). Singh et al. [13] 
proposed SilentCipher, which further improved imperceptibility 
by incorporating psychoacoustic masking and pseudo-
differentiable compression layers. Timbre watermarking [8], 
presented at NDSS 2024, specifically targets voice cloning 
attacks, embedding repeated cues in the frequency domain that 
persist through cloning pipelines.  

AudioSeal [14], presented at ICML 2024, represents a 
milestone, introducing a generator–detector architecture with 
perceptual masking and localized detection. It enables segment-
level watermark identification and achieves detection speeds 
two orders of magnitude faster than prior neural methods [14]. 
However, AudioSeal’s pretrained models are trained on general 
audio, and its robustness against adaptive Artificial Intelligence 
(AI)-driven manipulations (e.g., cloned voices) remains 
underexplored.  

To address this gap, our project builds directly on AudioSeal, 
retraining and fine-tuning it for offline, prerecorded voice 
watermarking. By tailoring datasets and evaluations to voice-
specific challenges - including cloned and accented speech - we 
extend AudioSeal’s imperceptibility-robustness balance into 
new contexts. This positions our work as a step towards 
specialized, voice-focused watermarking that is inaudible and 
practical for real world deployment. 

III. METHODOLOGY / SYSTEM DESIGN 

A. Model Methodology  

AudioSeal’s architecture [14] is based on the EnCodec [15] 
and the framework is a deep learning-based system built on a 
jointly trained generator and detector architecture. It is designed 
to be a proactive solution for AI-generated audio detection by 
embedding a watermark directly into the audio at the time of its 
creation.     

1) Datasets and preprocessing  
For training and evaluation, the English subset of the 

VoxPopuli corpus was used [16], which comprises 543 hours of 
speech at 16 kHz, and contributed by approximately 1,300 
unique speakers. The dataset was divided into training, 
validation, and test splits following the official VoxPopuli 
partition.   

2) Watermark Embedding Process (Generator)   
The Generator [14] is the component responsible for 

embedding the watermark. It takes an audio signal, input is 
denoted as � . The generator then predicts a watermark 
waveform � of the same size. The watermarked audio, �� , is 



created by simply adding the watermark to the original audio, 
following the equation:  

�� = � + �    (1) 

The generator can optionally encode a secret message of 16 
bits into the watermark, providing 65,536 possible choices.     

3) Watermark Extraction Process (Detector)   
The Detector [14] analyzes the watermarked audio, sw. It 

outputs a probability score between 0 and 1, for each time step. 
This probability indicates the likelihood of a watermark being 
present at that specific sample. The detector can also extract the 
secret 16-bit message if one is embedded in the watermark.     

4) Training and Optimization   
AudioSeal's generator and detector are trained 

simultaneously in a joint optimization process [14]. This co-
training ensures that the generator creates a watermark that is 
both imperceptible to human ears and highly detectable by the 
detector. 

• Imperceptibility: A key optimization is a novel 
perceptual loss function inspired by auditory 
masking. This custom loudness-based loss 
minimizes the audible difference between the 
original and watermarked audio, ensuring minimal 
signal alteration.     

• Localized detection: The model is trained with a 
specific augmentation strategy where random 
segments of watermarked audio are replaced with 
silence or non-watermarked audio from the same 
batch.   

• Robustness: To maximize its resilience, the training 
includes a regimen of audio distortions, such as 
compression, noise addition, resampling, and 
others. This "resilient by design" approach ensures 
the watermark remains detectable even after 
manipulation.     

5) Technical Environment  
AudioSeal requires Python version 3.8 or higher and 

PyTorch version 1.13.0 or higher. Other necessary libraries 
include omegaconf, julius, ffmpeg and numpy. The opensource 
code is available on GitHub [17].  

6) Training details  
Our model was trained from scratch at a 16 kHz sampling 

rate. The training run for 100 epochs using the Adam optimizer, 
batch size 12 (limited by the 40 GB GPU memory of a single 
NVIDIA A100), update interval 2,000 steps, a sample pool of 
35,000 training samples for each epoch was randomly selected 
from the dataset (num_sample (train) = 35,000) and learning rate 
at 4×10⁻⁵. To encourage stable convergence, training was 
conducted in two phases. During the first 70 epochs, only the 
localization and detection losses were weighted, while 
perceptual losses were disabled. This allowed the model to 
prioritize accurate watermark localization and detection. 
Moreover, we fine-tuned the model from epoch 70 to 100, 
during which the learning rate was reduced to 1×10⁻⁵. The 
checkpoint obtained after the initial 70 epochs was primarily 
optimized for the core functions of watermark embedding and 

detection with speed and precision. In the fine-tuning stage, the 
model was further trained to enhance imperceptibility and 
robustness by gradually introducing perceptual losses and 
increasing them to their final weights: adversarial loss (adv) = 
4.0, feature-matching loss (feat) = 4.0, L1 reconstruction loss 
(l1) = 0.1, multi-scale spectrogram loss (msspec) = 2.0, and 
time-frequency loudness ratio loss (tf_loudnessratio) = 10.0. All 
other augmentations and hyperparameters followed the default 
settings provided in the AudioCraft GitHub [18].  

B. Prototype application  

To make our watermarking model feasible, we built a 
prototype web application, VoiceMark, that integrated the 
embedding and detection modules into a complete system for 
end user. The application contains a React/Next.ts frontend and 
a Node.js backend interacting with the watermarking engine via 
REST APIs. The backend handles the audio watermark 
embedding/detection procedures, as well as management of files 
and user data. The frontend provides a user-friendly interface to 
allow users of all background easily access the tool.   

The above system-level deployment is not the main 
contribution of the paper but demonstrates the realizability of 
using our watermarking scheme in a real environment. It also 
facilitates end-to-end testing with real user interaction, i.e., the 
watermarking pipeline is not merely theoretically correct but 
practically feasible as well.  

IV. EXPERIMENTAL SETUP 

A. Evaluation dataset  

The dataset used for evaluating the models' performance 
consisted of 100 unseen audio samples, each one minute in 
length: 50 music samples from the Free Music Archive [19] and 
50 speech samples from English public-domain LibriVox [20]. 
Each sample was then watermarked using our trained AudioSeal 
model and the baseline method (hybrid SVD with STFT). To 
assess audio quality, we compared the 100 watermarked audio 
samples against their corresponding non-watermarked original 
using the established comparative metrics. For detection 
evaluation, we applied various edits to the watermarked samples 
to simulate common attacks and then measured detection 
performance using the chosen metrics.  

B. Audio quality assessment  

We evaluate the audio quality of our trained AudioSeal 
model against the baseline hybrid method of SVD and STFT 
using two metrics: Scale-Invariant Signal-to-Noise Ratio 
(SISNR) [21] and Perceptual Evaluation of Speech Quality 
(PESQ) [22] with 100 watermarked samples and 100 original 
samples (non-watermarked).   

SI-SNR is a fidelity metric that measures how much 
distortion is introduced into an audio signal after processing 
[21]. The output is expressed in decibels (dB) and the range is 
unbound. A score of 0 dB means the distortion energy is equal 
to the signal energy, indicating poor quality. Positive values 
between 10 to 20 dB indicate good quality, and values above 20 
dB are considered very high quality. In general, higher SI-SNR 
corresponds to better preservation of the original audio.   



PESQ is an objective perceptual quality metric standardized 
by ITU-T [22]. It estimates how a human listener would rate the 
quality of audio after degradation by watermarking, 
compression, or other edits. PESQ produces scores between –
0.5 and 4.5, with higher values indicating better perceptual 
quality. A score closes to 4.5 reflects transparent audio quality, 
while scores near 1.0 or lower reflect heavily degraded audio.   

C. Detection robustness evaluation  

This section discusses the robustness evaluation of our 
trained AudioSeal model and the baseline hybrid SVD with 
STFT method against various common audio distortions as 
follows:   

• MP3 Compression (32 kbps): The audio samples 
were compressed to a low bitrate of 32 kbps, 
simulating lossy distribution over bandwidth 
limited channels. 

• Resampling (32 kHz): Each sample was resampled 
from 16 kHz to 32 kHz and back to 16 kHz.  

• Speed Change (1.25×): The playback speed of each 
sample was increased by a factor of 1.25.   

• Additive White Gaussian Noise (σ = 0.05): 
Random Gaussian noise was added directly to the 
waveform with a fixed deviation of 0.05.   

• Additive Pink Noise (σ = 0.01): Pink noise with a 
standard deviation of 0.01 was added to the 
waveform.  

Evaluation performance was quantified using the following 
evaluation metrics:  

• Accuracy (Acc): The average of detection success 
on positives (TPR) and success on negatives 
(1FPR). Ranges from 0.0 to 1.0, with higher values 
indicating better overall detection accuracy.  

• True Positive Rate (TPR): Measures the 
watermarked audio correctly identified as 
containing a watermark. Ranges from 0.0 to 1.0, 
with higher values indicating fewer missed 
detections.  

• False Positive Rate (FPR): Measures the proportion 
of non-watermarked audio incorrectly classified as 
watermarked. Ranges from 0.0 to 1.0, with lower 
values indicating fewer false detection.  

• Bit Error Rate (BER): Measures the watermark bits 
incorrectly decoded. Values range from 0.0 to 1.0, 
with lower values indicating higher decoding 
fidelity. 

V. RESULTS AND DISCUSSION 

This section presents and analyzes the experimental results 
obtained from evaluating our custom AudioSeal model against 
the baseline hybrid SVD with STFT method. 

Table Ⅰ shows the comparison between AudioSeal versus 
SVD & STFT in term of audio quality using SI-SNR and PESQ. 

TABLE I.  AUDIO QUALITY ASSESSMENT 

Methods SI-SNR PESQ 

AudioSeal 40.208 4.354 

SVD & STFT 35.225 4.162 

 

 For audio quality assessment, Table Ⅰ shows that our custom 
AudioSeal model outperforms the baseline SVD with STFT 
method in terms of SI-SNR and PESQ. This shows that the 
watermark embedding process brings very minimal perceptual 
distortion. Fig.1 and Fig.2 further support this finding by 
comparing the spectrograms of non-watermarked and 
watermarked sample audio. The overall spectral structure is 
preserved, with only subtle, imperceptible changes which is the 
watermark itself, which can barely be seen as a horizontal line 
in between 4096 to 8192 Hz, confirming that the watermark does 
not noticeably degrade audio quality.  

 

Fig. 1.  Spectrogram of non-watermarked audio, used as a baseline for 
comparison with the watermarked version. 

 

Fig. 2.  Spectrogram of watermarked audio, showing the preserved structure 
even after watermarking. 

Table Ⅱ shows the detection performance of AudioSeal 
model under common audio edits and attacks, including MP3 
compression, resampling, speed change, white noise, and pink 
noise. 

TABLE II.  DETECTION PERFORMANCE OF CUSTOM MODEL UNDER 
COMMON EDITS AND ATTACKS 

 AudioSeal 

Edit/Attacks Acc. TPR/FPR BER 

MP3 0.94 0.89/0.00 0.109 

Resampling 0.96 0.92/0.00 0.093 



 AudioSeal 

Edit/Attacks Acc. TPR/FPR BER 

Speed 0.56 0.22/0.10 0.282 

White Noise 0.91 0.92/0.10 0.088 

Pink Noise 0.97 0.95/0.00 0.089 

 

 Table Ⅲ shows the detection performance of the baseline 
SVD with STFT approach under the same set of audio edits and 
attacks.   

TABLE III.  DETECTION PERFORMANCE OF SVD WITH STFT  UNDER 
COMMON EDITS AND ATTACKS 

 SVD with STFT 

Edit/Attacks Acc. TPR/FPR BER 

MP3 0.76   0.62/0.10   0.228   

Resampling 0.77   0.60/0.11   0.236   

Speed 0.70   0.50/0.12   0.247   

White Noise 0.70   0.55/0.14   0.268   

Pink Noise 0.73   0.58/0.12   0.249  

 

 For robustness assessment, Table Ⅱ and Ⅲ shows that the 
custom model consistently performs better than most common 
audio edits and attacks. The only exception is the Speed edit, 
where the baseline SVD/STFT achieves up to 0.70 accuracy 
compared to only 0.56 for AudioSeal. Figs. 3–7 support these 
results by visualizing the effect of an attack through 
spectrograms. In Figs. 3–5, the aforementioned watermark can 
still be seen and perfectly preserved after the attacks. Note that 
in Figs. 6–7, even though the watermark cannot be seen with this 
form of visualization due to the nature of the attack, the result 
measured in Table Ⅱ still prove the robustness of the watermark 
against them.  

 
Fig. 3.  Spectrogram of the watermarked audio after a MP3 compression attack, 
showing the preserved watermark. 

 

 
Fig. 4. Spectrogram of the watermarked audio after resampling, showing the 
preserved watermark. 

 
Fig. 5.  Spectrogram of the watermarked audio after a speed edit, showing the 
preserved watermark. 

 

Fig. 6. Spectrogram of the watermarked audio after a white noise edit. 

 
Fig. 7. Spectrogram of the watermarked audio after a pink noise edit. 

 For the trade-off, we prioritized the AudioSeal model’s core 
performance: embedding an imperceptible watermark into the 
audio waveform and ensuring reliable detection, extraction, and 
bit decoding from the watermarked audio. Robustness was 
considered secondary and was fine-tuned only after optimizing 
these primary aspects. 

VI. CONCLUSION AND FUTURE WORK 

 Our results show that classical watermarking methods 
generally underperform compared to neural network-based 
approaches such as AudioSeal. Although our implementation of 
AudioSeal was not trained to the fullest extent recommended by 



its developers and in the AudioSeal paper [14], this was 
primarily due to hardware and time constraints. Our experiments 
were limited to a single NVIDIA A100 GPU with 40 GB of 
memory and 250 GB of storage, which restricted the size of the 
dataset we could process and required extensive pilot runs to 
identify hyperparameters and training settings suitable for our 
hardware. Combined with a timeframe of only four months for 
both training and research, these factors prevented us from 
training the model to its full capacity. Nevertheless, the model 
still outperformed classical techniques. This highlights the 
promise of deep learning-based watermarking for enhancing 
voice data protection.   

 While our implementation demonstrates that AudioSeal can 
be adapted under limited hardware and time constraints, future 
work should focus on scaling training to more closely match the 
setup in the AudioSeal paper [14]. Specifically, although our 
model was trained for 100 epochs, the detector network 
continued to show improvements beyond this point, suggesting 
that extended training (120 epochs or more) could further 
enhance performance. Additionally, the hyperparameter 
num_sample (train) was fixed at 35,000 in our experiments 
(compared to the default of 500,000). Since this parameter 
controls the number of training samples drawn per epoch, 
systematically exploring different values may lead to better 
trade-offs between training speed and model performance. 
Finally, leveraging larger computational resources (e.g., multi-
GPU setups) would allow longer training schedules, larger 
datasets, and closer adherence to the AudioSeal setting. These 
directions would help unlock the full potential of the model in 
terms of imperceptibility and robustness. 
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