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Abstract—Continuous and unobtrusive blood pressure (BP)
monitoring is essential for early detection and management of
cardiovascular disorders. However, traditional solutions still rely
on contact-based sensors or intermittent cuff measurements. This
study proposes a deep learning framework for estimating systolic
blood pressure (SBP) and diastolic blood pressure (DBP) using
non-contact continuous-wave radar signals recorded under rest-
ing conditions. The method integrates a rigorous preprocessing
pipeline, including artifact removal, phase reconstruction, feature
normalization, and physiologically informed window extraction,
with a data augmentation strategy designed to increase robust-
ness against variability in radar micro-motion signals. Proposed
one-dimensional Ensemble Enhanced Residual Network (EnE-
ResNet) is developed to jointly regress SBP and DBP from four
radar-derived feature channels (I, Q, phase, and magnitude).
Evaluation on a publicly available resting-state radar dataset
of 30 individuals demonstrates that the proposed approach
achieves accurate BP estimation, with SBP and DBP mean
absolute errors of 5.28 mmHg and 4.52 mmHg, respectively, and
strong correlations with reference measurements. These findings
highlight the potential of integrating radar sensing with deep
learning to enable unobtrusive BP monitoring in future Internet
of Medical Things (IoMT) applications.

Index Terms—Continuous-wave radar; blood pressure estima-
tion; non-contact sensing; deep learning; EnE-ResNet.

I. INTRODUCTION

Continuous and cuff-less blood pressure (BP) monitoring
has become increasingly important in modern healthcare,
especially within the emerging Internet of Medical Things
(IoMT) ecosystem. Conventional cuff blood pressure mon-
itors, although clinically standardized, are discontinuously
measuring, and incapable of capturing cardiovascular dy-
namics rapidly [1]. These limitations motivate research for
non-contact, continuous BP estimation that are both unob-
trusive and scalable. Microwave Doppler radar has recently
gained significant attention as a promising modality due to
its ability to acquire subtle chest-wall displacement, cardiac
vibrations, and blood-flow-related micro-motions. Radar-based
physiological sensing has demonstrated effectiveness in heart
rate, respiration rate, and heart rate variability estimation [2-
3]. Several studies have explored the feasibility of inferring
BP from radar; however, existing approaches commonly rely
on simplified preprocessing, handcrafted features, or direct
mapping techniques that are vulnerable to phase noise, motion

artifacts, and inter-subject variability. Moreover, the complex
and nonlinear relationship between radar I/Q dynamics and
arterial pressure waveforms requires deep feature extraction
mechanisms beyond the capacity of shallow models.

In recent years, deep learning techniques have been in-
creasingly and effectively applied to cuffless blood pres-
sure estimation, demonstrating superior capability in learning
complex and nonlinear physiological relationships [4-6]. Ac-
cordingly, study [7] proposed the Temporal–Spatial Feature
Fusion Network (TSFN) framework for radar signal, which
integrates complementary neural components to enhance es-
timation accuracy. However, achieving clinical accuracy for
radar-based blood pressure estimation remains a challenging
research problem. Major difficulties arise from turbulence,
multipath interference, environmental variability, and inher-
ent inter-individual differences in vascular characteristics [7].
Related works have attempted to address these issues using
advanced filtering, signal decomposition, or domain-specific
transformation, but robust end-to-end BP estimation from
short radar windows remains a challenging problem. Stuty
[8] estimated blood pressure waveforms by proposed the
MultiResLinkNet model, however, this study focused only
on waveform estimation, and the authors concluded that
subsequent research should incorporate a separate pathway
within the framework to approximate BP amplitudes, including
SBP and DBP. Additionally, data augmentation and ensemble
learning, though effective in other biomedical tasks, have been
underexplored in the context of radar-derived BP estimation.

To overcome these limitations, we propose a comprehensive
deep learning framework that integrates robust preprocessing,
feature engineering, and enhanced model design for accurate
SBP and DBP estimation from contactless radar signals.
The method begins with a strict cleaning pipeline, includ-
ing consistency alignment of I/Q channels, removal of non-
finite values, Savitzky–Golay filtering, phase reconstruction,
magnitude derivation, and unified Z-score normalization. A
sliding-window segmentation strategy is applied to extract
physiologically valid radar segments, from which SBP and
DBP are derived via waveform. To address data limitation
and improve model generalization, we incorporate a multi-step
data augmentation combining Gaussian noise injecting, time



shifting, and amplitude scaling. At the core of the proposed
system is an improved ResNet architecture with bottleneck
residual blocks, projection shortcuts, and dropout-enhanced
fully connected layers designed for joint SBP-DBP regression.
Furthermore, an ensemble learning strategy trains multiple
independently shuffled models and aggregates their predic-
tions, thereby mitigating overfitting and enhancing robustness.
Through evaluation, the proposed radar-based BP estimation
framework achieves low Mean Absolute Error (MAE), Root
Mean Square Error (RMSE), and high correlation for both
SBP and DBP, meeting key performance criteria of the
British Hypertension Society (BHS) standard. These findings
demonstrate that the combination of advanced preprocessing,
augmentation, and proposed ensemble-enhanced ResNet (EnE-
ResNet) architecture can significantly improve the reliability
of radar-based BP estimation. The proposed approach con-
tributes to the growing body of research supporting non-
contact, continuous cardiovascular monitoring and highlights
radar sensing as a viable modality for future IoMT-driven
clinical applications.

The remainder of this paper is structured as follows. Section
II provides details of proposed method of EnE-ResNet for
BP estimation. Section III presents the publicly available
datasets and benchmarking metrics used for model evaluation.
Section IV shows the results of proposed method and section
V discusses and concludes the research of radar-based BP
monitoring in healthcare and IoMT sytem.

II. PROPOSED METHOD

The radar system employs a multiplier to mix the oscillator
signal with the reflected, after which a low-pass filter (LPF)
suppresses the high-frequency components, producing the I
and Q channel signals as expressed in equations (1) and (2).
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where d0 denotes the distance at time reference t0; s(t)
is the body wall movement; θ = (−4πvt0/λ) and λ is the
wavelength of the radar’s transmitted signal.

The proposed method aims to estimate systolic and diastolic
blood pressure (SBP and DBP) directly from short sequences
of radar I/Q signals through a unified pipeline that integrates
signal preprocessing, window segmentation, data augmenta-
tion, and a deep residual learning framework enhanced by
ensemble prediction. The diagram of proposed method is
shown in Figure 1.

Raw radar recordings are first subjected to a preprocessing
procedure to ensure signal consistency and robustness. The
in-phase (I), quadrature (Q), and blood pressure (BP) signals
are aligned to a common length, and all non-finite samples are
removed. When BP values are missing, interpolation is applied
to restore continuity in the signal. To attenuate high-frequency
noise while preserving morphological characteristics, I and

Fig. 1. Proposed EnE-ResNet based method for SBP and DBP estimation

Q signals are denoised using a Savitzky–Golay filter. Each
channel is subsequently normalized using Z-score standard-
ization to reduce inter-subject variability and stabilize model
training. From the cleaned I and Q components, two additional
features are derived, the instantaneous phase is computed as
the arctangent of Q over I, and the signal magnitude is obtained
from the Euclidean norm of the I/Q pair, as equations (3) and
(4). These four complementary features capture both geometric
and dynamic properties of the radar signal and constitute the
multi-channel input to the neural network.

φ = atan2 (Qnorm, Inorm) (3)

M =
√
(Inorm + Qnorm) (4)

where Inorm is the normalized in-phase component,
Qnorm denotes normalized quadrature component.

The continuous dataset is then transformed into supervised
learning samples through a sliding-window segmentation strat-
egy. Windows of 1024 samples are extracted, and each window
is evaluated for physiological validity. The SBP and DBP
labels are obtained by taking the maximum and minimum
values of the BP waveform within each window, as shown in
equations (5) and (6). Windows exhibiting unrealistically low
BP variation or falling outside clinically acceptable ranges are
discarded to prevent misleading training signals. This ensures
that only high-quality, physiologically meaningful segments
contribute to model development.

SBPi = max(ABPi) (5)

DBPi = min(ABPi) (6)



Xaugmented = Xoriginal + N (0, 0.02) (7)

SBPfinal(i) = (SBP1(i) + SBP2(i) + SBP3(i)) / 3 (8)

DBPfinal = (DBP1(i) + DBP2(i) + DBP3(i)) / 3 (9)

To further improve model generalization in the presence of
limited radar datasets, a multi-step data augmentation process
is applied. For each window, three augmented versions are
generated through random combinations of Gaussian noise
injection, as equation (7), time shifting of 30 samples, and
amplitude scaling by multiplying with a random coefficient in
the range [0.95, 1.05]. This strategy expands the diversity of
training examples and simulates realistic sources of variability.
As a result, the augmented dataset better reflects the conditions
encountered in real-world radar monitoring.

The core of the proposed framework is an one-dimensional
enhanced Residual Network (ResNet) designed for joint re-
gression of SBP and DBP, as shown in Figure 1. The network
begins with a convolutional stem layer that extracts low-level
temporal features. It then progresses through three residual
stages with increasing filter sizes, each containing bottleneck-
style residual blocks equipped with batch normalization, ReLU
nonlinearities, and shortcut connections. Projections are intro-
duced whenever the dimensionality changes, ensuring stable
feature propagation across layers. After deep temporal rep-
resentation learning, global average pooling aggregates the
learned features, which are then processed through fully con-
nected layers with dropout regularization to reduce overfitting.
The output layer consists of FC(2) for direct simultaneous
prediction of SBP and DBP values, formulated as multi-target
regression Output = [SBP, DBP] ∈ R2.

To enhance prediction stability and reduce model variance,
an ensemble learning strategy is incorporated. Three indepen-
dent networks with identical architectures are trained using dif-
ferently shuffled training data. During inference, the outputs of
all networks are averaged to produce the final BP estimates, as
given in equations (8)-(9). By combining strong preprocessing,
physiologically informed labeling, data augmentation, a deep
residual architecture, and ensemble inference, the proposed
method offers a robust and accurate solution for radar-based
blood pressure estimation. The framework effectively captures
subtle hemodynamic patterns encoded in radar signals while
mitigating the inherent challenges associated with noise, inter-
individual variability, and limited datasets.

III. DATA DESCRIPTION AND METRICS OF
EVALUATION

A. DATA DESCRIPTION

The radar dataset employed in this study comprises raw
CW radar recordings paired with reference arterial blood
pressure waveforms, collected from 30 participants across
five measurement conditions, with a total recording time of
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Fig. 2. Illustration of the data collection arrangement used in the dataset
provided by Schellenberger et al. [9]

approximately 24 hours [9]. From this resource, only the
resting condition was selected, as it offers stable physiological
patterns suitable for training and validating a regression model
without the confounding effects of strong hemodynamic per-
turbations. During the resting-condition measurements, each
subject remained lied comfortably while a 24-GHz continuous-
wave radar captured in-phase (I) and quadrature (Q) signals
corresponding to subtle chest movements. These signals reflect
subtle movements caused by cardiac activity and respiration.
At the same time, a clinical-grade arterial pressure monitor
captured continuous blood pressure waveforms, providing re-
liable reference values for systolic and diastolic pressure, as
illustrated in Figure 2. Precise synchronization between the
radar signal and the arterial blood pressure waveform ensures
beat-to-beat correspondence, which helps train the data-driven
model to learn the relationship between radar-based micro-
motion features and underlying blood pressure dynamics.

B. METRICS OF EVALUATION

The performance of the proposed system was evaluated
using four primary statistical metrics calculated separately
for SBP and DBP. Mean Absolute Error (MAE) measures
average prediction error magnitude in mmHg, as equation (10).
RMSE is more sensitive to large errors due to its squared-
error formulation. Pearson correlation coefficient R assesses
linear relationship strength between predictions and ground
truth, as given as equations (11) and (12). Standard deviation
of error (STD) quantifies prediction consistency. Additionally,
the British Hypertension Society (BHS) standard was applied,
grading performance as A (excellent), B (good), C (accept-
able), or D (inadequate) based on cumulative percentages of



predictions within ±5, ±10, and ±15 mmHg thresholds. Grade
A requires ≥60%, ≥85%, and ≥95% within these thresholds
respectively.

MAE =
1

N

N∑
i=1

|BPpred[i]−BPtrue[i]| (10)
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√√√√ 1

N

N∑
i=1
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where BPpred is the estimated BP by proposed method on
radar. BPtrue is reference BP. N represents the number of test
values.

R =
cov(BPtrue, BPpred)

σtrue.σpred
(12)

where cov denotes covariance and σ represents standard
deviation. R ranges from -1 to 1, with values closer to 1
showing stronger positive linear relationships.

Bias =
1

N

N∑
i=1

(BPtrue[i]−BPpred[i]) (13)

LoA = Bias± 1.96× SDdiff (14)

Bland-Altman analysis was implemented to assess agree-
ment, computing mean bias and limits of agreement (LoA),
where narrow LoA indicates good consistency, as shown in
(13) and (14). For the ensemble model, prediction confidence
was quantified as the standard deviation across three models,
with values lower than 3 mmHg indicating high reliability
and bigger than 7 mmHg suggesting uncertain predictions
requiring verification.

IV. RESULTS

The proposed framework was evaluated on the resting-
state radar dataset after applying the complete preprocessing
pipeline. An example of raw signal can be shown as Figure 3.
A total of 3,809,734 valid samples were retained following
data cleaning, from which 3,241 non-overlapping windows
of 1,024 samples were extracted for model development (479

Fig. 3. Raw signal from radar and reference arterial blood pressure

windows were removed due to non-satisfactory physiological
validity). After augmentation, the training corpus expanded
to 3,564 sequences, which were subsequently divided into
training (n = 6,808), validation (n = 1,458), and test (n =
1,459) sets. The blood pressure values associated with these
sequences exhibited physiologically plausible distributions,
with systolic blood pressure (SBP) averaging 132.9 ± 15.8
mmHg (range 97.2–158.3 mmHg) and diastolic blood pressure
(DBP) averaging 88.4 ± 7.8 mmHg (range 70.1–101.6 mmHg).

The proposed EnE-ResNet model converged reliably during
training, as reflected by steadily decreasing validation RMSE
across epochs. When evaluated on the unseen test dataset,
the ensemble demonstrated strong predictive performance for
both SBP and DBP, as demonstrated in Figures 4 and 5.
The scatter plots showed a strong correlation between the
reference and predicted values, with R = 0.94 and RMSE =
6.99 mmHg for SBP, and R = 0.87 and RMSE = 5.40 mmHg
for DBP, indicating that the model maintained high linearity
and low error over the observed blood pressure range. The data
points were concentrated near the ideal diagonal, reflecting
the model’s ability to track blood pressure variability quite
accurately. The results of MAE are 5.28 mmHg and 4.52
mmHg for SBP and DBP, respectively.

Bland-Altman analysis further confirmed the reliability of
the system as the SBP errors and DBP errors were mainly
distributed within ±1.96 SD of 11 mmHg and 8.8 mmHg re-
spectively. Although the dispersion increased slightly at higher
SBP and DBP levels, this trend was consistent with physiology
and was common in non-invasive blood pressure estimation
studies. The error distributions of both SBP and DBP were
close to normal, with small mean errors (4.16 mmHg for SBP
and 2.96 mmHg for DBP) and acceptable standard deviations,
respectively. This indicates that the model performed stably,
and maintained relatively consistent accuracy across the entire
dataset.

Overall, the results indicate that the proposed model is
capable of consistently and reliably estimating blood pressure
under resting conditions, which meets the requirements for
research on non-invasive blood pressure measurement using
radar signals. Performance of proposed method in comparison
with the BHS grading criteria, as shown in Table 1. For SBP,
56.6% of predictions fell within ±5 mmHg of the reference,
85.4% within ±10 mmHg, and 95.5% within ±15 mmHg.
The corresponding proportions for DBP were 56.7%, 96.6%,
and 100.0%, respectively, indicating that DBP estimation
meets Grade A requirements while SBP estimation approaches
Grade B-A thresholds. Together, these results confirm that the
proposed EnE-ResNet architecture, combined with carefully
engineered preprocessing and augmentation strategies, enables
accurate and reliable non-invasive blood pressure prediction
from CW radar I/Q signals in resting conditions.

Our results demonstrate improved accuracy compared to
previous studies in cuffless blood pressure estimation. The
distributed errors achieved in our study (4.16±5.62 mmHg for
SBP and 2.96±4.52 mmHg for DBP) show better performance
than those reported in study [10] with 5.54±7.62 mmHg



Fig. 4. Evaluation results for SBP estimation, including the correlation plot, Bland–Altman plot, and error distribution histogram

Fig. 5. Evaluation results for DBP estimation, including the correlation plot, Bland–Altman plot, and error distribution histogram

TABLE I
PERFORMANCE OF PROPOSED METHOD IN COMPARISON WITH THE BHS

CRITERION

Method Type within ± 5
(mmHg)

within ± 10
(mmHg)

within ± 15
(mmHg)

BHS Grade A 60% 85% 95%
Grade B 50% 75% 90%
Grade C 40% 65% 85%

Our
results SBP 56.6% 85.4% 95.5% GradeA-B

DBP 56.7% 96.6% 100% GradeA

for SBP and 4.68±6.16 mmHg for DBP. Additionally, our
RMSE values of 6.99 mmHg for SBP and 5.40 mmHg for
DBP indicate enhanced precision compared to study [11],
which achieved an RMSE of 7.13 mmHg for continuous
blood pressure amplitude estimation. Furthermore, the Pearson
correlation coefficients obtained in our study (R=0.94 for SBP
and R=0.87 for DBP) demonstrate stronger linear relationships
between predictions and ground truth values than those re-
ported in study [12] (R=0.838 for SBP and R=0.797 for DBP).
These improvements suggest that our proposed EnE-ResNet
based approach more reliable blood pressure estimation across
both SBP and DBP measurements.

V. DISCUSSION

This study demonstrates that DBP estimation showed higher
correlation and lower prediction error than SBP. This suggests
that DBP is less sensitive to short-term mechanical distur-
bances and rapid cardiovascular changes, and therefore can be
estimated more reliably from radar-based signals. The stable

Fig. 6. Hardware architecture integrating non-contact radar sensing and
reference contact sensors for multimodal physiological data acquisition in
our Laboratory



Fig. 7. Summary of our achieved system capabilities and future objectives,
including real-time vital-sign monitoring and planned enhancements for blood
pressure estimation

performance observed on the test sequences further highlights
the effectiveness of the proposed preprocessing and data aug-
mentation strategies. The removal of unstable signal segments,
enforcement of physiological constraints, and expansion of
the training distribution via noise injection and temporal
shifting substantially enhanced model robustness. Moreover,
the ensemble learning strategy helped reduce model variance
and mitigate overfitting, which is particularly beneficial given
the limited size of the available dataset.

Despite these promising outcomes, several limitations must
be acknowledged. First, the study relied on resting-condition
recordings, where subjects remained relatively motionless.
While this choice ensured cleaner training data and reduced
confounding variables, it does not fully reflect real-world
circumstance in daily activities, where motion artifacts and
changes in posture can significantly influence radar signatures.
Second, the dataset originates from a controlled environment
with a moderate number of participants; thus, the diversity
of physiological patterns is limited. Broader population stud-
ies, including individuals with hypertension or cardiovascular
abnormalities, would be necessary to evaluate clinical appli-
cability. Additionally, radar signals are inherently sensitive to
small positional changes and surrounding reflectors. Although
data augmentation partially mitigates these effects, personal-
ized calibration strategies may be required for deployment in
uncontrolled environments.

VI. CONCLUSION

In conclusion, this work provides evidence that CW radar-
based contactless blood pressure estimation is feasible and
effective when combined with an appropriately structured deep
learning framework. The proposed preprocessing pipeline,
ensemble-based residual network architecture, and physiologi-
cally informed design collectively enable robust estimation of
SBP and DBP under resting conditions, without direct skin
contact.

Our future work will focus on developing a hardware system
that integrates both a non-contact radar sensor and reference
contact-based sensors to enable large-scale data acquisition

from healthy individuals and patients with cardiovascular con-
ditions. Figure 6 illustrates the hardware prototype currently
being refined by our research group, while Figure 7 summa-
rizes the results achieved to date and the long-term objectives
of the project. Notably, real-time measurement of non-contact
vital signs, such as respiration rate, heart rate, and heart rate
variability, has already demonstrated promising performance,
and these results have been transmitted to clinicians through a
real-time URL-based interface. The next phase of development
will emphasize advancing vital sign estimation, particularly for
blood pressure. Once the predictive models reach clinically
acceptable accuracy, we will explore strategies to optimize
the model structure to ensure efficient real-time deployment
within IoMT applications.
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