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Abstract—In this paper, we propose a memory-efficient one-
dimensional (1D) neural network to mitigate interference gener-
ated by phase-modulated continuous-wave signals in frequency-
modulated continuous-wave radar systems. The coexistence of
heterogeneous automotive radar systems operating in overlap-
ping frequency bands leads to significant mutual interference.
Recently, deep learning-based techniques have been proposed
to suppress interference in range-Doppler (RD) maps, owing to
their effectiveness in handling complex and diverse interference
patterns. However, existing deep learning approaches using two-
dimensional (2D) convolutional neural network (CNN) generally
process the entire RD map as input, leading to quadratic growth
in memory usage as the size of RD map increases. To address this
issue, we propose a line-wise processing approach in which each
range-bin slice of the RD map is independently restored by a
1D neural network. The proposed architecture maintains nearly
constant peak GPU memory (PGM) usage regardless of the size of
RD map. Simulation results demonstrate that the proposed model
achieves interference suppression performance comparable to a
2D CNN-based method, with an average difference in masked
peak signal-to-noise ratio within 0.7 dB. At the same time,
the proposed model significantly reduces memory requirements.
Specifically, for an RD map of size 256 x 256, the proposed model
reduces PGM usage by 85.89% compared to the 2D CNN-based
approach.

Index Terms—Automotive radar, deep learning, frequency-
modulated continuous-wave (FMCW), interference suppression,
phase-modulated continuous-wave (PMCW).

I. INTRODUCTION

The evolution of autonomous driving systems necessitates
not only high-resolution environmental perception but also
robust vehicle-to-everything communication capabilities. To
address these dual requirements efficiently within constrained
resources, integrated sensing and communication (ISAC) sys-
tems have emerged as a key solution that integrates both
sensing and communication functionalities within a single
platform [1]-[3]. Among various waveform candidates for
ISAC systems, phase-modulated continuous-wave (PMCW)
has been recognized as a promising solution due to its ability
to effectively separate sensing and communication signals.
However, when PMCW-based ISAC systems are deployed in
practical automotive environments, they are likely to coexist
with frequency-modulated continuous-wave (FMCW) radars,

which are already widely adopted in commercial vehicles.
This coexistence of heterogeneous radar systems operating in
overlapping frequency bands results in mutual interference [4].
In the FMCW radar receiver, such interference is combined
with the desired target echo signals, introducing additional
noise-like components that degrade the accuracy of the target
detection.

In response to these challenges, deep learning-based inter-
ference mitigation techniques have recently gained attention.
These approaches are particularly effective in handling com-
plex interference patterns that arise in practical radar systems.
Generally, existing deep learning methods directly suppress
interference in the range-Doppler (RD) map, enabling ef-
fective preservation of target information while mitigating
interference [5], [6]. However, directly processing the entire
two-dimensional (2D) RD map entails substantial memory
consumption, which makes conventional 2D deep learning
architectures difficult to deploy on resource-constrained au-
tomotive edge hardware. This limitation becomes even more
pronounced as modern radar systems increasingly demand
larger RD maps (e.g., 2048 x 2048) for precise sensing.
Therefore, this paper proposes a lightweight deep learning-
based interference mitigation model that avoids the excessive
memory demands of conventional 2D processing. Instead of
directly processing the entire 2D RD map, the proposed model
decomposes it along the Doppler dimension and independently
processes each one-dimensional (1D) range-bin vector using
a compact 1D neural network. This line-wise architecture
substantially reduces memory consumption while preserving
target information, making it well-suited for real-time on-
device deployment in automotive radar systems.

II. SIGNAL MODEL AND INTERFERENCE ANALYSIS

A. Signal Model of Received Signals

An FMCW radar transmits a linear frequency-modulated
chirp, which is reflected by the target and received back at the
radar. By dechirping the received signal, the resulting baseband



signal at time ¢ can be expressed as
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where ny, N, A.(ny), K, 7(ne, t), f., and B denote the
target index, the total number of targets, the amplitude of the
received echo from the n.-th target, the chirp slope, the round-
trip propagation delay of the n,-th target at time ¢, the center
frequency, and the bandwidth, respectively. Here, the round-
trip propagation delay is given by
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where R(n:), v(n;), and ¢ denote the range of the n;-th target,
the relative velocity of the n,-th target, and the speed of light,
respectively. In addition,the amplitude of the received echo is
derived from the radar equation, which can be expressed as
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where P;, Gy, G, A, and o denote the power of the transmitted
signal, the gain of the transmitting antenna element, the gain of
the receiving antenna element, the wavelength, and the radar
cross section of the n,-th target, respectively.

Now, we consider the case where a PMCW interference
signal enters the receiver of an FMCW radar system. The
received PMCW interference signal with a time delay 71 can
be expressed as
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where A;, np, Np, cnp, 15, and f. 1 denote the amplitude
of the interference signal, the chip index, the total number
of chips, the binary phase modulation symbol of the np-th
chip, the chip duration, and the center frequency of the inter-
ference signal, respectively. This PMCW interference signal
undergoes a dechirping process at the FMCW radar receiver,
which includes mixing with the transmitted FMCW signal and
subsequent low-pass filtering. This process can be expressed
as
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The dechirped baseband signal of the PMCW interference can
be expressed as
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Consequently, the total signal at the FMCW radar receiver
is the sum of the desired FMCW baseband signal and the
dechirped PMCW interference, which can be expressed as
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This signal is then converted into a discrete-time signal using
an analog-to-digital converter, which can be expressed as
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where n, m, T,, and T denote the fast-time index, the slow-
time index, the fast-time sampling interval, and the chirp du-
ration, respectively. Subsequently, a 2D fast Fourier transform
is applied to obtain the RD map, which is computed as
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where r, d, N, and N denote the range bin index, the Doppler
bin index, the number of chirps per frame, and the number of
fast-time samples per chirp, respectively.
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B. Impact of PMCW Interference Source on FMCW Receiver

To examine the impact of interference on the RD map, a
simple scenario is configured as shown in Fig. 1, where an
FMCW radar-equipped vehicle observes two target vehicles.
The target vehicles are located at ranges of 50 m and 60 m
from the radar-equipped vehicle, with relative velocities of -
30 m/s and 10 m/s, respectively. The radar parameters used in
this scenario are summarized in Table I. Fig. 2 presents the RD
maps generated through the aforementioned signal processing
steps. Fig. 2 (a) shows the RD map without interference, where

PMCW radar-equipped interferer

Target signal
FMCW

radar-equipped vehN (

Fig. 1. Scenario for analyzing the impact of PMCW interference on an FMCW
radar—equipped vehicle.




TABLE I
SIMULATION PARAMETERS FOR FMCW AND PMCW SYSTEMS

Parameter FMCW PMCW
Center frequency 77.125 GHz | 77 GHz
Bandwidth 250 MHz 1 GHz
Pulse repetition interval 10 us 4.09 us
Number of fast-time samples 256 1023
Number of slow-time samples 256 2503
Sampling duration 39.06 ns 1 ns
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Fig. 2. The RD maps in the FMCW system: (a) without the interference and
(b) with the PMCW interference.

the target peaks are clearly distinguishable. In contrast, Fig. 2
(b) shows the RD map with PMCW interference at a signal-to-
interference ratio (SIR) of -10 dB. As shown in the figure, the
wideband interference elevates the overall noise floor, which
degrades the detectability of weak target signals.

III. PROPOSED INTERFERENCE MITIGATION MODEL

To mitigate the PMCW interference, we propose a
lightweight 1D convolution neural network (CNN) that inde-
pendently processes each range line of the RD map. Each
input range line of length L is represented by two chan-
nels corresponding to the real and imaginary components
of the complex-valued signal. The model processes each
vector individually to produce a restored output with the same
dimensions, and the final reconstructed RD map is obtained
by assembling all restored range lines along the Doppler axis.

A. Architecture of Proposed Network

As shown in Fig. 3, the proposed model processes each
range line in three main stages. First, an input projection
layer expands the channel dimension from 2 (i.e., real and
imaginary components) to 64 using a convolution layer (Conv)
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Fig. 3. Architecture of the proposed 1D neural network for interference
mitigation.

to effectively represent complex interference patterns through
increased feature dimensions. Subsequently, the projected fea-
tures are processed by a stack of dilated residual blocks
(Resblocks), each of which consists of dilated Conv, batch
normalization (BN), rectified linear unit (ReLU) activation,
and a residual connection. The dilation rate is progressively
increased across blocks, enabling the network to extract fea-
tures over both local and global spatial contexts. Finally, an
output projection layer maps the processed features back to
the complex-valued domain by reducing the channels to 2.

B. Training and Validation Datasets

To train and evaluate the proposed model, we generate RD
map pairs with and without interference using simulations. In
each simulation, the number of targets is randomly selected
from 1 to 4, and the SIR is randomly selected from the range
of -20 dB to 0 dB with a step size of 5 dB. In addition, a total
of 1,500 RD map pairs were generated, of which 1,000 pairs
were used for training and 500 pairs for validation. In each
pair, the interference-contaminated RD map was used as the
model input, and the corresponding interference-free RD map
was used as the ground truth. Moreover, all RD maps were
normalized so that the average noise power equals unity before
training. Although the generated RD map has dimensions of
L x L, the proposed model processes range line of length L.
Therefore, each RD map is decomposed along the Doppler
dimension into individual range lines, and each range line is
treated as an independent training sample with the real and
imaginary components represented as two channels.

C. Configuration of the Proposed Model

The model was trained using the adaptive moment esti-
mation optimizer with a learning rate set to 1 x 1074, The
variations of the loss values over epochs are presented in
Fig. 4. Fig. 4 (a) presents the loss variations with respect
to the number of layers, and the lowest loss occurred when
the model used eight layers. In addition, Fig. 4 (b) illustrates
the loss values for different initial channel counts. An initial
channel count of 64 was selected as a suitable configuration, as
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Fig. 4. Training loss curves of the proposed model: (a) different numbers of
layers and (b) different numbers of initial channels.

further increases yield only marginal performance gains while
significantly inflating the computational burden.

IV. EXPERIMENTAL RESULTS AND PERFORMANCE
EVALUATION

To evaluate the performance of the proposed model, a 2D
CNN is used as a baseline for comparison, and both models
were trained using identical datasets and training schedules to
ensure a fair evaluation [7]. Fig. 5 presents the output results
obtained from both models. Fig. 5 (a) shows the interference-
free RD map used as the ground truth, and Fig. 5 (b) shows
the RD map contaminated by PMCW interference, where the
noise floor is significantly elevated. Figs. 5 (¢) and (d) show
the corresponding outputs generated by the 2D CNN and the
proposed model, respectively. As demonstrated in the figures,
both models effectively suppress the interference components
and restore the target responses.

In addition, two quantitative metrics are used to evaluate
restoration performance. The first is the signal-to-interference-
plus-noise ratio (SINR), which quantifies the strength of the
target responses relative to the residual interference and noise
in the reconstructed RD map. The second metric is the masked
peak signal-to-noise ratio (mPSNR), which is designed to
assess reconstruction accuracy in sparse radar images, where
conventional PSNR becomes inadequate due to the dominant
contribution of background regions. Let X (r, q), X(r, q), T,
and B denote the interference-free RD map, the output of
the neural network, the set of target bins, and the set of
background bins, respectively. The SINR is computed as
>
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Fig. 5. Reconstructed RD maps for a scenario with two targets: (a)

interference-free ground truth, (b) interference-contaminated input, (c) output
of the 2D CNN, and (d) output of the proposed model.

In addition, to focus on the target region when computing the
mPSNR, we consider a 5 x 5 window W centered at the point
of maximum intensity. The mPSNR is then given by
IR
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MSE(X, X)
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where MSE(X X ) is the mean squared error between the
ground truth and reconstructed RD maps over the entire image.
Fig. 6 presents a performance comparison of the two models
across various SIR levels, where Figs. 6 (a) and (b) show
the resulting SINR and mPSNR, respectively. Both models
significantly enhance the SINR and mPSNR across the entire
SIR range compared to the interference-contaminated input,
demonstrating effective suppression of PMCW interference. In
terms of averaged performance, the proposed model achieves
an SINR improvement of 19.61 dB and an mPSNR gain of
22.22 dB, and the 2D CNN achieves corresponding improve-
ments of 18.61 dB and 22.92 dB, respectively. These results
indicate that the proposed 1D model provides interference sup-

40
30 = 40— oo —
) S
= 20/ o~ 20/
& R 74 —
é 10 —=—Input £ 7 —=Input
0 2D CNN g 0 --2D CNN
Proposed Proposed
-10 -20 5
-20 -15 -10 -5 0 -20 -15 -10 -5 0
SIR (dB) SIR (dB)
(a) (b)

Fig. 6. Quantitative evaluation of interference suppression performance versus
input SIR: (a) SINR and (b) mPSNR.



pression performance comparable to that of the conventional
2D CNN.

Meanwhile, Table II summarizes the computational com-
plexity of both models, evaluated in terms of the number of pa-
rameters and floating-point operations (FLOPs). The 2D CNN
requires 224.71 K parameters and 29.49 GFLOPs per frame,
and the proposed model reduces these values to 198.47 K
parameters and 25.87 GFLOPs per frame. The reported FLOPs
correspond to the number of operations needed to process a
single RD frame of size 256 x 256. In addition, Fig. 7 presents
the peak GPU memory (PGM) as a function of the input size
of RD map. PGM is a critical metric for on-device deployment,
because embedded hardware has strict memory constraints and
an out-of-memory failure occurs when the PGM exceeds the
available memory [8]. As shown in Fig. 7, unlike conventional
2D CNN whose PGM grows rapidly with input size of RD
map, the proposed 1D line-wise model maintains an extremely
low and stable memory requirement. This behavior originates
from the structural property of the 1D architecture, which
processes each range line independently rather than loading the
entire 2D RD map into memory. As a result, the PGM depends
only on the line length and remains nearly unchanged even
when the RD size increases. For example, when the size of RD
map increases from 256 x 256 to 2048 x 2048, the PGM of the
2D CNN expands from 50.01 MB to more than 2.42 GB. Such
a dramatic increase reflects the inherent limitation of 2D CNN,
which requires the storage of large intermediate activation
tensors that span the entire spatial dimension. In contrast, the
proposed model requires only 7.06 MB to 13.74 MB. This
characteristic makes the proposed model particularly suitable
for high-resolution imaging radars, where memory availability
is often the primary bottleneck. In summary, the results in
Table II and Fig. 7 confirm the low computational complexity
and strong memory scalability of the proposed architecture.
These characteristics are essential for a hardware-friendly
deployment in practical automotive radar systems.

TABLE 11
COMPUTATIONAL COMPLEXITY COMPARISON BETWEEN THE 2D CNN
AND THE PROPOSED MODEL

Metric
Parameters
FLOPs per frame

2D CNN
22471 K
29.49 GFLOPs

Proposed model
198.47 K
25.87 GFLOPs
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Fig. 7. PGM consumption as a function of size of RD map (L X L).

V. CONCLUSION

This paper proposed a memory-efficient interference miti-
gation model for FMCW radar systems affected by PMCW
interference. First, we constructed a scenario in which an
FMCW radar operates in the presence of a coexisting PMCW
radar and analyzed the resulting distortion in the RD map
caused by mutual interference. The analysis confirmed that
wideband PMCW interference elevates the noise floor and
significantly degrades the visibility of weak target signals.
To address this issue, we introduced a lightweight model
designed to restore RD maps corrupted by interference. Unlike
conventional 2D approaches that process the entire RD map
simultaneously, the proposed model processes each range
line of the RD map independently, resulting in substantially
reduced memory requirements. Specifically, when processing
RD maps of size 256 x 256, the proposed model reduced
PGM usage by 85.89% compared with the 2D CNN archi-
tecture. In addition, the proposed model achieved interference
suppression performance comparable to that of the 2D CNN
in terms of SINR and mPSNR. These results suggest that
the proposed model can offer advantages for deployment on
embedded automotive radar platforms operating under strict
memory and power constraints.

ACKNOWLEDGMENT

This work was supported by the National Research Foun-
dation of Korea (NRF) grant funded by the Korea government
(MSIT) (No. RS-2024-00405510).

REFERENCES

[1] C. Park, S. Lee, and T. Jeong, “High-resolution ranging scheme for
stepped-frequency PMCW-based ISAC systems,” 2025 IEEE VTS Asia
Pacific Wireless Communications Symposium (APWCS), Tokyo, Japan,
August 2025, pp. 1-3.

[2] Y. Choi, C. Park, J.-H. Lee, and S. Lee, “ConvLSTM Autoencoder-
based CSI prediction for efficient target detection in TDD-based OFDM
ISAC systems,” IEEE Internet of Things Journal, early access, 2025,
doi: 10.1109/J10T.2025.3639084.

[3] C. Park, J.-H. Park, T. Jeong, J. Joung, and S. Lee, “Efficient frame
structure design of PMCW radar based on Golay sequence in 802.11ad
preamble,” IEEE Internet of Things Journal, vol. 12, no. 24, pp. 53177—
53189, December 2025.

[4] L. A. Lépez-Valcarcel and M. G. Sanchez, “Study of the mutual
interference between FMCW and PMCW automotive radars,” 2025 IEEE
Radar Conference (RadarConf25), Krakow, Poland, October 2025, pp.
1629-1634.

[5] H.-W. Hsu, Y.-C. Lin, M.-C. Lee, C.-H. Lin, and T.-S. Lee, “Deep
learning-based range-Doppler map reconstruction in automotive radar
systems,” 2021 IEEE 93rd Vehicular Technology Conference (VIC2021-
Spring), Helsinki, Finland, May 2021, pp. 1-7.

[6] A. A. ElSharkawy, A. S. Abdallah, and M. W. Fakhr, “A new seman-
tic segmentation technique for interference mitigation in automotive
radar,” 2023 IEEE Wireless Communications and Networking Confer-
ence (WCNC), Glasgow, United Kingdom, March 2023, pp. 1-6.

[71 J. Rock, M. Toth, E. Messner, P. Meissner, and F. Pernkopf, “Complex
signal denoising and interference mitigation for automotive radar using
convolutional neural networks,” 2019 22nd International Conference on
Information Fusion (FUSION), Ottawa, Ontario, Canada, July 2019, pp.
1-8.

[8] Z. Li, A. Samanta, Y. Li, A. Soltoggio, H. Kim, and C. Liu, “R3: On-
device real-time deep reinforcement learning for autonomous robotics,”
2023 IEEE Real-Time Systems Symposium (RTSS), Taipei, Taiwan,
December 2023, pp. 131-144.



