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Abstract—Physical movement training systems can
ozer structured, accessible, and personalized }tness
or rehabilitation. While many existing systems pose
estimation for real-time feedback and movement as-
sessment, they often lack support for user-generated
content. This study presents an online physical training
system enabling trainers to upload custom videos and
utilize pose estimation for real-time feedback and pos-
ture similarity assessment. A pilot feasibility study with
}ve healthy participants yielded a System Usability
Score of 78.5 and high usefulness ratings (4.8/5 for re-
habilitation, 4.6/5 for frozen shoulder diagnosis). Pos-
ture similarity scores were closely aligned with expert
ratings (0.16 dizerence). However, several challenges
remain for clinical use. Future work should focus on
improving 3D pose estimation accuracy, conducting
broader clinical validation, developing vision-based us-
age guidelines, and integrating human expertise with
AI to foster ecosystem adoption.

Index Terms—Pose estimation, Movement guidance,
Frozen shoulder assessment, Online health application

I. Introduction
Physical body movement is important for both phys-

ical and mental well-being. Nowadays, online channels
allow diverse groups—from }tness enthusiasts to reha-
bilitation patients—to practice remotely. However, while
convenient, asynchronous training often leaves trainees
uncertain about their form, and live sessions risk over-
burdening trainers. Recent advances in computer vision
address these limitations by enabling systems to provide
automated, real-time feedback on user postures, enhancing
personalized care and accessibility.

Interests in using pose estimation with online training
systems are rising [1], [2], with applications including reha-
bilitation and sports. However, most existing systems use
data collected in controlled laboratories. Systems utilizing
user-created content remain limited. Leveraging trainer-
uploaded videos as a resource allows for scalable, expert-
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driven instructional material that re~ects current expertise
without relying on laboratory constraints.

In this paper, we de}ne a trainer as an individual move-
ment designer (e.g., physiotherapist or }tness instructor)
and a trainee as the practitioner of such movements. We
presents a practical system prototype where trainers up-
load demonstration videos as references for trainees. The
system facilitates intuitive visual comparison as well as
utilizes existing pose estimation library to quantitatively
assess posture against trainer-de}ned criteria, providing
real-time feedback to enhance movement accuracy. We
contribute a pilot feasibility study and discuss challenges
for deploying integrated pose-estimation systems.

II. Background
This section provides background and related works on

pose estimation, physical movement training systems, and
movement assessment.

Pose Estimation. Human pose estimation identi}es
body points such as elbows or wrists, using inertial mea-
surement units (IMUs), visual markers, or marker-free
systems [3], yielding 2D or 3D results [4]. Challenges
persist in visual data: 2D estimation suzers from occlusion
and lack of visual cues, though temporal data helps [5].
3D estimation struggles with complex backgrounds. While
multi-view integration [6] addresses these issues, it remains
computationally expensive [7].

We focus on accessible, camera-based ML open-source
libraries like OpenPose [8] and MediaPipe [9] that can
detect real-time posture using only conventional cameras.
We selected MediaPipe for its versatility and e{ciency
on resource-constrained devices. Recently, Saraswat and
Malathi [10] demonstrated that MediaPipe could achieve
95.84% accuracy in fall detection. It is currently a dom-
inant library for physical movement feedback [2]. Unlike
works solely improving accuracy, this paper examines
system limitations and address inaccuracies from both
technological and human perspectives.

Physical movement training systems. Several phys-
ical movement training systems adopt pose estimation
to analyze and understand human movement, such as
PoseNet for kickboxing [11] and OpenPose for sports



forms [12]. However, e{cacy with diverse user-created
content remains unclear. While Tharatipyakul et al [13]
utilized YouTube content, the system lacked manual up-
load capabilities and relied on controlled settings. Re-
cently, Jaya et al [14] achieved high accuracy in strength
training using MediaPipe on expert-recorded data. Still,
their assessment limited to repetition counter. This paper
proposes a system enabling user-uploaded training videos,
automated feedback via user-customized rules, and visual
comparison. The practical prototype was evaluated in a
pilot study of frozen shoulder assessment movement in
clinical settings.

Movement assessment. Intelligent movement assess-
ment, typically assessing user activity and delivering user
feedback, is well-established [15], yet camera-based pose
estimation remains relatively emerging [16], [17]. A re-
view [2] categorizes assessment methods into: mathemati-
cal models (e.g., angular similarity), rule-based methods,
and machine learning. In this paper, we implemented
a mathematical formula and a rule-based method. Our
contribution is an end-to-end work~ow that enables non-
technical trainers to create and customize evaluation rules
directly from their videos and to provide both automated
and manual feedback to trainees.

III. System Design and Implementation
We designed and implemented a system that enables

users to create a training lesson, practice, assess, and
review the movement using a laptop without the need for
high-cost equipment.

Create: A trainer uploads a video recorded using any
application and speci}es movement assessment rules (e.g.,
target body parts and angle thresholds). The system then
pre-processes the trainer’s pose data to improve runtime
e{ciency. To support reliable assessment, the uploaded
video must contain only a single person.

Practice: The trainee uses a webcam to practice while
viewing the trainer’s video. The system performs real-time
pose estimation on the trainee, compares their movement
to the trainer’s, and provides automated visual feedback.

Assess: Post-practice, the system displays a summary
of the assessment results (e.g., similarity score). The
trainee can optionally submit their video recording and
results report, along with questions, to the trainer for
subsequent manual feedback.

Review: The trainee reviews their recorded perfor-
mance, utilizing both the system’s automated feedback
(for rapid understanding) and the trainer’s manual feed-
back (for nuanced guidance and con}dence building).

We describe the core features that facilitate the practice,
assessment, and review of movements in next subsections.

A. Pose Estimation
Pose estimation determines the positions and orienta-

tions of a person’s joints in a video recording or live video
feed. It tracks 33 body landmark locations, which serve

as inputs for similarity comparison, angle measurement,
range of motion measurement, and visualization.

The system employs MediaPipe [9] for pose estima-
tion, leveraging its direct output. The server utilizes
the BlazePose GHUM Heavy model (highest accuracy,
slowest), while the client uses the faster, less accurate
BlazePose GHUM Full model. The architecture is ~exible,
allowing for easy updates or replacement of the pose
estimation method, provided it supplies the landmarks for
the shoulders, elbows, wrists, hips, knees, and ankles. This
ensures adaptability as technology advances.

Although the system primarily uses 2D coordinates,
MediaPipe’s intrinsic provision of 3D points enabled pre-
liminary experimentation with 3D data (Section IV).

B. Pose Similarity Comparison
Pose comparison is essential in physical movement train-

ing for ensuring accurate alignment. Similarity analysis
comprises three parts: de}ning body parts, visualizing
target positions, and calculating the similarity score.

1) De}ne Interested Body Parts: Selecting speci}c body
segments (e.g., arms, legs) for movement training com-
parison is crucial for increasing learning e{cacy. First,
this segment-speci}c feedback ensures high relevance to
the practiced movement, minimizing distraction and en-
hancing ezectiveness (e.g., focusing on arms during bicep
curls, not legs). Second, it facilitates incremental part
learning, where sub-tasks are mastered individually before
integration into the whole task. This approach is superior
to whole learning for complex movements [18].

Our system allows trainers to specify default interested
body parts (e.g., left/right upper arm, hip line) during
lesson creation. Trainees can further customize the parts
for personalized feedback during practice.

2) Visualize Target Positions: The system ozers real-
time, frame-by-frame visual guidance by overlaying the
trainer’s reference pose onto the trainee’s pose, enabling
precise movement adjustments.

To account for body structural dizerences, the trainer’s
pose is mapped to the trainee’s pose. This involves match-
ing joints and projecting the trainer’s body part vectors
(v⃗i) onto the trainee’s corresponding vectors (u⃗i). The
resulting vector, u⃗targeti

, retains the magnitude of u⃗i but
adopts the direction of v⃗i (Equation 1).

u⃗targeti
=

v⃗i

∥v⃗i∥
× ∥u⃗i∥ (1)

The mapping process adheres to body structure hierar-
chy: upper body parts (e.g., upper arms) are mapped }rst,
establishing new target joint locations (e.g., elbows) for
subsequent lower parts (e.g., lower arms). The system cal-
culates the angular dizerence for each body part between
the trainer and trainee. To ensure the system captures only
signi}cant postural deviations, the feedback is shown only
when the discrepancy exceeds a trainer-de}ned threshold.



The target vectors are visualized as red dashed lines,
analogous to handwriting practice guidelines. Trainees
should aim to align their body parts with these lines.
Alternative visualization strategies, such as highlighting
dizerences or marking incorrect parts, are also available.

3) Calculate Similarity Score: In addition to visual
guidance, the system calculates a numeric similarity score
to objectively grade trainee performance and track im-
provement. Scores are calculated per frame but displayed
as a }nal average upon practice completion.

Cosine similarity was selected as the core metric due
to its superior accuracy compared to Euclidean distance
and raw angle dizerence [19]. The system averages the
cosine similarity scores across all relevant body parts
detected in the current frame. Undetected trainer body
parts are ignored. If a trainer body part is detected but
the corresponding trainee part is not, that part’s score is
set to zero to ensure thorough evaluation.

The }nal average score is presented along with a trainer-
de}ned qualitative rating (e.g., Good, Excellent) to sum-
marize the trainee’s overall alignment.

C. Degree Measurements
Beyond pose similarity, the system implements degree

measurements to assess the trainee’s form against trainer-
de}ned custom rules. Inspired by literature review [2], we
identi}ed two key measurements: angle of body parts and
range of motion (ROM), useful across various movement
types. The angle of body parts measures the angle between
two lines within a frame where as ROM measures a body
part’s angle across frames.

Unlike systems with }xed conditions, our platform al-
lows trainers to ~exibly de}ne the expected angles and
ROM thresholds for any number of measurements during
lesson creation. The system processes these rules frame-by-
frame and visualizes the results during playback (Figure
1) as well as in the }nal summary report.

(a) (b)

Fig. 1: Visualization of the results when measuring the
angle of body parts and range of motion (ROM) at 2nd
second (a) and 7th second (b) of a video. At the 7th second,
the angle between the right upper arm and shoulder is
147

◦. Between the 2nd to the 7th second, the ROM of the
left and right lower arms are 47

◦ and 50
◦, respectively.

Fig. 2: Example of user interface of video playback.

D. User Interface for Video Playback
The system utilizes a uni}ed video playback compo-

nent (Figure 2) for practice, assessment, and review.
All feedback—including pose estimation, pose similarity,
and degree measurement results—is visualized directly
onto the trainee’s body. The trainer’s video remains
annotation-free for clear observation. To enhance focus,
we use MediaPipe for background removal, allowing the
trainer’s and trainee’s video feeds to be positioned closely
within the central visual }eld. These design choices are
based on prior experiment in a laboratory setting [13]. Ad-
ditionally, measurement results are presented in a timeline
view using color-coded bars: blue-gray for unmeasured,
and green/red bars to indicate pass/fail against trainer-
de}ned thresholds.

IV. Pilot Feasibility Study

As a case study, we experimented the system’s ability
to access frozen shoulder symptoms. This experiment,
performed at the Rehabilitation Department of a local
hospital, aimed to measure system error and identify
challenges within a rehabilitation context.

A. Participants
Recruitment was conducted via word-of-mouth within

the computer engineering department of a local university.
A total of }ve healthy individuals (4 males, 1 female; age
range: 23–31 years, M = 25.8, SD = 3.35) were enrolled.

B. Apparatus
The system was run on a laptop with 11th Gen Intel(R)

Core(TM) i7-1165G7 processor at 2.80GHz, with 16 GB
of RAM and Intel(R) Iris(R) Xe Graphics. We run the
back-end in Docker on the laptop to eliminate Internet
issues and run the front-end in a Chrome web browser. The
feedback was shown only when the angular discrepancy
exceeded 10

◦, chosen empirically for the pilot setup.



The laptop had a 14” monitor with 1920 × 1080 pixels
resolution. Four Hoco DI01 web cameras were used as
input devices. Figure 3 shows the experimental setup.

Fig. 3: Participants stood at the mark, then followed
movements and received feedback via the laptop display
and CAM1. Additional cameras, simulating typical spatial
constraints, were used solely for evaluation.

We recorded }ve training videos in our native lan-
guage: elevation through abduction, elevation through
~exion, extension, external rotation, and internal ro-
tation (VID 1-5, respectively). The movements and
camera angle were imitated from a third-party video
(https://youtu.be/cP4LLJie9kw), selected by searching
for “shoulder range of motion” and limiting results to
videos featuring a single person.

C. Procedure
After obtaining informed consent, the experimental ses-

sion began with an explanation of the system features
using a sample video. Participants were then allowed a
brief period to freely interact with the system using this
sample. Upon readiness, participants were instructed to
perform a series of prede}ned movements at designated
locations, prioritizing safety by avoiding forced motion.

For each movement, we played the video once while the
participant stayed still to study the movement. The video
played again, prompting the participant to begin following
the movement. The participant movement was recorded.
Once the video ended, the participant sustained the }nal
posture while a researcher measured body angles using a
goniometer. A traditional goniometry procedure followed,
involving aligning the stationary and moving arms of the
goniometer with prede}ned anatomical landmarks.

Finally, participants completed a post-experiment ques-
tionnaire covering demographics, system usability, usage
issues, and general comments. The whole process took
30 - 40 minutes. After all participants completed the
procedure, two researchers watched the recordings and
individually rated whether the participant movement was
similar to the trainer movement in 5-point scale.

D. Results
Measurement Error. We collected 2D and 3D land-

mark data. As described in the procedure, we tested two

manual measurement methods. The }rst method, sus-
tained posture, risks manual error in locating anatomical
landmarks. The second method, traditional procedure,
risks comparison error since movement was performed
twice. We found that the angular dizerences between the
two methods were minor (7.32

◦ on average). Since the
traditional procedure better re~ects a standard clinical
measurement, it was chosen for all subsequent analyses
to evaluate the system’s error.

The error is de}ned as the absolute angular dizerence
between the system calculated measurement and the man-
ual measurement using traditional procedure.

Figure 4 shows the error grouped by camera view. The
dizerences between views were low, especially with 3D
points. The average error of CAM1, CAM2, CAM3, and
CAM4 were 26.02

◦, 27.54
◦, 30.74

◦, and 36.36
◦ for 2D

points and 24.76
◦, 20.86

◦, 23.96
◦, and 23.92

◦ for 3D points.
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Fig. 4: Absolute angular dizerences using 2D points and
3D points. Errors are grouped by camera view and colored
by the shoulder side (Left/Right).

Figure 5 shows the error grouped by movement video.
The error were particularly high when the movement
involved z-axis (i.e., external and internal rotation). The
average error of movement 1 to 5 were 9.18

◦, 35.85
◦,

12.68
◦, 46.30

◦, and 46.83
◦ for 2D points and 14.28

◦,
34.95

◦, 9.05
◦, 21.23

◦, and 37.38
◦ for 3D points.
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Fig. 5: Absolute angular dizerences using 2D points and
3D points. Errors are grouped by movement video and
colored by the shoulder side (Left/Right).

Similarity Error. The error of the system’s similarity
score, which utilizes a 5-point grading scale, was assessed
by calculating the absolute score dizerence between the
system’s output and the average of two manual expert
grading. The average error was 0.16.



Usability. The system received the average system
usability score of 78.5 (Good). The participants also rated
the usefulness of the application in the following areas (1
- 5, where }ve means the participant strongly agrees that
the application will be useful in the area):

• Diagnosis of frozen shoulder: 4.6
• Help in rehabilitation: 4.8
• Help in dance training: 4
• Help in practicing yoga: 4.4
• Prevent injury from exercise incorrectly: 4.2
Participant feedback centered on movement di{culty

and interface improvements. P3 noted di{culty viewing
movements with the body side facing the screen and
suggested using }xation tools for the head/neck. P1 found
sustained positions tiring and recommended posture as-
sessment (e.g., walking/standing). P4 suggested relocating
the virtual trainer (left side) for better viewing.

E. Discussion
Overall, the system shows potential for clinical use,

supported by a good usability score (78.5, exceeding the
reported mean of 68 for digital health applications [20])
and usefulness ratings. However, the measurement error
was still too high. We therefore implemented preliminary
enhancements and re-evaluated the system. Speci}cally,
we upgraded the underlying pose estimation libraries
(from Python v0.8.11/JS v0.4.16 to Python v0.10.11/JS
v0.5.16) and re}ned the degree measurement rules by
extending the pose assessment duration to three seconds.

A subsequent evaluation using data from CAM1 showed
substantial error reductions: from 26.02

◦ (SD = 41.82)
to 13.00

◦ (SD = 11.78) for 2D measurements, and from
24.76

◦ (SD = 36.19) to 15.20
◦ (SD = 11.47) for 3D

measurements. The }nal errors align with those reported
for pose estimation versus marker-based motion capture in
athletic (9.7

◦ ±4.7
◦) and sports contexts (9.0

◦ ±3.3
◦) [21].

The system demonstrated excellent concurrent validity
(ICC = 0.899 for 2D, 0.922 for 3D; p < .001), indicating
high consistency in ranking movements relative to the
human baseline. However, Bland-Altman analysis (Figure
6) revealed that while the mean biases were low, the 95%
limits of agreement (−55.64

◦ to 51.72
◦ for 2D; −38.9

◦ to
51.0

◦ for 3D) exceeded the acceptable threshold for clinical
utility. Furthermore, as the dataset involved multiple mea-
surements per participant, the results may be in~uenced
by within-subject correlation.

This study was restricted to a small cohort of healthy
participants (N = 5) to identify necessary technical re}ne-
ments before proceeding to a larger-scale trial. Beyond im-
proving measurement accuracy, the following issues must
be addressed to facilitate future clinical adoption.

Occlusion and 3D motion. Errors were particularly
high for movements involving occluded body parts (VID2).
Interestingly, the low error observed in VID3, where a sim-
ilar occlusion was presented, suggests the system may infer
the occluded position. Alternatively, mitigating occlusion
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Fig. 6: Bland-Altman Analysis using 2D points and 3D
points from the updated system. The number denotes
movement VID and is colored by the shoulder side
(Left/Right).

can be achieved by adjusting the camera or body angle.
The average errors of VID2 were reduced from 59.30

◦ (2D)
and 58.90

◦ (3D) with CAM1 (front view) to 5.80
◦ (2D) and

10.30
◦ (3D) with CAM4 (45

◦ view).
Due to perspective distortion in 2D measurements,

3D measurements performed better for z-axis movements
(VID4 and VID5), as indicated by fewer data points falling
below the lower limits of agreement in Figure 6. However,
while MediaPipe provides 3D pose estimates from 2D
imagery, we observed occasional rotational inconsistencies,
with reconstructed poses appearing tilted relative to the
ground plane. Future integration of enhanced approaches,
such as Improved MediaPipe [22], may help improve 3D
point accuracy and overall usability.

Measurement method. The rule-based measurement
approach is intuitive and easily tunable. One factor re-
ducing the updated system’s error was the extended mea-
surement duration, increasing the likelihood of correct
body part localization. Nevertheless, accurate 3D point
estimation is essential. Our general-purpose angle method
uses body parts (e.g., shoulder-hip line for the y-axis)
as references, deviating from the traditional procedure.
Higher 3D accuracy would enable closer adherence to
traditional methods, aligning with the need for precise
measurements highlighted by El-Rajab et al. [17].

Pose estimation preciseness. Human body keypoint
precision from current pose estimation libraries might be
inadequate for clinical usage. MediaPipe, for instance,
detects the shoulder area but misses the crucial acromion
process (Figure 7) used by experts. Developing detailed
body landmarks, akin to MediaPipe’s 468 3D face land-
marks, is a promising direction for clinical integration.

Fig. 7: The system could detect the shoulder area (the blue
dots) but not the acromion process (the red dots).

Clothing. Clothing can impede participants from per-



forming the posture correctly (e.g., avoiding maximum
arm elevation to prevent exposing their midriz). Clear
instructions on appropriate clothing should be provided,
similar to the protocols in a traditional clinical diagnosis.

Wrong posture. Despite the apparent simplicity of the
movements, participants often used compensatory motions
to in~ate their ROM (e.g., dropping the upper arm during
internal rotation). The overlaying visual cues were insuf-
}cient to prompt self-correction, as users prioritized in-
creasing ROM. Consequently, the current system is better
suited for a clinical setting where experts can supervise
and correct posture. With acceptable error, the system
could aid screening and digital history tracking. For home
use, a feature to detect and actively alert users to typical
compensation is necessary.

Other factors. Clinical diagnosis relies on factors be-
yond body degree measurement, e.g., pain levels and pa-
tient pro}le. For example, using only the internal rotation
measurement misrepresented healthy participants. Thus,
the system should incorporate clinical factors and provide
a probabilistic assessment instead of binary feedback.
Establishing an ecosystem that engages human experts in
evaluating user performance is also recommended.

V. Conclusion and Future Directions
We presented an online physical movement training

system that allows trainers to upload videos for trainees
to follow or practice. The system uses pose estimation
technology to provide real-time visual comparison and
feedback, and assesses performance based on posture sim-
ilarity or trainer-de}ned rules. The user study (N = 5)
demonstrated good usability and the measurement er-
rors: 13.00

◦ (SD = 11.78) for 2D points and 15.20
◦

(SD = 11.47) for 3D points. Yet, several barriers to
clinical adoption persist. Future research should prioritize
improving 3D pose estimation accuracy and conducting
long-term clinical validation with actual patients to con-
}rm utility. Subsequently, developing vision-based usage
guidelines (e.g., clothing, camera angle) and an expert-
AI ecosystem will facilitate system adoption for physical
movement training.
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