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Abstract—Understanding causal relationships in market be-
haviour is essential for strategic decision-making; yet, most arti-
ficial intelligence methods remain focused on pattern recognition
rather than causal discovery. While reasoning, AI models can
generate hypotheses about market dynamics; however, they often
lack mechanisms to validate whether observed patterns reflect
genuine causal effects or confounding influences. This paper
introduces a causal machine learning framework that integrates
Double Machine Learning (DML) with causal forests to estimate
Conditional Average Treatment Effects (CATE), capturing het-
erogeneous responses across market conditions. To enhance inter-
pretability and robustness, the framework incorporates validation
through Interrupted Time Series (ITS) analysis and Synthetic
Control Methods (SCM). Demonstrated through an applied case
study using a multi-year dataset of vehicle registrations from
2020 to 2024, the framework identifies and validates causal effects
in dynamic automotive market environments. While the current
application focusses on the automotive sector, the methodology is
generalisable to other domains. The results support the integration
of causal estimates into decision support systems, offering a
methodological contribution to evidence based market intelligence
in industrial applications.

Index Terms—Causal machine learning, Market dynamics anal-
ysis, Double machine learning, Causal forests, Interpretable AI,
Decision support systems.

I. INTRODUCTION

Advanced artificial intelligence systems, including large lan-
guage models and deep learning architectures, have trans-
formed market analysis through sophisticated pattern recog-
nition capabilities [1]. These systems can process extensive
web data to identify market trends, analyse consumer sentiment
from social media, and synthesise competitive intelligence from
multiple sources. However, a fundamental limitation constrains
their business applications: while reasoning AI models can ar-
ticulate hypotheses about market dynamics through logical de-
duction, they do not inherently provide mechanisms to validate
whether observed correlations reflect true causal mechanisms
or confounding associations. Advanced reasoning models may
generate plausible narratives about market drivers, but without
rigorous statistical identification from observational data, such

conclusions remain unverified hypotheses susceptible to gener-
ating confident yet empirically unsupported recommendations.
This limitation becomes critical in market intelligence, where
decision-makers require validated answers to counterfactual
questions about market behaviour under different scenarios
[2], [3].This paper addresses this gap through methodological
integration rather than algorithmic innovation.

Recent advances in causal machine learning offer potential
solutions by integrating graph based reasoning with statisti-
cal learning to transcend correlation analysis. Causal forests
estimate heterogeneous treatment effects across market seg-
ments [4], while DML obtains valid causal estimates in high-
dimensional settings [5]. However, machine learning meth-
ods—particularly ensemble approaches such as random forests
and gradient boosting can suffer from interpretability chal-
lenges, raising concerns for business applications that require
explainable insights [6], [7].

This paper develops a multi method framework integrat-
ing established techniques via DML causal forests estimator
with ITS [8] and SCM [9]. The framework estimates CATE
to capture heterogeneous responses across market conditions.
Through a real world case study based on vehicle registration
data from 2020–2024, the analysis demonstrates how causal
reasoning could enhance AI driven market analysis systems by
enabling validated counterfactual inference while maintaining
interpretability through transparent validation. While the em-
pirical focus is on the automotive industry, the framework is
designed to be adaptable to other sectors, supporting broader
applications in market intelligence.

II. LITERATURE REVIEW

Market analysis requires distinguishing causal mechanisms
from spurious correlations in observational data [10], [11].
Modern graphical models establish the foundation for defining
causal effects. Applied causal inference, powered by machine
learning (ML), offers approaches for analysing observational
data [12], with recent comprehensive reviews synthesising
advances in causal machine learning for static and dynamic
settings [13]. Causality is increasingly recognised in Explain-



able Artificial Intelligence (XAI) for achieving reliable and
interpretable insights [14].

Causal forests, introduced by Athey and Imbens [15], esti-
mate Conditional Average Treatment Effects (CATE) by max-
imising treatment effect heterogeneity. This approach identifies
market segments with varying behavioural responses and has
been applied to analyse heterogeneous treatment effects (HTE)
in randomised controlled trial data.

Double Machine Learning (DML) [16] employs sample split-
ting and cross-fitting to obtain orthogonal moment conditions,
reducing bias from model misspecification. Almashaleh and
Fatahi Valilai [5] demonstrate that integrating DML with the
DoWhy framework yields robust causal estimates in high-
dimensional social media data, revealing measurable causal
effects of content formats on user engagement. Recent com-
prehensive comparisons confirm the viability of DML for
population-level treatment effects [17], with robust software
implementations facilitating practical applications [18].

Despite these advances, recent applications in consumer be-
haviour analysis reveal methodological limitations [19]. Studies
in digital marketing [20] often rely on single-method ap-
proaches without comprehensive robustness validation [21].
Similarly, in dynamic business contexts, adaptive meta-learning
approaches are crucial for continuously updating models as
market conditions evolve [22], especially when consumer pref-
erences shift rapidly [23]. However, most studies rely on
single-method approaches without comprehensive robustness
validation, and reliance on predictive models alone can lead
to decisions based on spurious correlations.

Quasi-experimental designs offer complementary approaches
for market analysis when observable events exhibit sharp
temporal discontinuities. Interrupted Time Series (ITS) analysis
evaluates market dynamics by comparing trajectories before
and after events [8]. The Synthetic Control Method (SCM)
[9] constructs weighted combinations of control units to ap-
proximate counterfactual trajectories. Recent methodological
advances include augmented synthetic control approaches that
combine outcome modelling with weighting [24] and multi-
outcome extensions that reduce bias through shared factor
structures [25]. These methods provide transparent validation
for understanding market adoption patterns, where comprehen-
sive conditions and consumer heterogeneity influence outcomes
[26].

A persistent limitation in existing research is the tendency
to examine individual factors in isolation, with limited use of
complementary validation methods and insufficient attention
to heterogeneous effects across dynamic market conditions.
Building on prior work integrating causal inference with market
intelligence [2], [11], the proposed framework addresses these
gaps through methodological integration—combining machine
learning flexibility with quasi-experimental transparency for
robust causal identification in market intelligence applications.

III. METHODOLOGY

This section outlines the implementation of the proposed
causal machine learning framework through an empirical case
study based on publicly available vehicle registration data. The
study design considers three distinct market regimes observed
between 2020 and 2024: (i) the period of an enhanced purchase
incentive programme, (ii) the introduction of fuel cost mech-
anisms, and (iii) the subsequent termination of the incentive
programme. The primary outcome variable is market share,
defined as the proportion of registrations for a specific vehicle
category relative to total monthly registrations. The estimation
strategy is grounded in a causal inference framework that
explicitly controls for confounding temporal trends, demand
variability, and competitive market dynamics.

A. Data Sources and Description

This study employs publicly available datasets spanning
January 2020 to December 2024. The data integration architec-
ture implements systematic protocols to ensure methodological
reproducibility and validity.

1) Vehicle Registration Data: Monthly vehicle registration
statistics were obtained from the Kraftfahrt-Bundesamt (KBA)
[27]. The dataset comprises comprehensive registration counts
disaggregated by powertrain type. This dataset provides com-
plete market coverage through mandatory reporting require-
ments. For the analytical period, annual aggregate totals were
temporally disaggregated to a monthly frequency using cubic
spline interpolation methods, a standard econometric technique
that preserves aggregate consistency while maintaining smooth
temporal transitions and minimising information loss.

2) Economic Indicators: Supplementary data on per capita
carbon emissions were obtained from the comprehensive en-
vironmental database [28]. These indicators serve as control
variables within the causal framework to account for broader
awareness trends that may confound the relationship between
incentive interventions and market outcomes.

3) Market Condition Timeline Variables: Timeline variables
were constructed, documenting three observable market condi-
tion periods based on publicly available government announce-
ments:

1) Enhanced Incentive Period: Purchase support pro-
gramme active from July 2020 to December 2022 [29].

2) Fuel Cost Mechanism: Carbon-based fuel pricing was
introduced in January 2021 [30].

3) Incentive Termination: Programme cessation effective
January 2024 [31].

B. Data Processing

Data processing implemented a medallion architecture com-
prising bronze, silver, and gold layers to ensure data quality,
traceability, and analytical validity [32], [33]. Annual reg-
istration data were interpolated to monthly frequency using
cubic spline interpolation [34]. Environmental indicators were



TABLE I: Variable Categorization

Variable Name Description
bev registrations Monthly count of new BEV registrations
bev share Market share of BEVs relative to total

registrations
innovation premium Binary indicator for incentive period (Jul

2020–Dec 2022)
co2 price Binary indicator for CO2 pricing policy

(Jan 2021 onward)
subsidy active Binary indicator for financial subsidy

availability
total registrations Total monthly vehicle registrations
fuel type registrations Registrations by powertrain category
co2 emissions per capita Environmental indicator (tonnes per

capita)
temporal controls Time-based control variables (trend, sea-

sonality)

TABLE II: Descriptive Statistics (2020-2024, N = 60))

Variable Mean SD Min Max
BEV registrations 28,500 7,200 16,000 44,000
Market share (%) 14.0 5.3 5.1 22.4
Total registrations 210,000 40,000 150,000 290,000
CO2 per capita (tonnes) 7.9 0.4 7.3 8.5
Innovation premium 0.50 0.50 0 1
CO2 price 0.80 0.40 0 1

forward-filled for 2024. For variable selection in the 28-variable
dataset, theory-driven approaches were prioritised over auto-
mated feature selection methods [35], [36], as causal inference
requires variables justified by causal mechanisms rather than
predictive power alone. The final dataset created a balanced
panel with 60 monthly observations. Following established
conventions in causal inference methodology [37], variables
were categorised according to their theoretical roles within the
causal structure: outcome variables, treatment variables, and
confounding covariates, as presented in Table I. Descriptive
statistics presented in Table II summarise the distributional
properties and temporal variation of key variables across the
complete observation period (N=60 months).

C. Causal Identification Strategy

The causal relationships were structured using Directed
Acyclic Graphs (DAGs), clarifying assumptions about tempo-
ral sequencing, confounding factors, and outcome dependen-
cies. Figure 1 illustrates the causal structures underlying the
three market conditions considered in this study: innovation
premium, CO2 pricing, and subsidy removal. Identification
relies on the assumption that, conditional on these observed
covariates, no unblocked back-door paths remain between the
market condition variables and the outcome. Accordingly, the
included control variables are assumed to sufficiently account
for observed confounding influences that jointly affect policy
exposure and market share.

D. Model Specification

A causal forest estimator within a DML framework is
employed. This approach allows flexible estimation while con-

(a) Innovation Premium

(b) CO2 Pricing

(c) Subsidy Removal

Fig. 1: Causal diagrams illustrating relationships between mar-
ket conditions, control variables, and market share.

trolling for high-dimensional confounders. Market share at time
t is denoted by Yt. Similarly, the binary market condition is
represented by Tt ∈ {0, 1}, while the vector of observed control
variables is captured by Xt.

The primary estimand is the CATE, defined as the expected
difference between potential outcomes conditional on observed
covariates. This measure captures how market responses vary
across conditions. In particular, treatment effects are allowed
to differ across contextual features rather than being assumed
to be constant.

Estimation is conducted using the Causal Forest DML es-
timator implemented in the econml library. Specifically, two
nuisance components are learnt. First, the expected outcome
conditional on covariates is estimated as

m(X) = E[Y | X]. (1)

Second, treatment assignment is modelled through the propen-
sity score.

e(X) = P(T = 1 | X). (2)

Subsequently, orthogonalised pseudo-outcomes are con-
structed to separate treatment effects from nuisance estimation
errors. As a result, the estimated causal effects remain robust
even in the presence of complex and high-dimensional con-
founding.



E. Condition-Specific Estimation

CATE estimates are computed separately for each market
condition. For the discrete incentive termination event, valida-
tion uses ITS regression in Equation 3 and Synthetic Control
gap analysis. These quasi-experimental methods are applied
exclusively to the termination event because it represents a
sharply timed structural change, satisfying the identifying as-
sumptions required for both ITS and Synthetic Control designs.
In contrast, the remaining market conditions evolve gradually
over time, for which time-varying CATE estimation provides a
more appropriate identification strategy.

Yt = β0+β1 · timet+β2 ·postt+β3 · (timet×postt)+εt, (3)

IV. RESULTS AND DISCUSSION

The observed market share trajectory over time reveals
distinct phases, as shown in Fig. 2. Prior to mid-2020, the
levels remained relatively stable. A pronounced increase was
observed in early 2021, temporally associated with the imple-
mentation of enhanced purchase incentives and revised fuel cost
mechanisms. This phase was characterised by persistently ele-
vated levels throughout 2022 and 2023. In early 2024, immedi-
ately following programme termination, an abrupt inflexion was
detected, after which market share stabilised at substantially
lower values. Causal effects were estimated using CATE from a

2020 2021 2022 2023 2024 2025
Year

15000

20000

25000

30000

35000

40000

45000

B
ev

 R
eg

is
tr

at
io

ns

Fig. 2: Observed adoption pattern and market condition.

Causal Forest model within the DML framework, as illustrated
in Fig. 3 for the three variables: Innovation Premium, CO2
Pricing, and Subsidy Removal.The enhanced incentive period
was associated with gradual positive effects during 2020–2022,
suggesting that financial support mechanisms influenced market
development patterns. A stronger and more sustained positive
effect was attributed to the fuel cost mechanism, which became
more pronounced from 2023 onwards, indicating that expected
long-run operating costs influenced decisions. Following the
termination of the incentive in January 2024, a negative effect
was observed. The decline emerged immediately and persisted
throughout the subsequent observation period.

ITS analysis provided validation, as shown in Fig. 4. The
fitted counterfactual trend continues upward, whereas the ob-
served share declines immediately after termination. The ITS

and Synthetic Control validation applies specifically to in-
centive termination, as this represents a sharply timed dis-
crete event suitable for structural break analysis. For gradual
changes, time-varying CATE estimation provides the appro-
priate identification strategy. These results demonstrate three
analytical insights from the empirical analysis. First, financial
incentives showed an association with early market develop-
ment through reduced upfront costs. Second, changes in long-
term operating costs, such as fuel pricing, played a key role
in sustaining market growth by influencing consumer decision-
making over time. Third, the sudden removal of support showed
an immediate, measurable decline in shares.
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Fig. 4: ITS validation for termination event.

The Synthetic Control comparison provided additional vali-
dation. Fig. 5 presents the Synthetic Control gap analysis for
the subsidy termination event. The gap measures the difference
between the observed BEV market share and its estimated
counterfactual trajectory. Before 2024, the gap remains close
to zero; therefore, the synthetic control achieves a strong
pre-intervention fit. After the termination, however, the gap
shifts sharply and remains negative. Consequently, the observed
market share falls below the counterfactual path, indicating a
negative causal effect following subsidy removal.
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Fig. 5: Synthetic Control gap analysis for termination.

A. Analytical Implications and Robustness

Robustness was examined through a series of sensitiv-
ity analyses. First, alternative outcome specifications were
considered, including market share and absolute registration
levels, and the estimated effect patterns remained consistent
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Fig. 3: Estimated conditional average treatment effects (CATE) across market conditions.

across specifications. In addition, visual inspection of the pre-
intervention period indicated stable trends, supporting the va-
lidity of the identifying assumptions underlying the Interrupted
Time Series analysis. For the Synthetic Control analysis, ro-
bustness with respect to donor pool composition was evaluated,
and comparable post-intervention gaps were observed across
alternative donor combinations.

Beyond these robustness cheques, the estimated Conditional
Average Treatment Effects display noticeable variation in mag-
nitude over the observation period. This dispersion suggests
that market responses to the examined conditions are hetero-
geneous rather than uniform. As a result, analytical relevance is
driven by the distribution of effects across policy phases rather
than by a single average estimate. This finding underscores the
importance of context-sensitive interpretation when analysing
dynamic market behaviour.

Despite the applied controls, potential limitations remain.
Unobserved factors, such as concurrent marketing activities or
supply-side constraints, may coincide with policy changes and
influence market outcomes. If such factors are correlated with
both the market condition variables and the outcome, residual
bias cannot be fully excluded. Accordingly, the reported esti-
mates should be interpreted as causal effects conditional on the
observed data and the stated identification assumptions.

From an analytical perspective, these findings demonstrate
how causal machine learning frameworks can enhance market
intelligence for strategic decision-making. The results show that
market dynamics respond differently across conditions, with
time-varying effects revealing shifts in market sensitivity over
time. Moreover, the integration of causal forests with quasi-
experimental validation improves interpretability by combining
flexible estimation with transparent robustness evidence.

From a deployment perspective, the proposed framework can
be incorporated into decision support systems through periodic
data updates and scheduled model re-estimation. Market data
may be refreshed at regular intervals to maintain temporal

relevance, while recalibration can be performed when structural
changes in market conditions are observed. In this context,
model monitoring should prioritise the stability of estimated
causal effects rather than predictive accuracy alone. Overall,
the framework is designed to support human decision-making
by providing validated causal insights, thereby emphasising
transparency and governance over automated execution.

V. CONCLUSION

This research presents a methodological integration of es-
tablished causal machine learning techniques addressing a
fundamental limitation in artificial intelligence for market
analysis: the inability to statistically validate causal claims
from observational data. While reasoning capable AI mod-
els can articulate hypotheses about market dynamics, they
cannot rigorously distinguish true causal mechanisms from
confounding associations. The proposed framework integrates
DML causal forests with transparent quasi experimental val-
idation, potentially transforming AI from pattern recognition
into validated market intelligence systems. Using a real world,
multi year dataset as a test case, the framework demonstrates
methodological advances. Analysis reveals heterogeneous mar-
ket responses across different conditions, with validated effect
estimates that enable an understanding of patterns. This multi
method convergence provides evidence that causal machine
learning, when properly validated, could potentially distinguish
genuine market dynamics from spurious correlations. A key
contribution of this work is the development of an integrated
causal machine learning architecture that combines the flexi-
bility of DML causal forests estimator with transparent quasi
experimental validation. Although the empirical evaluation
focuses on the automotive domain, the framework is designed
to be domain-agnostic and applicable to other industries where
observational data and policy interventions are present.These
extensions would further establish the framework’s utility as a



generalizable tool for evidence-based market intelligence and
strategic decision-making.

REFERENCES

[1] T. Ameer and O. Fatahi Valilai, “Cloud-native causal AI for supply chain
KPI monitoring: A GCP framework to diagnose out-of-stock events,”
Machine Learning with Applications, vol. 22, p. 100765, Dec. 2025.

[2] N. Mohammadian and O. Fatahi Valilai, “Decoding Consumer Insights:
A Python-Powered Analysis of Social Media for FMCG Production
Strategy,” in Intelligent Systems and Applications (K. Arai, ed.), (Cham),
pp. 314–324, Springer Nature Switzerland, 2024.

[3] O. Almashaleh and O. F. Valilai, “Enhancing digital marketing with
causal machine learning: Insights from social media engagement in textile
circularity,” in 2025 International Conference on Software, Knowledge,
Information Management & Applications (SKIMA), pp. 1–6, IEEE, 2025.

[4] S. Wager and S. Athey, “Estimation and inference of heterogeneous treat-
ment effects using random forests,” Journal of the American Statistical
Association, vol. 113, no. 523, pp. 1228–1242, 2018.

[5] O. Almashaleh and O. Fatahi Valilai, “Causal Drivers of Sustainable
Social Media Engagement in the Textile Industry: A Double Machine
Learning Approach,” IEEE Transactions on Engineering Management,
vol. 73, pp. 495–509, 2026.

[6] S. Athey and G. W. Imbens, “Machine learning methods that economists
should know about,” Annual Review of Economics, vol. 11, pp. 685–725,
2019.

[7] O. Mashalh, A. Gharaibeh, and A. Khalifeh, “Bandwidth usage forecast-
ing and network anomaly detection based on neural network approach,” in
Proceedings of the 3rd International Conference on Advances in Artificial
Intelligence, pp. 42–46, 2019.

[8] J. L. Bernal, S. Cummins, and A. Gasparrini, “Interrupted time series
regression for the evaluation of public health interventions: a tutorial,”
International Journal of Epidemiology, vol. 46, no. 1, pp. 348–355, 2017.

[9] A. Abadie, A. Diamond, and J. Hainmueller, “Synthetic control methods
for comparative case studies: Estimating the effect of california’s to-
bacco control program,” Journal of the American Statistical Association,
vol. 105, no. 490, pp. 493–505, 2010.

[10] N. Mohammadian, Y. Uygun, and O. F. Valilai, “Optimizing Product Life-
cycle Management with Omnichannel Strategies, Social Media Insights,
and Extended Producer Responsibility: A Case Study on Efficient Plastic
Waste Recycling,” in Flexible Automation and Intelligent Manufacturing:
Manufacturing Innovation and Preparedness for the Changing World
Order (Y.-C. Wang, S. H. Chan, and Z.-H. Wang, eds.), (Cham), pp. 349–
367, Springer Nature Switzerland, 2024.

[11] O. Almashaleh, H. Wicaksono, and O. Fatahi Valilai, “A framework
for social media analytics in textile business circularity for effective
digital marketing,” Journal of Open Innovation: Technology, Market, and
Complexity, vol. 11, p. 100544, June 2025.

[12] V. Chernozhukov, C. Hansen, N. Kallus, M. Spindler, and V. Syrgka-
nis, “Applied causal inference powered by ml and ai,” arXiv preprint
arXiv:2403.02467, 2024.

[13] J.-e. Chen and A. Jing, “Recent advances in causal machine learning
and dynamic policy learning,” Wiley Interdisciplinary Reviews: Compu-
tational Statistics, vol. 17, no. 4, p. e70050, 2025.

[14] G. Carloni, A. Berti, and S. Colantonio, “The Role of Causal-
ity in Explainable Artificial Intelligence,” WIREs Data Mining and
Knowledge Discovery, vol. 15, no. 2, p. e70015, 2025. eprint:
https://onlinelibrary.wiley.com/doi/pdf/10.1002/widm.70015.

[15] S. Athey and G. Imbens, “Recursive partitioning for heterogeneous causal
effects,” Proceedings of the National Academy of Sciences, vol. 113,
no. 27, pp. 7353–7360, 2016.

[16] V. Chernozhukov, D. Chetverikov, M. Demirer, E. Duflo, C. Hansen,
W. Newey, and J. Robins, “Double/debiased machine learning for treat-
ment and structural parameters,” The Econometrics Journal, vol. 21,
no. 1, pp. C1–C68, 2018.

[17] M. Lechner and J. Mareckova, “Comprehensive causal machine learning,”
arXiv preprint arXiv:2405.10198, 2024.

[18] P. Bach, V. Chernozhukov, M. S. Kurz, and M. Spindler, “Doubleml-an
object-oriented implementation of double machine learning in python,”
Journal of Machine Learning Research, vol. 23, no. 53, pp. 1–6, 2022.

[19] O. Almashaleh and O. F. Valilai, “An influence quantification model
utilizing social media analytics for business advertising and digital mar-
keting in sustainable fashion industry,” in Intelligent Systems Conference,
pp. 421–436, Springer, 2025.

[20] C. Farronato, L. Johnson, and R. Smith, “Green behavior through mobile
applications: A causal analysis,” Environmental Technology & Innovation,
vol. 28, pp. 103–121, 2024.

[21] N. Egami and E. Hartman, “Elements of external validity: Framework,
design, and analysis,” American Political Science Review, vol. 117, no. 3,
pp. 1070–1088, 2023.

[22] B. Bhat, S. Suriyanarayanan, and S. Stathel, “Adaptive meta-learning
approach for building damage evaluation expert system in dynamic
supply chain scenarios,” in Intelligent Systems and Applications (K. Arai,
ed.), vol. 1553 of Lecture Notes in Networks and Systems, Cham:
Springer, 2025.

[23] J. Grimmer, S. Messing, and S. J. Westwood, “Estimating heterogeneous
treatment effects and the effects of heterogeneous treatments with en-
semble methods,” Political Analysis, vol. 32, no. 1, pp. 1–20, 2024.

[24] T. Krajewski and M. Hudgens, “The augmented synthetic control method
in public health and biomedical research,” Statistical methods in medical
research, vol. 33, no. 3, pp. 376–391, 2024.

[25] L. Sun, E. Ben-Michael, and A. Feller, “Using multiple outcomes
to improve the synthetic control method,” Review of Economics and
Statistics, pp. 1–29, 2025.

[26] E. Muehlegger and D. S. Rapson, “Subsidizing low-and middle-income
adoption of electric vehicles: Quasi-experimental evidence from califor-
nia,” Journal of Public Economics, vol. 216, p. 104752, 2023.

[27] Kraftfahrt-Bundesamt (KBA), “Fahrzeugzulassungen - neuzulassungen
von kraftfahrzeugen nach umwelt-merkmalen.” https://www.kba.de/DE/
Statistik/Fahrzeuge/Neuzulassungen/neuzulassungen node.html, 2024.

[28] H. Ritchie, M. Roser, and P. Rosado, “Co2 and greenhouse gas emis-
sions.” https://ourworldindata.org/co2-and-greenhouse-gas-emissions,
2020. Our World in Data.

[29] Federal Ministry for Economic Affairs and Climate Action, “Innovation
premium for electric vehicles,” policy document, Federal Ministry for
Economic Affairs and Climate Action, Berlin, Germany, 2020.

[30] German Emissions Trading Authority, “National emissions trading sys-
tem for fuel emissions,” policy implementation report, German Emissions
Trading Authority (DEHSt), Berlin, Germany, 2021.

[31] Federal Ministry for Economic Affairs and Climate Action, “Termination
of electric vehicle purchase subsidies,” government announcement, Fed-
eral Ministry for Economic Affairs and Climate Action, Berlin, Germany,
2023.

[32] Databricks, “What is a data lakehouse?.” https://www.databricks.com/
glossary/medallion-architecture, 2023. Databricks Documentation.

[33] O. Almashaleh, H. Wicaksono, and O. F. Valilai, “A case study of social
media analytics for effective digital marketing in textile circularity,”
in 2024 IEEE International Conference on Technology Management,
Operations and Decisions (ICTMOD), pp. 1–7, 2024.

[34] F. T. Denton, “Adjustment of monthly or quarterly series to annual totals:
An approach based on quadratic minimization,” Journal of the American
Statistical Association, vol. 66, no. 333, pp. 99–102, 1971.

[35] T. B. Bhat, M. V. Trupthi, and M. Satish, “Multi-featured data analysis
algorithm for feature subset selection based on clustering,” International
Journal of Computer Applications, 2024. In press.

[36] M. Satish, T. B. Bhat, M. V. Trupthi, K. Vishu, and C. N. Chinnaswamy,
“Efficient design of fast feature subset selection algorithm for multi-
dimensional data based on clustering,” International Journal of Advanced
Computer Science and Applications, 2024. In press.

[37] M. A. Hernán and J. M. Robins, Causal Inference: What If. Chapman
& Hall/CRC, 2020.


