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Abstract—Reliable target detection in phase-modulated
continuous-wave (PMCW) radar systems relies on the formation
of high-resolution range-Doppler (RD) maps. However, the use of
1-bit analog-to-digital converters (ADCs) for high-rate sampling
in PMCW radar systems retains only the sign information of the
received signal, resulting in a loss of amplitude information. This
quantization process introduces severe noise across the entire
RD map, thereby degrading target detection performance. In
this paper, we propose a U-Net-based deep learning network
to reconstruct high-quality RD maps from noise-distorted RD
maps obtained using 1-bit ADCs in PMCW radar systems. The
network is trained using paired datasets consisting of noise-
distorted RD maps and corresponding refined RD maps, where
the refined maps are generated using a kurtosis-based filtering
algorithm. The proposed method effectively mitigates nonlinear
distortions that cannot be corrected by conventional fast Fourier
transform (FFT) and windowing-based processing. Specifically,
the proposed method achieves a peak sidelobe level (PSL) of
—46.19 dB and a signal-to-interference-plus-noise ratio (SINR) of
—23.14 dB, improving PSL by 31.5 dB and SINR by 13.2 dB over
conventional 1-bit FFT processing. In addition, it outperforms
the multi-bit ADC-based FFT processing by 18.35 dB in PSL.
These results demonstrate that the proposed method effectively
enhances target detection performance in PMCW radar systems
using 1-bit ADCs.

Index Terms—1-bit analog-to-digital converter (ADC), deep
neural networks, phase-modulated continuous-wave (PMCW)
radar systems, quantization artifact suppression.

I. INTRODUCTION

Integrated sensing and communication (ISAC) has been
widely recognized as a key enabler for sixth-generation
wireless networks [1]. Among various candidate wave-
forms for ISAC systems, phase-modulated continuous-wave
(PMCW) radar has attracted significant attention [2]. Com-
pared to conventional frequency-modulated continuous-wave
radar, PMCW offers flexible code design, strong robustness
against mutual interference, and seamless compatibility with
multiple-input multiple-output configurations [3]. Specifically,
the adoption of well-designed pseudorandom binary sequences
(PRBSs) allows PMCW systems to achieve a sharp mainlobe
and significantly low sidelobes levels in the range domain [4].
In addition, code-domain processing inherent to PMCW nat-
urally supports multi-user operation and efficient coexistence
with communication signals. These properties make PMCW
particularly attractive for autonomous driving radar platforms,

where scalability and reliable operation in interference limited
environments are essential.

Despite these advantages, practical deployment of PMCW
radar faces stringent hardware constraints. PMCW transmits
digitally modulated sequences whose chip rate equals the
waveform bandwidth. The receiver must therefore sample the
incoming signal at rates ranging from several hundred MS/s to
multiple GS/s. Such high sampling rates significantly increase
power consumption and system cost, which makes multi-
bit analog-to-digital converter (ADC) difficult to integrate
into embedded automotive platforms. These constraints have
motivated the use of 1-bit ADC for hardware simplification.
However, 1-bit quantization discards amplitude information
and introduces nonlinear distortions, which result in elevated
sidelobes and structural artifacts in the range-Doppler (RD)
domain. Crucially, the loss of amplitude information hinders
the sharpening of correlation peaks in the RD domain, mak-
ing it difficult to distinguish target mainlobes from elevated
quantization-induced sidelobes. Consequently, the presence of
strong scattering objects degrades the detectability of low radar
cross section (RCS) targets and the effective dynamic range.

Existing studies have explored various strategies to mitigate
the performance degradation caused by 1-bit quantization.
For example, joint optimization of transmission codes and
reception filters has been proposed to enhance autocorrelation
properties, while classical windowing is applied to the received
signal prior to fast Fourier transform (FFT) operations to
mitigate spectral leakage [5], [6]. Recently, learning-based
methods have also been investigated to enhance RD maps
directly from quantized measurements [7]. Specifically, joint
transmit-receive optimization ensures a refined correlation
response with minimized sidelobe levels prior to the quan-
tization process. However, nonlinear artifacts such as sidelobe
regrowth and noise floor elevation persist after quantization
and cannot be suppressed by design-based or linear processing
methods alone. Although learning-based approaches are in
principle capable of addressing nonlinear distortions, many
existing networks are trained using simplified supervisory
signals that fail to capture the distortion characteristics of
1-bit quantized RD maps. As a result, these methods show
limited capability in handling nonlinear artifact patterns ob-
served under practical operating conditions. These limitations
become more pronounced in high dynamic range or multi-



target scenarios.

In this paper, we propose a learning-based restoration
method that recovers high-quality RD maps from single 1-
bit PMCW measurements. A key observation is that kurtosis-
refined RD maps provide structurally faithful supervision
for the network. By exploiting the highly non-Gaussian and
impulsive nature of 1-bit quantization artifacts, kurtosis serves
as a robust statistical metric to distinguish nonlinear distortions
from legitimate target returns. The U-Net is trained using
these refined maps as the ground truth, enabling the network
to effectively suppress Doppler sidelobe regrowth and noise
floor elevation while preserving target peak morphology. The
proposed method operates directly on distorted 1-bit RD maps
without requiring additional hardware complexity and general-
izes across varying ranges, Doppler values, transmit sequences,
and multi-target scenarios. These capabilities enable practical
deployment of 1-bit PMCW radar by providing reliable RD
restoration while retaining its power and cost advantages for
automotive systems.

II. RADAR SIGNAL PROCESSING OF SISO-PMCW
SYSTEMS

A. Transmitted and Received Signal Model

The PMCW radar system transmits continuous waves that
are phase-modulated based on a PRBS. The transmitted signal
consists of M pulses, where each pulse contains a code se-
quence of length V.. The transmitted signal can be expressed
as
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where ¢[n] € {+1,—1} and f. denote the PRBS symbol of the
n-th chip and the carrier frequency, respectively. In addition,
T.,T(= N.T.), and I1(-) represent the chip duration, the pulse
repetition interval (PRI), and the unit rectangular function,
respectively.

When the transmitted signal is reflected from a point target
located at range R with radial velocity v, the received signal
undergoes a propagation delay and a Doppler frequency shift.
The round-trip delay exhibits time-varying characteristics due
to the relative motion between the radar and the target, which
can be expressed as
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where Ry, To(= 2Rg/c), and ¢ denote the initial range, the
initial round-trip delay, and the speed of light, respectively.
The Doppler frequency induced by the relative motion is given
by
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Based on these parameters, the signal reflected from the
target and arriving at the receiving antenna can be expressed
as
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SRx(t) = OéSTx(t — T(t)), (4)

where « is a complex coefficient that accounts for path loss
and target RCS. The received signal is down-converted to
baseband by mixing with the local oscillator signal e 727 fet,
The resulting intermediate frequency signal can be expressed
as
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The phase term —27 f.7(t) can be expanded as
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where ¢9 = —2wf.79 denotes the initial phase due to the
target range. After applying a low-pass filter, the baseband
signal becomes
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where d(= |70/T¢]) and mod(-) denote the delay index in
chip units and the modulo N, operation, respectively.

The baseband signal is then sampled with sampling period
T = T,. At the sampling instant £ = mT 4 nT, the discrete-
time signal can be expressed as

s[n, m] = ae’®c[mod(n — d, N,)] e?27fanTe gi2nfamT —(g)

where n (n =0,1,...,N.—1)andm (m=0,1,..., M —1)
denote the fast-time and slow-time indices, respectively. Here,
the intra-pulse term e/27fa"Te represents the phase rotation
within a single pulse, which can degrade the code correlation
performance. In contrast, the inter-pulse term e727femT rep-
resents the phase change between pulses, which is used for
velocity estimation.

B. I-bit ADC

To reduce hardware complexity and power consumption, the
full-resolution samples can be replaced by 1-bit quantization.
Unlike conventional multi-bit ADC that preserve amplitude
information, the 1-bit ADC retains only the sign of the signal
by applying the signum function to both the real and imaginary
parts. The quantized signal can be expressed as

S1it[n, m] = sgn(R{s[n, m]}) + jsgn(S{s[n,m]}), ()

where the signum function is defined as
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C. Range and Velocity Estimation

To extract range and velocity information, a two-stage
processing is performed. First, range estimation is achieved
by computing the circular correlation between the quantized



signal and the reference code sequence for each pulse. The
correlation output can be expressed as
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where k (k=0,1,..., K —1) and (-)* denote the range bin
index and the complex conjugate, respectively. A correlation
peak occurs at k = d, which corresponds to the target range.
Subsequently, velocity estimation is performed by applying
the discrete Fourier transform (DFT) along the pulse axis. The

DFT output is given by
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where ¢ (¢ =0,1,...,Q — 1) denotes the Doppler bin index.
Here, K and @) represent the number of range and Doppler
bins, respectively. The magnitude of RD map is defined as

Slk,q) = ‘X1-bit[k»(ﬂ|,

and targets are detected by identifying peaks S[k,q| that
exceed a predefined threshold.

However, 1-bit quantization introduces nonlinear distortions
such as elevated noise floor and sidelobe spreading in the
RD map. A conventional approach to mitigate these artifacts
is to apply a window function to the slow-time samples
before the Doppler FFT [8]. The window function smooths
the signal transition at the boundaries of the observation
window, effectively suppressing spectral leakage caused by
abrupt signal truncation. This windowing operation reduces
the sidelobe levels in the Doppler spectrum at the cost of
slight Doppler mainlobe broadening. In this paper, a three-term
Blackman window is adopted as a baseline method due to its
effective sidelobe suppression capability, which is defined as
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where ag, a1, and as are the standard Blackman window co-
efficients and m denotes the pulse index for 0 < m < M. By
applying this window to the correlation output, the windowed
DFT output can be expressed as
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The windowing operation is a linear process that reshapes
the spectral response by smoothing the abrupt edges of the
observation interval. Therefore, it is effective in suppress-
ing sidelobes caused by spectral leakage, which is also a
linear phenomenon. However, 1-bit quantization inherently
introduces nonlinear distortions, such as harmonic generation
and intermodulation, which cannot be mitigated by linear
operations. Therefore, we employ a learning-based approach
to directly learn and suppress the nonlinear distortions caused
by 1-bit quantization.

III. PROPOSED RD MAP RECONSTRUCTION METHOD
A. Architecture of Proposed Neural Network

In 1-bit PMCW radar, sign-based quantization discards the
true amplitude structure and relatively amplifies unwanted
components such as leakage, sidelobes, and noise floor. Be-
cause amplitude information is irreversibly lost during quan-
tization, the inherent autocorrelation properties of the PMCW
sequence can no longer be preserved. As a result, the target
structure in the RD response is attenuated, while distortion
components emphasized by 1-bit quantization appear more
prominently. Linear signal processing techniques such as win-
dowing cannot restore amplitude information already lost dur-
ing 1-bit quantization, which limits their ability to reconstruct
the original RD response.

To overcome these limitations, we propose an end-to-end
deep learning network that directly generates a refined and
target-preserving RD map from a single 1-bit PMCW mea-
surement. The proposed network follows an image translation
framework based on the U-Net architecture and is trained
to approximate the refined RD representation produced by
an adaptive kurtosis-based filtering algorithm. This approach
enables the network to learn nonlinear distortion patterns
inherent to 1-bit quantization while preserving meaningful
target responses.

The network adopts an encoder-decoder configuration con-
sisting of three downsampling layers and three corresponding
upsampling layers. The overall architecture of the proposed
network is illustrated in Fig. 1. As the distorted 1-bit RD
map passes through the encoder, the network progressively ex-
tracts hierarchical spatial features and suppresses background
fluctuations. The bottleneck layer produces a compact latent
representation that separates target components from distor-
tion artifacts. The decoder then reconstructs a high-resolution
RD map from this representation. To preserve spatial details
that may be lost during downsampling, skip connections
are employed between corresponding encoder and decoder
layers. These connections maintain the continuity of mainlobe
and sidelobe structures, prevent oversmoothing, and enable
accurate peak reconstruction. The proposed network employs
the rectified linear unit (ReLLU) as the activation function. The
network was trained with a batch size of 8, and early stopping
was applied to prevent overfitting by terminating training after
four consecutive epochs without improvement in validation
loss.

B. Training Data Generation

To train the proposed network, 1,000 image pairs are
generated. Each pair consists of a distorted 1-bit RD map and
a corresponding cleaned RD map obtained by kurtosis-based
filtering. To ensure robust generalization, the dataset covers
various signal-to-noise ratio (SNR) levels, target scenarios,
ranges, and velocities. The cleaned RD map is generated
by applying a target-preserving refinement procedure to the
complex-valued 1-bit RD map Xj-pi;. This procedure sup-
presses non-ideal components using adaptive kurtosis-based
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Fig. 1.

detection. For each Doppler bin g, let x,; denote the magnitude
along the range dimension of Xj.p;;. A bin is identified
as a target candidate if its sample kurtosis KC(x,) exceeds
an adaptive threshold and its peak magnitude surpasses the
estimated noise floor 7. To mitigate sidelobes, a power-based
iterative suppression is applied, removing weaker candidates
sharing the same range or Doppler bin as a dominant target.

The surviving target pixels form a mask 7, which is
morphologically dilated to define a protection region. The
protection region can be expressed as

P=ToS, (16)

where @ denotes the morphological dilation operator and S
denotes a 6 x 4 rectangular structuring element. The cleaned
RD map is then generated by clipping the magnitude of pixels
outside P at the noise floor while leaving the phase unchanged.
The magnitude of the cleaned RD map is given by

|Xclcan| =U © ‘Xl-bit‘ + (1 - U) © min(‘Xl-bith) ) (17)

where © and U denote the Hadamard product and the binary
protection mask derived from P, respectively. The cleaned RD
map Xclean serves as the ground-truth (GT), paired with the
original distorted RD map Xt as the network input.

C. Loss Function

Let F'(-) denote the proposed network. Given a distorted 1-
bit RD map S as input, the network produces a reconstructed
RD map S = F(S). The network is trained using a weighted
combination of mean squared error (MSE) losses, which can
be expressed as

1 1
L= §£MSE + gﬁpeab (18)
where Lysg and Lpeai denote the standard MSE loss and the

peak-weighted MSE loss, respectively. The standard MSE loss
is given by

Clean“iw (19)
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Architecture of proposed neural network for RD map reconstruction.

and the peak-weighted MSE loss is given by

L HW @ S Xclean (20)

o = s I
where || - || denote the Frobenius norm. In addition, W is a
weighting matrix that assigns larger values to pixels exceeding
a predefined threshold, and K and () denote the dimensions
of the RD map. This weighting scheme emphasizes accurate
reconstruction of target peaks while maintaining overall back-

ground fidelity.

D. Inference Process

During inference, the input image is generated from the
complex-valued RD map obtained through the 1-bit PMCW
signal-processing chain. The complex RD map is first con-
verted to magnitude and then transformed into the dB scale.
The resulting values are clipped to a dynamic range of [—50, 0]
dB and normalized to [0, 1] to form a single-channel 256 x 256
image. Since the RD map has a size of 255 x 256, zero-padding
is applied to match the network input dimensions. This nor-
malized image is fed into the trained network, which outputs
a restored RD map in which quantization-induced distortions
are suppressed while preserving the spatial structure of true
targets.

IV. PERFORMANCE EVALUATION
A. Qualitative Evaluation

To evaluate the performance of the proposed method, we
conducted simulations for a scenario with two targets located
at ranges of 70 m and 30 m with velocities of 120 m/s and
—100 m/s, respectively. The detailed specifications of the radar
system used in the simulations are summarized in Table 1.

Fig. 2 presents a qualitative comparison of RD maps ob-
tained using different signal processing methods. Fig. 2 (a)
shows the RD map generated by an adaptive kurtosis-based
filtering algorithm. By exploiting the non-Gaussian statistical
characteristics of target responses, this algorithm effectively
isolates target components from background noise and distor-
tions. Therefore, the resulting refined RD map is used as the
GT reference for training and evaluation.
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Fig. 2. RD maps for two targets at 10dB SNR under different processing configurations: (a) GT generated by adaptive kurtosis-based cleaning, (b) 1-bit
ADC with FFT, (c) 1-bit ADC with Blackman window, (d) multi-bit ADC with FFT, (e) multi-bit ADC with Blackman window, and (f) proposed method.

TABLE I
SPECIFICATIONS OF THE PMCW RADAR SYSTEM USED IN SIMULATIONS
Parameter Value
Carrier frequency, fc 77 GHz
Chip rate, R. 0.5 GHz
Sequence length, No = 2™ —1 | 255 (m = 8)
Number of pulses, M 256
PRI 510 ns
Range resolution, Rres 0.30 m

Fig. 2 (b) shows the RD map obtained directly from 1-
bit ADC measurements using conventional FFT processing.
As shown in the figure, the RD map exhibits a significantly
elevated noise floor and sidelobe artifacts along both the range
and Doppler axes. To mitigate these artifacts, a Blackman
window is applied along the Doppler axis prior to the FFT,
as shown in Fig. 2 (c). While the windowing operation
partially reduces sidelobes in the Doppler domain, substantial
sidelobes and background artifacts in the range domain still
remain. This result highlights that windowing techniques are
insufficient to address the nonlinear distortions introduced by
1-bit quantization.

For comparison, Figs. 2 (d) and (e) present the RD maps

obtained using a conventional multi-bit ADC without and
with Blackman windowing, respectively. Although multi-bit
quantization preserves amplitude information and avoids the
severe distortions observed in 1-bit systems, these results
are still subject to inherent sidelobe levels determined by
the autocorrelation properties of the PRBS and the spectral
characteristics of the window function.

Finally, Fig. 2 (f) shows the RD map reconstructed by
the proposed method. The proposed network successfully
suppresses the noise floor and sidelobes in along both the
range and Doppler dimensions, producing a result that closely
resembles the GT shown in Fig. 2 (a). Overall, the qualitative
results in Fig. 2 confirm that the proposed method overcomes
the limitations of conventional linear processing methods and
enables reliable RD map reconstruction in 1-bit PMCW radar
systems, providing improved target visibility and resolution in
both range and Doppler domains.

B. Quantitative Evaluation

To quantitatively assess the reconstruction performance, we
employed four widely adopted metrics, namely peak side-
lobe level (PSL), integrated sidelobe level (ISL), signal-to-
interference-plus-noise ratio (SINR), and SINR gain [7].



The PSL measures the ratio between the strongest sidelobe
and the mainlobe peak, which can be expressed as

PSL(X1-pit) = 201log, (I?Q;((S[kﬂ])> - @h
The ISL quantifies the total sidelobe energy relative to the
mainlobe energy, which is given by

M-1

> (Slk,q)?

q=0,9#4

ISLk (Xl-bit) =20 logm (22)

The SINR evaluates target detectability by measuring the ratio
of the mainlobe peak power to the total power of sidelobes
and background noise. Let Pyignal, Pridelobe, and Pise denote
the power of the target mainlobe, sidelobe components, and
thermal noise, respectively. Then, the SINR can be expressed
as

SINR = 101log;, ( (23)

P, signal )
Psidelobe + Pnoise
Finally, the SINR gain quantifies the performance improve-
ment relative to the multi-bit ADC with FFT, which is defined
as

ASINR = SINRmethod - SINRref; (24)

where SINRethoq and SINR..s denote the SINR obtained
using the corresponding processing method under evaluation
and a multi-bit ADC with conventional FFT processing, re-
spectively.

The quantitative performance metrics for each method are
summarized in Table II. First, the results show that RD maps
obtained using 1-bit ADC measurements suffer from severe
performance degradation compared to the multi-bit ADC base-
line. Specifically, both the 1-bit ADC with FFT and the 1-
bit ADC with Blackman windowing exhibit an SINR loss of
approximately 8.2 dB relative to the multi-bit ADC with FFT.
This result indicates the inherent limitations of conventional
linear processing techniques in mitigating the severe nonlinear
distortions induced by 1-bit quantization. In contrast, the
proposed method achieves substantial improvements across all
evaluation metrics. Compared to the 1-bit ADC with FFT,
the proposed method achieves a PSL of —46.19 dB and
an ISL of —23.14 dB, corresponding to improvements of
31.5 dB in PSL and 15.96 dB in ISL, respectively. More
notably, the proposed method outperforms even the multi-
bit ADC with FFT, achieving an 18.35 dB improvement in
PSL and a 4.94 dB gain in SINR. This demonstrates that
the learning-based approach effectively suppresses nonlinear

TABLE II
PERFORMANCE COMPARISON OF RD MAP PROCESSING METHODS
PSL ISL SINR | SINR gain
Method @ | @B | @) | (@b
1-bit ADC with FFT -14.69 -7.18 9.79 -8.26
1-bit ADC with Blackman -12.15 -8.30 9.81 -8.24
Multi-bit ADC with FFT -27.84 | -22.41 18.05 0
Multi-bit ADC with Blackman | -26.49 -9.97 18.99 0.94
Proposed method -46.19 | -23.14 | 22.99 4.94

quantization artifacts beyond the capabilities of conventional
signal processing methods, enabling reliable target detection
in 1-bit PMCW radar systems.

V. CONCLUSION

In this paper, we proposed a deep learning-based method to
reconstruct high-quality RD maps for 1-bit quantized PMCW
radar systems. While 1-bit quantization offers significant
advantages in power efficiency and hardware simplicity, it
introduces severe nonlinear distortions in the RD domain,
which degrade target detection performance. To address this
challenge, we developed a U-Net architecture trained using
paired datasets consisting of distorted RD maps and cor-
responding refined RD maps. The refined RD maps were
generated using an adaptive kurtosis filtering algorithm, which
enabled supervised training without the need for manual
annotation. Simulation results demonstrated that the proposed
method effectively suppressed nonlinear distortions, outper-
forming not only conventional windowing-based processing
for 1-bit ADCs but also multi-bit ADC-based processing.
These results confirmed that the proposed method enabled
reliable target detection in 1-bit PMCW radar systems while
maintaining their inherent advantages in power efficiency and
cost effectiveness.

ACKNOWLEDGMENT

This work was supported by the National Research Foun-
dation of Korea (NRF) grant funded by the Korea government
(MSIT) (No. RS-2024-00405510).

REFERENCES

[1] W. Zhou, R. Zhang, G. Chen, and W. Wu, “Integrated sensing and
communication waveform design: A survey,” IEEE Open Journal of the
Communications Society, vol. 3, pp. 1930-1949, Oct. 2022.

[2] H. Ma, “Integrated sensing and communication - The ISAC technology,”
2024 IEEE 2nd International Conference on Sensors, Electronics and
Computer Engineering (ICSECE), Jinzhou, China, Aug. 2024, pp. 225-
229.

[3] A. Bourdoux et al, “PMCW waveform and MIMO technique for
a 79 GHz CMOS automotive radar,” 2016 IEEE Radar Conference
(RadarConf), Philadelphia, PA, USA, May 2016, pp. 1-5.

[4] C. Park, J.-H. Park, T. Jeong, J. Joung, and S. Lee, “Efficient frame
structure design of PMCW radar based on Golay sequence in 802.11ad
preamble,” IEEE Internet of Things Journal, vol. 12, no. 24, pp. 53177—
53188, Dec. 2025.

[5] F. Foroozmehr, M. Modarres-Hashemi, and M. M. Naghsh, “One-bit
PMCW radar: Designing binary transmit code and receive filter via a
worst-case approach,” IEEE Transactions on Vehicular Technology, vol.
73, no. 12, pp. 19774-19779, Dec. 2024.

[6] M. Bauduin and A. Bourdoux, “Impact of phase noise on FMCW
and PMCW radars,” 2023 IEEE Radar Conference (RadarConf23), San
Antonio, TX, USA, May 2023, pp. 1-6.

[71 Y. Wang, J. Li, and P. Stoica, “GAN-based range-Doppler map restora-
tion for one-bit PMCW automotive radar,” IEEE Transactions on Vehic-
ular Technology, vol. 72, no. 8, pp. 98769889, Aug. 2023.

[8] X. Shang, H. Zhu, and J. Li, “Range-Doppler imaging via one-bit
PMCW radar,” 2020 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), Barcelona, Spain, May 2020,
pp. 4702-4706.



