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Abstract— This paper presents a preliminary methodology for 

designing an energy-centric digital twin for a smart-farm 

greenhouse using multi-year operational power data. Hourly 

main load is derived from device-level heating logs and evaluated 

across two winters (Jan–Mar 2023 for training and Jan–Mar 

2024 for validation). A lightweight linear regression estimator 

using heating power signals and temporal features achieves stable 

cross-year performance (MAE 2.1 kW, RMSE 3.4 kW) and 

reproduces daily heating cycles and peak-load ramps. The results 

indicate that computationally efficient estimators can support 

early-stage digital twin integration and enable scenario-based 

energy assessment. 
 
Keywords— smartfarm energy management, digital twin , multi-

year power analysis , lightweight energy modeling , linear 
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I.  INTRODUCTION (HEADING 1) 

Smartfarm systems have rapidly expanded worldwide as a 
core technology for improving agricultural productivity and 
automation[1]. Driven by the adoption of sensor networks, 
data-driven control, and energy-intensive environmental 
management, the global smart agriculture market has grown 
steadily, and ICT-based facility agriculture in Korea has 
increased from a marginal share of cultivated area to several 
thousand hectares of digitally managed greenhouses[2]. These 
facilities typically operate with a high degree of automation, 
enabling precise control of temperature, humidity, CO₂ 
concentration, irrigation, and ventilation[3]. 

However, this automation has also intensified energy use, 
particularly for heating and cooling during winter operation. 
Heating and cooling frequently account for 40–60% of total 
operating costs in commercial smartfarm greenhouses, and 
recent increases in electricity and fuel prices have further 
amplified the burden of winter energy bills[4-6]. In many 
cases, these energy costs offset the productivity gains achieved 
by smartfarm technologies, making climate-control energy one 
of the key constraints on the long-term economic sustainability 
of smartfarm operations. 

To mitigate these challenges, numerous studies have 
analyzed greenhouse energy consumption using device-level 

power logs or single-season datasets[7]. Most existing 
approaches rely on conventional regression, correlation 
analysis, or short-term forecasting[8]. While these methods 
provide useful insights into seasonal trends and peak loads, 
they are limited in capturing the operational complexity of real 
farms, in generalizing across multiple winter seasons, and in 
supporting proactive decision-making. In particular, traditional 
data-driven analyses cannot reproduce realistic operating 
scenarios or evaluate hypothetical strategies—such as changing 
heating setpoints or modifying equipment schedules—before 
implementation. 

Digital twin (DT) technology offers a promising way to 
address these limitations by virtually representing the physical 
environment, equipment, and energy behavior of smartfarms. 
DT-based systems can integrate real power records, simulate 
energy usage under alternative operating strategies, and assess 
the impact of environmental or seasonal changes in a risk-free 
virtual space[9]. Nevertheless, DT research in agriculture is 
still at an early stage, and energy-centric smartfarm digital 
twins that exploit multi-year operational data remain scarce. 

In this study, we propose a preliminary design methodology 
for a smartfarm energy digital twin based on multi-year power 
consumption analysis. Using real device-level power logs 
collected over two consecutive winter seasons in a commercial 
greenhouse, we characterize energy usage patterns at the 
subsystem level and derive design requirements for an energy-
focused digital twin capable of supporting future simulation-
based decision making. Unlike prior work that relies on single-
season datasets, our multi-year analysis captures inter-annual 
variations in heating demand and equipment operation, 
providing a more realistic foundation for DT configuration and 
validation. 

The remainder of this paper is organized as follows. Section 
II reviews related work on smartfarm energy analysis and 
agricultural digital twins. Section III describes the smartfarm 
facility, the metering infrastructure, and the structure of the 
multi-year power logs. Section IV presents the proposed energy 
digital twin architecture and configuration. Section V 
introduces a lightweight preliminary energy model and 
evaluates its ability to reproduce multi-year consumption 



patterns. Finally, Section VI concludes the paper and discusses 
future research directions. 

II. RELATED WORK 

A.  Power Consumption Characteristics and Analysis in 

Smartfarm  

Energy use especially for heating and cooling is a dominant 
operational burden in modern smartfarms, often accounting for 
40–60% of total costs[10-12]. Prior studies have analyzed 
device-level power patterns and environmental factors using 
statistical or machine-learning methods to predict short-term 
heating demand[13]. However, most analyses rely on single-
season datasets, limiting their ability to capture inter-annual 
variability or generalize across different winter conditions. As a 
result, existing approaches offer only narrow temporal insights 
and provide limited support for long-term energy planning. 

B. Digital Twin Applications in Agriculture and Smartfarm 

DT technologies have been applied in agriculture for 
greenhouse monitoring, hydroponic control, and crop growth 
prediction, typically by integrating IoT data with simulation 
engines. Recent data-driven DTs enable predictive analytics 
and scenario evaluation, but most focus on environmental or 
crop modeling rather than energy behavior[14]. Furthermore, 
these DTs are generally built on single-period datasets, 
restricting their capability to evaluate seasonal changes or long-
term operational trends. 

C. Distinctions of This Study and Gaps in Existing Research   

A clear gap remains between smartfarm energy analysis 
and DT research. Energy studies lack mechanisms for virtual 
scenario testing, while agricultural DTs seldom incorporate 
multi-year operational data needed for realistic energy 
modeling. This study addresses these limitations by designing 
an energy-oriented smartfarm DT based on two consecutive 
winter seasons of real power logs. The multi-year perspective 
enables identification of inter-annual differences in heating 
demand and subsystem operation, forming a robust foundation 
for future simulation-based energy strategy evaluation. 

III. DATASET AND DATA COLLECTION 

A. Smartfarm Overview 

 
Figure 1.  Panoramic view of the rental greenhouse at Goheung Smart Farm 

Innovation Valley. 

The dataset used in this study was collected from a 
commercial smart farm located in the Smart Farm Innovation 
Valley in Goheung, Jeollanam-do, as shown in Figure 1. This 
facility consists of a multi-span glass greenhouse with a total 
cultivation area of approximately 648 m², representing modern 
Korean smart farm facilities in terms of structural design and 
equipment configuration. The primary crop grown in the 
greenhouse is strawberries, a high-value horticultural crop 
requiring precise environmental and energy management 
during winter production [15]. 

The glasshouse is equipped with a typical set of energy-
related systems, including multiple heat pump units for thermal 
conditioning, fan coil units (FCUs) for air distribution, 
circulation and nutrient solution pumps, horizontal screens for 
thermal insulation, and additional auxiliary equipment such as 
circulation fans and sulfur fumigation devices. These systems 
are integrated into a smartfarm control environment that 
monitors and records device-level electrical power usage as 
part of daily operation. Because winter strawberry cultivation 
demands continuous heating and careful climate management, 
the facility provides an appropriate real-world testbed for 
analyzing smartfarm energy consumption and for designing an 
energy-oriented digital twin. 

B. Energy Monitoring and Metering Setup  

The smartfarm is equipped with a device-level electrical 
metering system that records power consumption from major 
subsystems, including heating units, fan-coil units, pumps, and 
auxiliary devices. Dedicated meters installed at the main 
distribution panel transmit real-time load data to a centralized 
gateway, enabling synchronized multi-channel logging. 

All measurements are collected at a one-minute interval, 
allowing observation of short-cycle behaviors such as heat 
pump activation and circulation pump cycles. The fully 
automated acquisition process operates continuously 
throughout the winter production period. All device-level 
measurements are integrated into a unified time-series database, 
producing a high-resolution dataset suitable for subsystem-
level energy analysis and for configuring the proposed energy 
digital twin. 

C. Power Log Structure and Preprocessing 

The dataset is organized as time-stamped records at one-
minute resolution from January to March, with each entry 
representing instantaneous device-level power measurements. 
Preprocessing includes checking for missing or duplicated 
timestamps and resampling the data to consistent intervals (e.g., 
one-minute or hourly) depending on analytic needs. 

Device-level values can be analyzed individually to 
examine subsystem behavior or combined to compute 
composite indicators such as total heating demand and overall 
greenhouse power usage. These processed features form the 
primary inputs for the energy modeling and digital twin 
development in this study. 
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D. Multi-Year Summary of Power Consumption 

A comparison of the 2023 and 2024 winter power logs 
reveals clear inter-annual variability in heating-related energy 

usage. 

Figure 2.  Hourly mains power profiles for January 2023 and 2024. 

Figure 2(a) shows the  main power profile for January 
2023, where heating behavior follows a relatively stable 
pattern. Power levels remain concentrated around 23–27 kW 
during active periods, and the daily cycles exhibit consistent 
plateaus and predictable off-cycle intervals. This pattern 
indicates steady thermal requirements and a uniform heating 
schedule throughout the 2023 winter period. 

In contrast, Figure 2(b) illustrates the January 2024 power 
profile, which displays substantially greater variability in both 
magnitude and temporal structure. The heating load fluctuates 
from near-zero to peak values approaching 30 kW, with more 
frequent short-cycle activations and sharper transitions between 
high and low states. These irregularities imply larger indoor–
outdoor temperature offsets, greater intra-day temperature 
swings, or changes in heat retention efficiency during early 
2024. Supporting subsystems such as fan-coil units and 
circulation pumps also show elevated baseline activity in 2024, 
suggesting more persistent air distribution and thermal mixing 
demands, while non-heating subsystems remain minor 
contributors in both years. 

Despite identical facility conditions and cultivation settings, 
the two datasets demonstrate distinctly different temporal 
signatures: 2023 presents smooth and repetitive heating cycles, 
whereas 2024 exhibits more dynamic and volatile behavior. 
These findings underscore the inherent year-to-year uncertainty 
in smartfarm energy consumption and highlight the need for a 

digital-twin-based modeling framework capable of generalizing 
across multiple operational seasons rather than relying on a 
single-year dataset. 

 

IV. DIGITAL TWIN ARCHITECTURE AND DESIGN 

REQUIREMENTS  

A. Digital Twin Concept and Design Principles  

The DT proposed in this study aims to provide a virtual 
representation of the smartfarm’s energy behavior that mirrors 
the operational characteristics of the physical system. Unlike 
traditional simulation tools, which rely on predefined physical 
models or static assumptions, a DT continually integrates real 
operational logs to reflect the actual conditions of the system 
and support data-driven scenario evaluation. In the context of 
smartfarm heating operations where energy consumption is 
highly sensitive to seasonal variations, equipment aging, and 
daily operational strategies a DT must be designed to remain 
both lightweight and adaptable to changing real-world 
conditions. 

To meet these objectives, the DT in this study adheres to 
the following design principles: 

• Data-Centricity: The DT should utilize multi-year, 
device-level power logs as its primary information 
source, ensuring that the virtual model reflects real 
operational tendencies rather than idealized thermal 
responses. 

• Modularity: Each component of the DT (physical 
mapping, data processing, energy modeling, and 
scenario simulation) should function independently, 
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allowing modular refinement without altering the 
entire system. 

• Generalizability: The DT should be capable of 
reproducing energy behavior across different 
operational years, capturing inter-annual variability in 
heating demand and equipment performance. 

• Lightweight Implementation: To support practical 
deployment in commercial farms, the DT should rely 
on computationally efficient modeling techniques and 
avoid excessive dependence on complex physics-based 
simulations. 

• Scenario Expandability: The DT must be prepared to 
evaluate what-if scenarios such as modifying heating 
setpoints, altering daily schedules, or optimizing 
device combinations to support decision-making in 
future work. 

These principles form the foundation for the layered DT 
architecture described in the next section. 

B. Layered Architecture of the Proposed Energy Digital  

The proposed digital twin follows a four-layer architecture 
that mirrors the structure of typical DT implementations in 
industrial energy systems while being adapted specifically for 
smartfarm operations. Each layer performs a distinct role, and 
together they form an integrated pipeline from real-world 
measurement to virtual simulation. 

 
Figure 3.  Overall architecture of the proposed smartfarm energy digital twin 

Figure 3 presents the overall architecture of the proposed 
smartfarm energy digital twin. The DT is structured as a four-
layer framework designed to translate raw device-level power 
measurements into a virtual representation capable of 
supporting future scenario-based energy analysis. 

The Physical Layer models the real smartfarm 
infrastructure, including the heating system (HP1–HP5), air 
distribution units (FCU1–2), and pumps and auxiliary devices. 
Each component corresponds directly to an element in the 
virtual DT to ensure structural alignment between the physical 
and digital environments. 

Above this, the Data Layer handles the acquisition, 
preprocessing, and structuring of multi-year power logs. Raw 
power measurements collected over the 2023–2024 winter 
seasons undergo cleaning, time alignment, and temporal 
aggregation to produce a structured dataset suitable for model 
calibration. This layer ensures data consistency and supports 
both historical and real-time integration. 

The Model Layer contains the lightweight energy behavior 
models that form the core of the DT. It includes simple 
baseline models as well as the proposed energy estimation 
module, which performs data-driven prediction of heating-
related power consumption. A calibration and evaluation block 
is used to validate generalizability by training on 2023 data and 
testing on 2024 data, reflecting the interannual variability 
observed in smartfarm operation. 

At the top, the Simulation Layer provides interfaces for 
future scenario-based evaluation. Although full scenario 
experiments are beyond the scope of this preliminary work, the 
architecture defines the necessary structures for applying 
hypothetical operation strategies such as altered heating 
setpoints or modified equipment schedules through the DT 
simulation engine. The resulting outputs are expressed as 
energy KPIs that can inform decision-making in future studies. 

C. Proposed Energy Digital Twin Configuration 

Based on the identified design requirements, the proposed 
smartfarm energy digital twin consists of three core 
components: a structural mapping module, a lightweight 
energy estimation module, and a simulation interface. The 
structural mapping module defines the correspondence between 
real-world devices—such as heating systems, FCUs, and 
pumps—and their virtual representations. The energy 
estimation module leverages multi-year historical logs to 
approximate baseline consumption patterns and capture inter-
annual variability using a computationally efficient model. 
Finally, the simulation interface establishes a logical 
framework for future scenario testing and strategy evaluation. 
Together, these components form a coherent preliminary 
digital twin that reflects real smartfarm energy behavior and 
provides a foundation for scenario-oriented energy 
optimization. 

D. Implementation Workflow for Lightweight Energy 

Modeling 

 
Figure 4.  Overall workflow of the proposed smartfarm energy digital twin 

modeling process.  



Figure 4 illustrates the implementation workflow used to 
construct the lightweight energy estimation module and prepare 
it for integration into the smartfarm energy digital twin. The 
workflow consists of three sequential stages: (1) main load 
generation and preprocessing, (2) lightweight model 
development, and (3) multi-scale validation for DT 
deployment. 

In Step 1, device-level operation logs from the heating-
oriented greenhouse are aggregated and resampled into hourly  
main load signals. Long-duration idle periods are automatically 
identified and removed, and the resulting time series undergoes 
cleaning, normalization, and alignment to form a DT-ready 
dataset suitable for multi-year analysis. This step ensures 
structural consistency and reduces noise that could hinder 
model generalization across operational seasons. 

In Step 2, a computationally efficient and interpretable 
main-load estimator is developed using linear regression. The 
model incorporates Power consumption, hour-of-day, and day-
of-week as input features, enabling embedded-friendly 
inference that aligns with the real-time constraints of digital-
twin execution. The design intentionally avoids complex 
physics-based models, prioritizing fast computation, 
interpretability, and compatibility with limited computing 
resources typically available in commercial greenhouse 
systems. 

In Step 3, the estimator undergoes multi-scale validation to 
assess its generalizability and suitability for DT deployment. 
Validation includes full-period comparison over a three-month 
winter horizon, weekly cycle consistency, and peak-load 
reproduction tests. The model demonstrates stable performance 
across both active and idle phases, achieving MAE of 2.1 kW 
and RMSE of 3.4 kW, while accurately capturing characteristic 
heating cycles observed in the greenhouse’s operational data. 
These outcomes confirm that the proposed estimator provides a 
balanced trade-off between accuracy and computational 
efficiency. 

Overall, the workflow presented in Figure 4 establishes a 
practical implementation pathway for integrating a lightweight, 
data-driven energy estimation module into the smartfarm 
energy digital twin. By relying on minimal sensor inputs and 
multi-year operational logs, the proposed approach satisfies the 
core requirements of generalizability, real-time adaptability, 
and scenario-expandable DT design. 

V. PRELIMINARY MODELING AND EVALUATION 

A. Modeling Objective and Overview  

The objective of the preliminary modeling is to evaluate 
whether a lightweight, data-driven energy estimation module 
can be embedded into the proposed digital twin. Rather than 
maximizing prediction accuracy, the goal is to verify that a 
simple model trained on real operation logs can reproduce the 
essential characteristics of multi-year power consumption. To 
support this objective, greenhouse-level main power is used as 
the target variable, and all device-level measurements are 
aggregated into hourly time series to reduce noise and align 
with operational timescales. 

A year-to-year evaluation strategy is applied: January–
March 2023 data are used for training, and the corresponding 
period in 2024 is reserved for validation. This setup examines 
whether a model fitted to one winter season can generalize to 
another with different weather conditions and operational 
states, thereby assessing its suitability for digital-twin 
integration. 

B. Lightweight Linear Energy Estimation Model 

To satisfy the real-time and interpretability requirements of 
the digital twin, a lightweight linear regression model is 
adopted as the primary estimator. The model predicts hourly 
main power consumption using aggregated subsystem loads—
such as heat pumps, fan-coil units, circulation pumps, and 
auxiliary devices—together with temporal indicators like hour-
of-day and day-of-week. This linear formulation provides 
transparent parameter interpretation and ensures computational 
efficiency suitable for real-time digital-twin deployment. 
Missing values after aggregation are imputed feature-wise to 
maintain a consistent input structure. 

C. Evaluation Methodology  

The evaluation examines whether the proposed lightweight 
model can reproduce smartfarm energy consumption patterns 
across different years. All device-level measurements are 
aggregated into hourly resolution to align with greenhouse 
energy planning practices. A year-to-year validation strategy is 
applied: the model is trained on January–March 2023 power 
logs and evaluated on the corresponding 2024 data. This 
configuration allows assessment of generalizability under 
changes in weather conditions, heating demand, and equipment 
operation. 

Model performance is assessed using Mean Absolute Error 
(MAE) and Root Mean Square Error (RMSE), which quantify 
average deviations and peak-period discrepancies, respectively. 
This evaluation setup emphasizes cross-year reproducibility 
rather than strict prediction optimization, consistent with the 
digital twin’s objective of capturing representative heating-
cycle behavior. 

D. Results  

Figure 5 presents the evaluation results of the lightweight 
linear regression model using a combined visualization. Figure 
5(a) shows the full-period comparison between the primary 
power profile and the model output for the 2024 heating 
season. The model was trained on 2023 data and evaluated on 
the unseen 2024 dataset using only power consumption signals 
and simple temporal features. Despite this minimal input 
configuration, the model reproduces the overall heating 
trajectory with high fidelity, achieving a MAE of 2.1 kW and 
an RMSE of 3.4 kW at an average load level of approximately 
18.8 kW. The shaded region indicates a mid-February to mid-
March idle period, during which both the actual power and 
predictions remain close to zero, confirming that the estimator 
does not generate spurious loads during non-heating phases. 

Figure 5(b) provides a weekly zoom-in for the period from 
1 to 8 February 2024 to examine short-term behavior. The 
predicted curve closely follows the main power across multiple 



day–night cycles, successfully capturing rapid morning ramp-
ups, sustained peak plateaus, and shutdown transitions. Minor 
deviations are observed primarily around steep transitions, 
where abrupt load changes occur within one or two time steps; 
however, these errors remain sufficiently small for scenario-
based energy evaluation within the digital twin framework.



 

Figure 5.  Performance evaluation of the lightweight linear energy estimator. (a) Full-period comparison between main power and predicted output for the 2024 

heating season, with the shaded region indicating an idle period. (b) Weekly zoom-in from 1–8 February 2024, highlighting the reproduction of daily heating 

cycles and peak-load transitions. 

Figure 6.  Peak-time zoom of the main power during February 3–6. 



Figure 6 provides a high-resolution zoom-in of the period 
from February 3 to February 6, highlighting peak-load 
behavior. Actual main power is visualized using color-coded 
bars, where values above the average load of 18.8 kW are 
shown in red and lower-load periods in blue, enabling intuitive 
identification of heating-intensive hours. The lightweight linear 
regression model shows strong alignment with the actual load 
profile, particularly during peak ramp-up and ramp-down 
phases, closely tracking transitions between high- and low-
demand states. Minor deviations appear mainly during abrupt 
peak fluctuations, which are expected given the simplicity of 
the model and the stochastic nature of the data. 

Across all validation scales, the results confirm that the 
proposed estimator reliably captures the dominant 
characteristics of greenhouse heating demand. Full-period and 
weekly analyses demonstrate stable long-term performance and 
consistent reproduction of daily heating cycles, while the peak-
time zoom verifies adequate fidelity in high-load morning 
periods. These findings indicate that, even with minimal 
inputs—two heat-pump signals and simple temporal features a 
computationally efficient model can provide sufficient 
accuracy for digital twin integration and scenario-based energy 
evaluation in practical smartfarm environments. 

E. Discussion 

The results confirm that a lightweight linear estimator is 
sufficient to reproduce the essential heating load behavior 
required for digital twin integration. Using only power 
consumption and simple temporal features, the model 
consistently captures seasonal variations, daily heating cycles, 
and peak demand patterns across two winter seasons. This 
indicates that high model complexity is unnecessary in the 
early DT phase and that a computationally efficient approach 
can provide reliable and generalizable performance. The cross-
year analysis further emphasizes the importance of multi-year 
validation for DT robustness under varying operating 
conditions. Overall, the findings demonstrate that a simple and 
interpretable model offers a solid foundation for the initial 
energy module of a smartfarm digital twin. 

VI. CONCLUSION 

This study proposed a lightweight energy estimation 
framework for integration into a smart farm energy digital 
twin. Using power consumption data, key loads were 
generated, preprocessed, and validated across multiple 
temporal scales. A linear regression model was adopted as the 
core estimator due to its interpretability, computational 
efficiency, and suitability for embedded execution. Despite its 
simplicity, the model successfully reproduced essential 
heating-related patterns, including diurnal cycles, seasonal 
variations, and peak-load behavior, demonstrating its 
effectiveness as a digital twin component. The results confirm 
that a computationally efficient approach can provide an 
appropriate balance between prediction accuracy and 
integration cost for real-time DT deployment in greenhouse 
environments. 

Future work will focus on incorporating environmental 
variables to improve load realism, extending the framework to 

support multi-device and multi-zone configurations, and 
integrating the estimator into a closed-loop DT architecture for 
scenario-based optimization, adaptive control, and anomaly 
detection. 
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