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Abstract—Recent studies have confirmed the potential of large
language models (LLMs) to demonstrate excellent performance
in time-series anomaly detection. However, achieving such per-
formance requires substantial computational costs and memory
resources, rendering practical deployment difficult in environ-
ments with limited resources. To address this issue, this paper
investigates the structural adaptation of small-scale LLMs using
LoRA, focusing on how structural choices determine performance
and efficiency. A comprehensive experimental investigation was
conducted, encompassing three structural dimensions: module
selection (All, Attention, MLP, and single-MLP modules), fine-
tuning layer scopes (Upper, Middle, Lower), and rank (1, 4, 8).
Using the Llama 3.2-1B model for anomaly detection on an ECG
dataset, We observe that module selection and layer-scope selec-
tion are central factors that significantly impact performance.
The MLP modules exhibit consistent and robust performance
across parameter budgets. Notably, the Gate module, when
trained alone, shows high efficiency beyond a certain parameter
threshold. While rank affects overall performance, the relative
ordering among modules remains largely unchanged. These
findings highlight that structural LoRA design, particularly the
selection of modules to train at which layers, is effective in
adapting small LLMs to the task of time-series anomaly detection.

Index Terms—Time-Series Anomaly Detection, Small LLMs,
LoRA, Structural Fine-tuning, Domain-Specific Adaptation

I. INTRODUCTION

Large language models (LLMs) demonstrate strong perfor-
mance not only in natural language processing but also in
time-series analysis tasks [1]. Ultra-large models such as the
GPT-4/5 family capture complex patterns through extensive
pretraining and achieve high accuracy in time-series anomaly
detection and forecasting. Yet, their effectiveness relies on sub-
stantial computational and memory demands, which limit prac-
tical deployment in on-device environments. This motivates
a transition toward smaller models (1B-7B parameters) for
real-world applications operating under resource constraints.
However, prior studies indicate that small LLMs experience
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notable performance degradation when limited to zero-shot
inference or simple prompting techniques [2].

In this study, we posit that small LLMs can achieve
competitive performance on time-series tasks by selectively
updating only task-critical components rather than uniformly
modifying the entire model. To address the resulting adaptation
challenges, we adopt structural fine-tuning that targets these
time-series-critical components. Such selective adaptation has
the potential to substantially reduce the number of trainable
parameters while maintaining or even improving accuracy.
We embody this idea using Parameter-Efficient Fine-Tuning
(PEFT) and Low-Rank Adaptation (LoRA), and systematically
analyze how adaptation effects vary based on the location
and content updated within the Transformer. Specifically, we
analyze distinct performance and efficiency trade-offs arising
from (i) module selection, (ii) layer scopes (which block
ranges are adapted), and (iii) LoRA rank, demonstrating that
PEFT efficiency varies substantially across these structural
choices. These results indicate that, although small LLMs
exhibit limited general capabilities, they can still provide suf-
ficient expressiveness for domain-specific time-series anomaly
detection when structurally optimized. The main contributions
of this paper are as follows:

o We conduct a comprehensive empirical study of LoRA-
based structural fine-tuning for domain-specific time-
series anomaly detection, decomposing the adaptation
design space into three axes: module selection, layer
depth, and LoRA rank.

« We show that optimal layer ranges are module-dependent,
providing a practical basis for selecting efficient module—
layer adaptation strategies under tight parameter budgets.

II. RELATED WORK
A. LLMs for Time-series Anomaly Detection

Recent studies demonstrate that LLMs can be applied to
anomaly detection. Xie et al. [3] evaluated whether LLMs
could generalize across diverse time-series tasks and showed
that LLMs are capable of interpreting not only textual in-
formation but also altering patterns in continuous signals,



including time-series data. Concurrently, they also empha-
sized that LLMs are highly sensitive to input format and
prompt selection, exhibiting significant instability in zero-shot
scenarios. Chen et al. [4] compared zero-shot and few-shot
prompting approaches for time-series anomaly detection. Their
finding indicated that LLMs can partially identify time-series
patterns even when only basic time-series-to-text conversion
is employed. This indicates that LLMs can leverage their
internal reasoning capabilities to interpret semantic changes
or anomaly signals within time-series data. Zhang et al. [5]
proposed a model architecture tailored to time-series process-
ing by introducing dedicated temporal tokens, cross-modal
alignment, and LoRA-based structural adaptation. It also in-
troduced DynalLoRA, demonstrating that selectively adapting
only certain model components offers substantial advantages
in learning time-series patterns. These results collectively
suggest the effectiveness of selective fine-tuning for adapting
LLMs to time-series tasks. The collective findings of these
studies underscore the importance of methodically selecting
which components of an LLM to adapt for time-series tasks.

B. Low-Rank Adaptation

Hu et al. [6] proposed Low-Rank Adaptation (LoRA), which
constrains weight updates to a low-rank decomposition during
fine-tuning to drastically reduce trainable parameters. LoRA
keeps the pre-trained weights fixed and represents the weight
increment matrix as a product of low-rank matrices. This
approach significantly reduces the number of trainable param-
eters and thereby lowers memory usage and computational
cost, while still achieving performance comparable to or even
exceeding that of full fine-tuning. Consequently, LoRA has
become a leading PEFT method. Zhang et al. [7] pointed out
that LoRA’s fixed rank structure fails to reflect differences in
importance between modules. They proposed a method that
uses SVD-based importance analysis to automatically assign
higher ranks to important modules and lower ranks to less
important ones. Yao et al. [8] focused on layer selection.
After training with LoRA inserted into all layers, they found
that removing more than half of the LoRA modules from
low-importance layers did not decrease perplexity. However,
removing modules from high-importance layers led to a sharp
performance drop. Based on these findings, they proposed
an importance-based automatic layer selection method that
introduces importance-aware sparse tuning, activating PEFT
modules only on certain layers.

III. METHODOLOGY
A. Motivation

LoRA is a widely used parameter-efficient fine-tuning
method that inserts low-dimensional trainable matrices in place
of updating the full set of model weights. Existing studies have
demonstrated that reducing LoRA’s rank does not significantly
impair performance and that performance varies substantially
depending on which layers are adapted and which modules
LoRA is applied to [6]-[8]. These findings, however, have
been primarily established in natural language processing

and instruction-following tasks. Time-series anomaly detection
presents different data characteristics, including noise sensi-
tivity and context-dependent semantics, which may alter the
relative importance of model components. Therefore, it re-
mains unclear whether the same structural principles observed
in prior LoRA studies generalize to the time-series domain,
motivating a systematic examination specific to time-series
anomaly detection.

Based on these observations, this study investigates how
structural LoRA configurations affect the adaptation of small
LLMs to time-series anomaly detection. We focus on three
key design axes.

Rank controls the representational capacity of the low-
rank approximation in LoRA. It determines how much task-
specific information can be encoded through the additional
low-rank matrices after adaptation. A lower rank yields more
compact updates but may limit expressive power, while higher
ranks expand representational capacity at the cost of increased
parameters.

Layer scopes define the depth at which LoRA is applied
within the Transformer hierarchy. Since different layer scopes
contribute differently to semantic understanding or local fea-
ture extraction, selecting where adaptation occurs plays a key
role in shaping how the model incorporates time-series-specific
patterns.

Module selection specifies which internal components of
the Transformer—such as Attention or MLP submodules—are
updated during adaptation. Each module processes fundamen-
tally different aspects of the representation, choosing the most
significant components enables more effective performance
improvement under limited parameter budgets.

Through this analysis, we identify settings where structural
choices enable performance improvements beyond simple pa-
rameter reduction, as well as configurations that significantly
lower computational cost without compromising accuracy.
Ultimately, we provide design guidelines for LoRA config-
urations tailored to the characteristics of time-series anomaly
detection.

B. Experiment Setup

This study created a consistent experimental environment
for evaluating LoRA-based structural fine-tuning for ECG
anomaly detection. This section details the components used,
including the dataset, model, preprocessing method, fixed
training settings, and evaluation metrics.

Dataset. The experiment used an ECG time-series dataset
compiled from the MIT-BIH Arrhythmia Database [9]. Each
sample consists of a single lead signal of length 187. The
original four abnormal classes were consolidated into two:
normal(0) and abnormal(1). This reconfigured the data into
a binary classification format.

Model. This study used Llama 3.2-1B as the base model.
The overall model architecture is presented in Fig. 1. All
experiments were conducted by varying only the LoRA con-
figuration while sharing the same initial weights.
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Fig. 1: Overall architecture of the Llama-3

The model is composed of a hierarchical structure in which
the same Transformer block is repeated N times. First, it
undergoes a Self-Attention module. Then, it passes through
a Feed-Forward Network (FFN). The Self-Attention module
generates Query, Key, and Value through representations from
the hidden states, computes attention between tokens, and
then integrates the weighted information to produce the output
features. The subsequent FFN is a nonlinear structure based on
SwiGLU and composed of three projection layers: {up_proj,
gate_proj, down_proj}.

Tokenization. Time-series values were scaled by 1,000,
rounded to the nearest integer, and converted into space-
separated sequences. These sequences were then tokenized
using the default Llama tokenizer.

Train Setting. To ensure consistent comparison across all
experiments, we fixed the training environment as follows:
the model was trained for 3 epochs with a batch size of 4
for both training and evaluation. The LoRA scaling factor
(alpha) was set to twice the rank, and a dropout rate of 0.1
was applied to LoRA modules. During the experiment, the
only variables altered were rank, layer intervals, and module
combinations. All other settings remained fixed. Additionally,
layers to which LoRA was not applied were frozen to prevent
parameter updates during training.

Evaluation Metric. The model’s anomaly detection perfor-
mance was evaluated using Average Precision (AP) score as
the primary metric.

IV. EXPERIMENT
A. Search Space

This study designed an experimental setup centered on
three axes—rank, fine-tuning layer scopes, and module selec-
tion—to analyze the impact of LoRA’s structural design on its
adaptation performance in the ECG domain.

Rank. The decomposition dimension r of LoRA was set
to {1, 4, 8}, and performance changes were compared under
identical conditions for each rank.

Layer. The Llama 3.2-1B model consists of 16 Transformer
blocks. In this experiment, we selectively train half of these, 8
blocks. We divided them into three segments: the top 8(0-7),
middle 8(4-11), and bottom 8(8-15) for comparison.

Module. The applied modules are categorized into two
domains: Self-Attention (g/k/v/o) and FFN (up/gate/down).
Experimental combinations were configured by applying either
the entire module (All), Attention-only, MLP-only, or a single
internal module (up/gate/down) within the MLP.

B. Module/Layer-based Structural Fine-Tuning

This experiment compared the impact on performance of the
LoRA-attached module and the training-included layer section.
As illustrated by Fig. 2, the performance variation is visualized
according to the module-layer combination under the same
rank=8 condition. The parameter on the x-axis refers to the
number of trainable parameters used during the LoRA training
process.
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Fig. 2: Impact of LoRA layer scope selection on AP-score

The experimental results clearly showed that each module
operates most effectively at distinctly different fine-tuning
layer scopes. The All, MLP, Gate, and Down modules achieved
their highest performance in the Middle layer. In contrast, the
Attention module performed best in the Lower layer, while the
Up module demonstrated its optimal performance in the Upper
layer. Additionally, despite using fewer trainable parameters
than the MLP module, the Gate module achieved an AP score
nearly identical to that of the highest-performing MLP module.
The All module exhibits strong performance, but its parameter
efficiency is lower compared to the other modules.

Table I shows the optimal layer ranges for each LoRA
module, determined from the visual comparison results de-
scribed earlier. Based on this table, the optimal layer position



TABLE I: LoRA module selection results (rank 8).

Detection performance

Module Layer Params (M)
Precision  Recall Fl-score  AP-score
All Middle 0.93 0.88 0.90 0.9634 2.81
Attention Lower 0.83 0.90 0.87 0.9504 0.85
MLP Upper 0.96 0.86 0.90 0.9598 1.96
Up Upper 0.96 0.82 0.89 0.9449 0.65
Gate Middle 0.98 0.80 0.88 0.9552 0.65
Down Middle 0.97 0.76 0.85 0.9223 0.65

for each module was fixed in all subsequent experiments.
Furthermore, within the MLP structure, the Gate module
exhibited the highest AP score and was also confirmed to
demonstrate outstanding parameter efficiency. Accordingly,
subsequent experiments additionally performed performance
analysis under various conditions, with a particular focus on
the Gate module.

C. Impact of LoRA Rank

Experiments conducted on All, Attention, MLP, and single-
MLP (Gate) configurations across rank = {1, 4, 8} revealed
clear differences in the sensitivity of each configuration to rank
variation. As shown in Fig. 3, we examine the correlation be-
tween alterations in rank and the extent of trainable parameters
subsequent to the stabilization of module configurations. The
layer intervals for each module were set to the optimal ranges
empirically determined through previous experiments.
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Fig. 3: Effect of LoRA rank scaling on AP-score.

While the All and single-MLP modules showed relatively
gradual performance degradation, the Attention and Gate
modules exhibited steep performance declines as rank de-
creased. Moreover, despite the alterations in rank, the module
performance rankings observed in the preceding experiments
demonstrated stability.

To further evaluate how rank affects parameter efficiency,
we analyze the relationship between the number of trainable
parameters and AP performance. As shown in Fig. 4, a graph
is presented that plots trainable parameters on the x-axis for
the same experimental data. As the number of trainable param-
eters increases during training, a general trend of increasing
AP scores emerges for each module. This confirms that the
expansion of expressive power as LORA rank increases leads to
actual improvements in anomaly detection performance. In the
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Fig. 4: Parameters vs AP-score by Module and Rank

range below 0.5M parameters, the MLP module demonstrates
the highest efficiency. The model achieves an AP of 0.93-0.94
even with relatively few parameters (0.2-0.5M), outperforming
Gate and Attention within the same parameter range.

Conversely, in regions where parameters exceed 0.5M, the
Gate module’s performance surges dramatically, transforming
it into the module with the highest performance efficiency
relative to parameters. While Gate exhibits unstable perfor-
mance in low-parameter ranges, its AP-score recovers rapidly
once sufficient trainable parameters are secured, approaching
the performance levels of MLP or even demonstrating higher
efficiency in certain segments.

TABLE II: AP-score and parameters by LoRA rank.

Module Layer Rank AP-score Params (M)
1 0.9386 0.35
All Middle 4 0.9596 1.40
8 0.9634 2.81
1 0.8568 0.10
Attention Lower 4 0.9057 0.42
8 0.9504 0.85
1 0.9380 0.24
MLP Upper 4 0.9424 0.98
8 0.9598 1.96
1 0.8870 0.08
Gate Middle 4 0.9198 0.32
8 0.9552 0.65

Table II reports the AP-score and trainable parameters for
each module across rank = 1, 4, 8, with layer scopes fixed to
the previously selected optima. It serves as a concise reference
for the rank—parameter trade-off underlying Figs. 3—4.

D. Discussion

This study analyzed the impact of modifications in the
application location and rank changes of LoRA across mod-
ules and layers on the AP-score from multiple perspectives.
Firstly, module selection has a more substantial influence on
performance than rank or parameter budget. While MLP and
Gate consistently achieved superior performance or efficiency
across all intervals, Attention and Down exhibited consider-
ably lower effectiveness despite having identical parameter and



rank conditions. Secondly, each module exhibited variability
across selected layer scopes, showing a tendency to perform
better in specific intervals. MLP, Gate, and Down achieved
optimal performance in middle layers, Attention in lower
layers, and Up in upper layers. Thirdly, rank reduction caused
performance degradation across all modules, but MLP and All
remained relatively robust even at low ranks, while Attention
and Gate were sensitive to variations in rank.

The MLP module confirmed the trend previously observed
in other studies of its superior performance [4]. In contrast,
when applying a single-MLP module, we observed strong per-
formance specifically when only the Gate module was trained,
which differs from previous studies [10] that incorporated
additional MLP components. The superior performance of the
Gate is expected to be partially related to the characteristics
of the time-series anomaly detection data. Time-series data
is often subject to the presence of noise and outliers, and
a single value may bear different meanings depending on
its placement in a sequence or the context in which it is
presented. The Gate’s structural design, which modulates the
flow of information, may have functioned to either mitigate or
accentuate the irregular patterns that are pervasive throughout
the time-series.

V. CONCLUSION AND FUTURE WORK

This study systematically investigated performance varia-
tions in LLM-based time-series anomaly detection by com-
paring different LoRA module configurations, layer scopes,
and rank settings. The results show that performance varies
substantially depending on the selected module, even under
the same parameter budget. In particular, MLP and Gate
demonstrated the highest stability and parameter efficiency
across experiments. While the rank settings did affect absolute
accuracy, the relative effectiveness of each module remained
largely consistent. These findings suggest that the selection of
modules and layers constitutes a more significant influence on
the structural design than does rank adjustment when adapting
LLMs to time-series anomaly detection.

Through experimental analysis, we confirmed the impact
of module, layer, and rank on time-series anomaly detection
performance. However, a sufficiently established theoretical
basis to clearly support these observations has yet to be
developed. Specifically, while the consistent superior perfor-
mance of MLP and Gate modules was explained through
empirical interpretations related to the characteristics of time-
series data, the precise manner in which structural elements
contribute requires deeper analysis in subsequent research.
Furthermore, since experiments were conducted focusing on a
single time-series domain, it is necessary to validate whether
the observed trends hold consistently across diverse time-series
environments through experiments with additional datasets.
This extension will be a crucial future research task to clarify
whether the findings identified in this study represent general
characteristics or phenomena specific to particular data types.
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