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Abstract— This paper presents a preliminary methodology for
designing an energy-centric digital twin for a smart-farm
greenhouse using multi-year operational power data. Hourly
main load is derived from device-level heating logs and evaluated
across two winters (Jan—-Mar 2023 for training and Jan—Mar
2024 for validation). A lightweight linear regression estimator
using heating power signals and temporal features achieves stable
cross-year performance (MAE 2.1 kW, RMSE 3.4 kW) and
reproduces daily heating cycles and peak-load ramps. The results
indicate that computationally efficient estimators can support
early-stage digital twin integration and enable scenario-based
energy assessment.
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L. INTRODUCTION (HEADING 1)

Smartfarm systems have rapidly expanded worldwide as a
core technology for improving agricultural productivity and
automation[1]. Driven by the adoption of sensor networks,
data-driven control, and energy-intensive environmental
management, the global smart agriculture market has grown
steadily, and ICT-based facility agriculture in Korea has
increased from a marginal share of cultivated area to several
thousand hectares of digitally managed greenhouses[2]. These
facilities typically operate with a high degree of automation,
enabling precise control of temperature, humidity, CO,
concentration, irrigation, and ventilation[3].

However, this automation has also intensified energy use,
particularly for heating and cooling during winter operation.
Heating and cooling frequently account for 40-60% of total
operating costs in commercial smartfarm greenhouses, and
recent increases in electricity and fuel prices have further
amplified the burden of winter energy bills[4-6]. In many
cases, these energy costs offset the productivity gains achieved
by smartfarm technologies, making climate-control energy one
of the key constraints on the long-term economic sustainability
of smartfarm operations.

To mitigate these challenges, numerous studies have
analyzed greenhouse energy consumption using device-level
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power logs or single-season datasets[7]. Most existing
approaches rely on conventional regression, correlation
analysis, or short-term forecasting[8]. While these methods
provide useful insights into seasonal trends and peak loads,
they are limited in capturing the operational complexity of real
farms, in generalizing across multiple winter seasons, and in
supporting proactive decision-making. In particular, traditional
data-driven analyses cannot reproduce realistic operating
scenarios or evaluate hypothetical strategies—such as changing
heating setpoints or modifying equipment schedules—before
implementation.

Digital twin (DT) technology offers a promising way to
address these limitations by virtually representing the physical
environment, equipment, and energy behavior of smartfarms.
DT-based systems can integrate real power records, simulate
energy usage under alternative operating strategies, and assess
the impact of environmental or seasonal changes in a risk-free
virtual space[9]. Nevertheless, DT research in agriculture is
still at an early stage, and energy-centric smartfarm digital
twins that exploit multi-year operational data remain scarce.

In this study, we propose a preliminary design methodology
for a smartfarm energy digital twin based on multi-year power
consumption analysis. Using real device-level power logs
collected over two consecutive winter seasons in a commercial
greenhouse, we characterize energy usage patterns at the
subsystem level and derive design requirements for an energy-
focused digital twin capable of supporting future simulation-
based decision making. Unlike prior work that relies on single-
season datasets, our multi-year analysis captures inter-annual
variations in heating demand and equipment operation,
providing a more realistic foundation for DT configuration and
validation.

The remainder of this paper is organized as follows. Section
II reviews related work on smartfarm energy analysis and
agricultural digital twins. Section III describes the smartfarm
facility, the metering infrastructure, and the structure of the
multi-year power logs. Section IV presents the proposed energy
digital twin architecture and configuration. Section V
introduces a lightweight preliminary energy model and
evaluates its ability to reproduce multi-year consumption



patterns. Finally, Section VI concludes the paper and discusses
future research directions.

II. RELATED WORK

A.  Power Consumption Characteristics and Analysis in
Smartfarm

Energy use especially for heating and cooling is a dominant
operational burden in modern smartfarms, often accounting for
40-60% of total costs[10-12]. Prior studies have analyzed
device-level power patterns and environmental factors using
statistical or machine-learning methods to predict short-term
heating demand[13]. However, most analyses rely on single-
season datasets, limiting their ability to capture inter-annual
variability or generalize across different winter conditions. As a
result, existing approaches offer only narrow temporal insights
and provide limited support for long-term energy planning.

B. Digital Twin Applications in Agriculture and Smartfarm

DT technologies have been applied in agriculture for
greenhouse monitoring, hydroponic control, and crop growth
prediction, typically by integrating IoT data with simulation
engines. Recent data-driven DTs enable predictive analytics
and scenario evaluation, but most focus on environmental or
crop modeling rather than energy behavior[14]. Furthermore,
these DTs are generally built on single-period datasets,
restricting their capability to evaluate seasonal changes or long-
term operational trends.

C. Distinctions of This Study and Gaps in Existing Research

A clear gap remains between smartfarm energy analysis
and DT research. Energy studies lack mechanisms for virtual
scenario testing, while agricultural DTs seldom incorporate
multi-year operational data needed for realistic energy
modeling. This study addresses these limitations by designing
an energy-oriented smartfarm DT based on two consecutive
winter seasons of real power logs. The multi-year perspective
enables identification of inter-annual differences in heating
demand and subsystem operation, forming a robust foundation
for future simulation-based energy strategy evaluation.

III. DATASET AND DATA COLLECTION

A. Smartfarm Overview

Figure 1. Panoramic view of the rental greenhouse at Goheung Smart Farm
Innovation Valley.
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The dataset used in this study was collected from a
commercial smart farm located in the Smart Farm Innovation
Valley in Goheung, Jeollanam-do, as shown in Figure 1. This
facility consists of a multi-span glass greenhouse with a total
cultivation area of approximately 648 m?, representing modern
Korean smart farm facilities in terms of structural design and
equipment configuration. The primary crop grown in the
greenhouse is strawberries, a high-value horticultural crop
requiring precise environmental and energy management
during winter production [15].

The glasshouse is equipped with a typical set of energy-
related systems, including multiple heat pump units for thermal
conditioning, fan coil units (FCUs) for air distribution,
circulation and nutrient solution pumps, horizontal screens for
thermal insulation, and additional auxiliary equipment such as
circulation fans and sulfur fumigation devices. These systems
are integrated into a smartfarm control environment that
monitors and records device-level electrical power usage as
part of daily operation. Because winter strawberry cultivation
demands continuous heating and careful climate management,
the facility provides an appropriate real-world testbed for
analyzing smartfarm energy consumption and for designing an
energy-oriented digital twin.

B.  Energy Monitoring and Metering Setup

The smartfarm is equipped with a device-level electrical
metering system that records power consumption from major
subsystems, including heating units, fan-coil units, pumps, and
auxiliary devices. Dedicated meters installed at the main
distribution panel transmit real-time load data to a centralized
gateway, enabling synchronized multi-channel logging.

All measurements are collected at a one-minute interval,
allowing observation of short-cycle behaviors such as heat
pump activation and circulation pump cycles. The fully
automated acquisition process operates continuously
throughout the winter production period. All device-level
measurements are integrated into a unified time-series database,
producing a high-resolution dataset suitable for subsystem-
level energy analysis and for configuring the proposed energy
digital twin.

C. Power Log Structure and Preprocessing

The dataset is organized as time-stamped records at one-
minute resolution from January to March, with each entry
representing instantaneous device-level power measurements.
Preprocessing includes checking for missing or duplicated
timestamps and resampling the data to consistent intervals (e.g.,
one-minute or hourly) depending on analytic needs.

Device-level values can be analyzed individually to
examine subsystem behavior or combined to compute
composite indicators such as total heating demand and overall
greenhouse power usage. These processed features form the
primary inputs for the energy modeling and digital twin
development in this study.



D. Multi-Year Summary of Power Consumption

A comparison of the 2023 and 2024 winter power logs
reveals clear inter-annual variability in heating-related energy

digital-twin-based modeling framework capable of generalizing
across multiple operational seasons rather than relying on a
single-year dataset.
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Figure 2. Hourly mains power profiles for January 2023 and 2024.

Figure 2(a) shows the main power profile for January
2023, where heating behavior follows a relatively stable
pattern. Power levels remain concentrated around 23-27 kW
during active periods, and the daily cycles exhibit consistent
plateaus and predictable off-cycle intervals. This pattern
indicates steady thermal requirements and a uniform heating
schedule throughout the 2023 winter period.

In contrast, Figure 2(b) illustrates the January 2024 power
profile, which displays substantially greater variability in both
magnitude and temporal structure. The heating load fluctuates
from near-zero to peak values approaching 30 kW, with more
frequent short-cycle activations and sharper transitions between
high and low states. These irregularities imply larger indoor—
outdoor temperature offsets, greater intra-day temperature
swings, or changes in heat retention efficiency during early
2024. Supporting subsystems such as fan-coil units and
circulation pumps also show elevated baseline activity in 2024,
suggesting more persistent air distribution and thermal mixing
demands, while non-heating subsystems remain minor
contributors in both years.

Despite identical facility conditions and cultivation settings,
the two datasets demonstrate distinctly different temporal
signatures: 2023 presents smooth and repetitive heating cycles,
whereas 2024 exhibits more dynamic and volatile behavior.
These findings underscore the inherent year-to-year uncertainty
in smartfarm energy consumption and highlight the need for a
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IV. DIGITAL TWIN ARCHITECTURE AND DESIGN
REQUIREMENTS

A. Digital Twin Concept and Design Principles

The DT proposed in this study aims to provide a virtual
representation of the smartfarm’s energy behavior that mirrors
the operational characteristics of the physical system. Unlike
traditional simulation tools, which rely on predefined physical
models or static assumptions, a DT continually integrates real
operational logs to reflect the actual conditions of the system
and support data-driven scenario evaluation. In the context of
smartfarm heating operations where energy consumption is
highly sensitive to seasonal variations, equipment aging, and
daily operational strategies a DT must be designed to remain
both lightweight and adaptable to changing real-world
conditions.

To meet these objectives, the DT in this study adheres to
the following design principles:

e Data-Centricity: The DT should utilize multi-year,
device-level power logs as its primary information
source, ensuring that the virtual model reflects real
operational tendencies rather than idealized thermal
responses.

e  Modularity: Each component of the DT (physical
mapping, data processing, energy modeling, and
scenario simulation) should function independently,



allowing modular refinement without altering the
entire system.

e  QGeneralizability: The DT should be capable of
reproducing energy behavior across different
operational years, capturing inter-annual variability in
heating demand and equipment performance.

e Lightweight Implementation: To support practical
deployment in commercial farms, the DT should rely
on computationally efficient modeling techniques and
avoid excessive dependence on complex physics-based
simulations.

e Scenario Expandability: The DT must be prepared to
evaluate what-if scenarios such as modifying heating
setpoints, altering daily schedules, or optimizing
device combinations to support decision-making in
future work.

These principles form the foundation for the layered DT
architecture described in the next section.

B.  Layered Architecture of the Proposed Energy Digital

The proposed digital twin follows a four-layer architecture
that mirrors the structure of typical DT implementations in
industrial energy systems while being adapted specifically for
smartfarm operations. Each layer performs a distinct role, and
together they form an integrated pipeline from real-world
measurement to virtual simulation.
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Figure 3. Overall architecture of the proposed smartfarm energy digital twin

Figure 3 presents the overall architecture of the proposed
smartfarm energy digital twin. The DT is structured as a four-
layer framework designed to translate raw device-level power
measurements into a virtual representation capable of
supporting future scenario-based energy analysis.

The Physical Layer models the real smartfarm
infrastructure, including the heating system (HP1-HPS), air
distribution units (FCU1-2), and pumps and auxiliary devices.
Each component corresponds directly to an element in the
virtual DT to ensure structural alignment between the physical
and digital environments.

Above this, the Data Layer handles the acquisition,
preprocessing, and structuring of multi-year power logs. Raw
power measurements collected over the 2023-2024 winter
seasons undergo cleaning, time alignment, and temporal
aggregation to produce a structured dataset suitable for model
calibration. This layer ensures data consistency and supports
both historical and real-time integration.

The Model Layer contains the lightweight energy behavior
models that form the core of the DT. It includes simple
baseline models as well as the proposed energy estimation
module, which performs data-driven prediction of heating-
related power consumption. A calibration and evaluation block
is used to validate generalizability by training on 2023 data and
testing on 2024 data, reflecting the interannual variability
observed in smartfarm operation.

At the top, the Simulation Layer provides interfaces for
future scenario-based evaluation. Although full scenario
experiments are beyond the scope of this preliminary work, the
architecture defines the necessary structures for applying
hypothetical operation strategies such as altered heating
setpoints or modified equipment schedules through the DT
simulation engine. The resulting outputs are expressed as
energy KPIs that can inform decision-making in future studies.

C. Proposed Energy Digital Twin Configuration

Based on the identified design requirements, the proposed
smartfarm energy digital twin consists of three core
components: a structural mapping module, a lightweight
energy estimation module, and a simulation interface. The
structural mapping module defines the correspondence between
real-world devices—such as heating systems, FCUs, and
pumps—and their virtual representations. The energy
estimation module leverages multi-year historical logs to
approximate baseline consumption patterns and capture inter-
annual variability using a computationally efficient model.
Finally, the simulation interface establishes a logical
framework for future scenario testing and strategy evaluation.
Together, these components form a coherent preliminary
digital twin that reflects real smartfarm energy behavior and
provides a foundation for scenario-oriented energy
optimization.

D. Implementation Workflow for Lightweight Energy
Modeling
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Figure 4. Overall workflow of the proposed smartfarm energy digital twin
modeling process.



Figure 4 illustrates the implementation workflow used to
construct the lightweight energy estimation module and prepare
it for integration into the smartfarm energy digital twin. The
workflow consists of three sequential stages: (1) main load

generation and preprocessing, (2) lightweight model
development, and (3) multi-scale validation for DT
deployment.

In Step 1, device-level operation logs from the heating-
oriented greenhouse are aggregated and resampled into hourly
main load signals. Long-duration idle periods are automatically
identified and removed, and the resulting time series undergoes
cleaning, normalization, and alignment to form a DT-ready
dataset suitable for multi-year analysis. This step ensures
structural consistency and reduces noise that could hinder
model generalization across operational seasons.

In Step 2, a computationally efficient and interpretable
main-load estimator is developed using linear regression. The
model incorporates Power consumption, hour-of-day, and day-
of-week as input features, enabling embedded-friendly
inference that aligns with the real-time constraints of digital-
twin execution. The design intentionally avoids complex
physics-based  models, prioritizing fast computation,
interpretability, and compatibility with limited computing
resources typically available in commercial greenhouse
systems.

In Step 3, the estimator undergoes multi-scale validation to
assess its generalizability and suitability for DT deployment.
Validation includes full-period comparison over a three-month
winter horizon, weekly cycle consistency, and peak-load
reproduction tests. The model demonstrates stable performance
across both active and idle phases, achieving MAE of 2.1 kW
and RMSE of 3.4 kW, while accurately capturing characteristic
heating cycles observed in the greenhouse’s operational data.
These outcomes confirm that the proposed estimator provides a
balanced trade-off between accuracy and computational
efficiency.

Overall, the workflow presented in Figure 4 establishes a
practical implementation pathway for integrating a lightweight,
data-driven energy estimation module into the smartfarm
energy digital twin. By relying on minimal sensor inputs and
multi-year operational logs, the proposed approach satisfies the
core requirements of generalizability, real-time adaptability,
and scenario-expandable DT design.

V. PRELIMINARY MODELING AND EVALUATION

A.  Modeling Objective and Overview

The objective of the preliminary modeling is to evaluate
whether a lightweight, data-driven energy estimation module
can be embedded into the proposed digital twin. Rather than
maximizing prediction accuracy, the goal is to verify that a
simple model trained on real operation logs can reproduce the
essential characteristics of multi-year power consumption. To
support this objective, greenhouse-level main power is used as
the target variable, and all device-level measurements are
aggregated into hourly time series to reduce noise and align
with operational timescales.

A year-to-year evaluation strategy is applied: January—
March 2023 data are used for training, and the corresponding
period in 2024 is reserved for validation. This setup examines
whether a model fitted to one winter season can generalize to
another with different weather conditions and operational
states, thereby assessing its suitability for digital-twin
integration.

B.  Lightweight Linear Energy Estimation Model

To satisfy the real-time and interpretability requirements of
the digital twin, a lightweight linear regression model is
adopted as the primary estimator. The model predicts hourly
main power consumption using aggregated subsystem loads—
such as heat pumps, fan-coil units, circulation pumps, and
auxiliary devices—together with temporal indicators like hour-
of-day and day-of-week. This linear formulation provides
transparent parameter interpretation and ensures computational
efficiency suitable for real-time digital-twin deployment.
Missing values after aggregation are imputed feature-wise to
maintain a consistent input structure.

C. Evaluation Methodology

The evaluation examines whether the proposed lightweight
model can reproduce smartfarm energy consumption patterns
across different years. All device-level measurements are
aggregated into hourly resolution to align with greenhouse
energy planning practices. A year-to-year validation strategy is
applied: the model is trained on January—March 2023 power
logs and evaluated on the corresponding 2024 data. This
configuration allows assessment of generalizability under
changes in weather conditions, heating demand, and equipment
operation.

Model performance is assessed using Mean Absolute Error
(MAE) and Root Mean Square Error (RMSE), which quantify
average deviations and peak-period discrepancies, respectively.
This evaluation setup emphasizes cross-year reproducibility
rather than strict prediction optimization, consistent with the
digital twin’s objective of capturing representative heating-
cycle behavior.

D. Results

Figure 5 presents the evaluation results of the lightweight
linear regression model using a combined visualization. Figure
5(a) shows the full-period comparison between the primary
power profile and the model output for the 2024 heating
season. The model was trained on 2023 data and evaluated on
the unseen 2024 dataset using only power consumption signals
and simple temporal features. Despite this minimal input
configuration, the model reproduces the overall heating
trajectory with high fidelity, achieving a MAE of 2.1 kW and
an RMSE of 3.4 kW at an average load level of approximately
18.8 kW. The shaded region indicates a mid-February to mid-
March idle period, during which both the actual power and
predictions remain close to zero, confirming that the estimator
does not generate spurious loads during non-heating phases.

Figure 5(b) provides a weekly zoom-in for the period from
1 to 8 February 2024 to examine short-term behavior. The
predicted curve closely follows the main power across multiple



day—night cycles, successfully capturing rapid morning ramp-
ups, sustained peak plateaus, and shutdown transitions. Minor
deviations are observed primarily around steep transitions,
where abrupt load changes occur within one or two time steps;
however, these errors remain sufficiently small for scenario-
based energy evaluation within the digital twin framework.



(a) Full-period comparison between main power and forecast output during the 2024 heating season.
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Figure 5. Performance evaluation of the lightweight linear energy estimator. (a) Full-period comparison between main power and predicted output for the 2024
heating season, with the shaded region indicating an idle period. (b) Weekly zoom-in from 1-8 February 2024, highlighting the reproduction of daily heating
cycles and peak-load transitions.
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Figure 6 provides a high-resolution zoom-in of the period
from February 3 to February 6, highlighting peak-load
behavior. Actual main power is visualized using color-coded
bars, where values above the average load of 18.8 kW are
shown in red and lower-load periods in blue, enabling intuitive
identification of heating-intensive hours. The lightweight linear
regression model shows strong alignment with the actual load
profile, particularly during peak ramp-up and ramp-down
phases, closely tracking transitions between high- and low-
demand states. Minor deviations appear mainly during abrupt
peak fluctuations, which are expected given the simplicity of
the model and the stochastic nature of the data.

Across all validation scales, the results confirm that the
proposed  estimator reliably captures the dominant
characteristics of greenhouse heating demand. Full-period and
weekly analyses demonstrate stable long-term performance and
consistent reproduction of daily heating cycles, while the peak-
time zoom verifies adequate fidelity in high-load morning
periods. These findings indicate that, even with minimal
inputs—two heat-pump signals and simple temporal features a
computationally efficient model can provide sufficient
accuracy for digital twin integration and scenario-based energy
evaluation in practical smartfarm environments.

E. Discussion

The results confirm that a lightweight linear estimator is
sufficient to reproduce the essential heating load behavior
required for digital twin integration. Using only power
consumption and simple temporal features, the model
consistently captures seasonal variations, daily heating cycles,
and peak demand patterns across two winter seasons. This
indicates that high model complexity is unnecessary in the
early DT phase and that a computationally efficient approach
can provide reliable and generalizable performance. The cross-
year analysis further emphasizes the importance of multi-year
validation for DT robustness under varying operating
conditions. Overall, the findings demonstrate that a simple and
interpretable model offers a solid foundation for the initial
energy module of a smartfarm digital twin.

VI. CONCLUSION

This study proposed a lightweight energy estimation
framework for integration into a smart farm energy digital
twin. Using power consumption data, key loads were
generated, preprocessed, and validated across multiple
temporal scales. A linear regression model was adopted as the
core estimator due to its interpretability, computational
efficiency, and suitability for embedded execution. Despite its
simplicity, the model successfully reproduced essential
heating-related patterns, including diurnal cycles, seasonal
variations, and peak-load behavior, demonstrating its
effectiveness as a digital twin component. The results confirm
that a computationally efficient approach can provide an
appropriate balance between prediction accuracy and
integration cost for real-time DT deployment in greenhouse
environments.

Future work will focus on incorporating environmental
variables to improve load realism, extending the framework to

support multi-device and multi-zone configurations, and
integrating the estimator into a closed-loop DT architecture for
scenario-based optimization, adaptive control, and anomaly
detection.
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