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Abstract—Machine Learning-based Web Application Firewalls
(WAFs) face a critical paradox: robust defense against adversar-
ial evasion attacks typically comes at the cost of prohibitive com-
putational latency. This paper resolves this Efficiency-Resilience
Gap with MagDDAE, a hybrid framework integrating manifold
learning with a novel One-Step diffusion-based purifier. Governed
by an adaptive Three-Lane Traffic Handling architecture, the
system utilizes a lightweight manifold detector to dynamically
route traffic. Instead of purifying all inputs, MagDDAE steers
90.6% of traffic through the Express Lane and routes only
ambiguous samples (7.76%) to the purification lane. Experiments
on the ATRDF dataset demonstrate robust defense, achieving an
F1-Score of 0.9655 and reducing successful security breaches by
35.3% compared to standard WAFs. Crucially, by preemptively
discarding gross anomalies (Lane 3), the system achieved a
net 1.15% reduction in computational cost alongside a 65.6%
reduction in False Alarms, validating its operational feasibility
for real-time, high-throughput API security.

Index Terms—Web Application Firewall (WAF), Adversarial
Attacks, Machine Learning, Diffusion Models, Manifold Learn-
ing, API Security, Three-Lane Architecture.

I. INTRODUCTION

Application Programming Interfaces (APIs) serve as the
foundational architecture for modern data exchange [1] [2], yet
their ubiquity necessitates robust security to sustain rapid in-
novation [3]. As legacy signature-based WAFs proved ineffec-
tive against zero-day and obfuscated threats [4], the industry
shifted toward intelligent machine learning (ML) models [5]
[6]. However, this transition introduces a critical vulnerability:
Adversarial Attacks. By making minute modifications to API
parameters, attackers can execute malicious payloads while
evading ML-based detection [7] [8] [9].

Recent findings by Holla et al. (2025) underscore this
risk, demonstrating that adversarial techniques such as FGSM,
PGD, and DeepFool can degrade Intrusion Detection System
(IDS) accuracy from 85% to as low as 50% [10]. This creates

a defensive paradox: more sophisticated ML models inher-
ently expand the attack surface for evasion. While adversarial
training and SHAP feature selection offer partial mitigation,
Holla et al. conclude that high-accuracy protection requires
the integration of detection-based defenses, such as MagNet,
to complement traditional training-based methods [10].

Currently, there are two previous studies that cover this
adversarial problem:

1) Manifold-based Autoencoders (MagNet) [11]: This
method uses autoencoders to learn the manifold of nor-
mal traffic, then flags an anomaly by the reconstruction
error. However, we found that they often fail to capture
the fine details of API traffic (over-smoothing), leading
to poor detection of stealthy attacks.

2) Diffusion-Scheduled Denoising Autoencoders (DDAE)
[15]: This approach adds noise to the input, then itera-
tively removes it, purifying the input back into the valid
data manifold. However, the standard iterative process
is computationally inefficient.

This creates a trade-off: we can have a fast WAF that is easily
broken, or a secure WAF that is inefficient.

To solve this problem, MagDDAE, a hybrid framework
that orchestrates the efficiency of MagNet with the robustness
of DDAE via a Three-Lane Traffic Handling architecture,
was proposed. In this system, every incoming API request
is first analyzed by the MagNet manifold detector. MagNet
then calculates the reconstruction error, which serves as a
reference for routing the request. Requests with low errors
(Green/Express) will bypass strict defenses and go directly to
the WAF; requests with moderate errors (Yellow/Purification)
are marked as suspicious and sent to the DDAE model for
purification before classification; and requests with very high
errors (Red/Block) are marked as malicious and immediately
blocked to conserve resources.



The main contributions of this paper are:
• MagDDAE Framework: A novel architecture that lever-

ages MagNet as a fast gatekeeper and DDAE as a
robust purifier with the implementation of the “One-
Step Purification” mechanism. This method has been
shown to reduce successful security breaches by 35.3%
compared to a standard WAF.

• Three-Pass Mechanism: To balance security and speed,
a new traffic handling mechanism is introduced. By
selectively purifying suspicious traffic, the system reduces
false alarms by 65.6% compared to all traffic passing
through DDAE while achieving a net reduction in effec-
tive computational cost of 1.15% compared to a standard
WAF setup.

• Constraint-Based Attack Generator: Addressing the
validity challenges highlighted by Grini et al. [16], a
constraint-based generator has been implemented. Unlike
standard gradient methods, which frequently violate do-
main constraints, this mechanism projects perturbations
onto a valid, suitable set, ensuring that all simulated
attacks maintain semantic integrity and represent func-
tional, executable API payloads.

II. RELATED WORKS

A. ML-based WAF and Adversarial Attacks

The limitations of signature-based Web Application Fire-
walls (WAFs) have led to the adoption of Machine Learning
(ML) and Deep Neural Networks (DNN), which offer better
adaptability in learning complex attacks directly from traffic.
Recent research [17] [18] confirms that DNN-based architec-
tures significantly outperform classical baselines, achieving
high accuracy and recall even on sophisticated vectors such
as command injection. However, despite their accuracy, ML-
based classifiers are vulnerable to adversarial attacks, compro-
mising the security of these supposedly robust systems [24].

Recent research by Holla et al. (2025) explicitly evaluated
these threats on Cloud IDS. They demonstrated that adversarial
attacks can degrade detection accuracy from 85% to as low as
50% [10].

B. Defensive Mechanisms

1) Adversarial Training: Adversarial training remains an
important defense paradigm [10]–[12]. It augments the training
dataset with adversarial examples, forcing the model to learn
robust decision boundaries. However, this approach often fails
to generalize to unseen attack patterns or “Blind-Spot” inputs
residing in low-density manifolds [13], [14]. Furthermore,
the significant computational overhead required to retrain
models against zero-day threats hinders adaptability in real-
time environments.

2) Autoencoder-based Defenses (MagNet): MagNet [10]
defends against adversarial attacks by learning the manifold
of legitimate traffic using autoencoders. During inference, it
calculates the “Reconstruction Error” (MSE) between the input
and the autoencoder’s output. If the error exceeds a learned
threshold, the input is rejected as adversarial. While effective

for images, applying this to sparse API payloads often triggers
a “latent bottleneck.” The compression required to map high-
dimensional inputs to a lower-dimensional manifold results in
over-smoothing, causing fine-grained adversarial perturbations
to be lost during decoding and effectively masking stealthy
attacks [15]. As established by Khan et al. [23], the fun-
damental vulnerability of autoencoder-based detectors lies in
their high generalization capability. This allows the model
to inadvertently reconstruct malicious samples with minimal
error, thereby concealing adversarial noise within the benign
data manifold and bypassing the detection threshold.

3) Diffusion Models (DDAE): Sattarov et al. (2025)
introduced the Diffusion-Scheduled Denoising Autoencoder
(DDAE), which injects controlled noise to enhance feature
separation by gradually modifying input samples. [15]. DDAE
utilizes a forward diffusion process to gradually inject sched-
uled noise and a reverse generative process to reconstruct the
original input from the noisy state. This effectively “purifies”
the sample by projecting it back into the valid data manifold.
However, the standard implementation relies on an iterative
Markov Chain for reconstruction, which is computationally
prohibitive for real-time WAFs.

C. The Efficiency-Robustness Gap

Despite the “One-Step” optimization, diffusion-based pu-
rification remains computationally heavier than standard infer-
ence. Applying purification to 100% of incoming API traffic
would introduce unnecessary latency for the vast majority
of legitimate users. While relying solely on lightweight au-
toencoders (MagNet) compromises security against stealthy
attacks due to over-smoothing. To address this trade-off, the
MagDDAE framework is proposed.

III. METHODOLOGY

A. System Architecture and Workflow

MagDDAE utilizes a single forward pass for both tasks,
unlike previous systems that require separate models for detec-
tion and defense. It combines the architecture of MagNet and
DDAE, encapsulated in a dynamic mechanism called Three-
Lane Traffic Handling, as illustrated in Figure 1.

1) Phase 1: Input and Pre-processing: The pipeline be-
gins with the ingestion of raw API requests. Each request
is represented as a vector of 26 features, which undergoes
normalization via a Standard Scaler to produce the normalized
feature set x. This standardization ensures consistent input
distribution for the downstream neural networks.

2) Phase 2: MagNet Gatekeeper: The normalized features
are fed into the MagNet Autoencoder, which functions as
the system’s “Gatekeeper.” For each input traffic batch X ∈
RB×D, we define a fixed time step vector t = 1 ∈ RB .
Treating the input batch as a noisy state xt, the model performs
One-Step Reconstruction to predict the clean origin Xrecon:

Xrecon = MagNet(X, t) (1)



Fig. 1. The MagDDAE Framework. Traffic is dynamically routed based on Reconstruction Error (MSE) relative to learned thresholds: τsafe (95th percentile
of benign error) allows traffic to bypass purification via the Express Lane, while τreject (99th percentile) immediately blocks gross anomalies. Ambiguous
samples fall between these thresholds and undergo One-Step Purification (t = 1) before WAF classification.

3) Phase 3: Adaptive Three-Lane Routing: During infer-
ence, the system calculates the Reconstruction Error vector
MSE:

MSE =
1

D

D∑
i=1

(X −Xrecon)
2 (2)

Based on this error, the system dynamically routes traffic.
We define two decision thresholds, τsafe and τreject, which are
determined empirically based on the 95th and 99th percentiles
of the reconstruction error on a benign validation set. The
routing logic is formalized in Algorithm 1.

• Lane 1 (Green - Express). Traffic with MSE < τsafe
is considered similar to the benign manifold. The system
immediately passes the input to the WAF classifier to
maintain high-quality data accuracy, avoiding potential
data integrity issues from the purification step.

• Lane 2 (Yellow - Purify). Inputs falling within the
uncertainty interval (τsafe ≤ MSE ≤ τreject) trigger
the DDAE Reformer. The system activates the diffusion
process with a fixed time step (t = 1) to purify the
adversarial perturbations, projecting the sample back onto
the benign manifold before forwarding the reformed
features (x̂ddae) to the classifier.

• Lane 3 (Red - Block). Inputs exhibiting excessive devi-
ation (MSE > τreject) are classified as high-confidence
malicious. These requests are blocked immediately at the
gateway for computational efficiency.

4) Phase 4: Classification and Final Decision: The final
stage employs a Deep Neural Network (DNN) WAF Classifier.
Depending on the routing decision, the WAF receives either
the original features (from Lane 1) or the reformed features
(from Lane 2). It outputs an 8-class prediction, categorizing
the traffic as Benign or identifying specific attack vectors.

B. Dataset Description

The dataset used in this study is the API Traffic Re-
search Dataset Framework (ATRDF) [19], which consists
of 182,767 total samples, 143,431 benign requests and 39,336
malicious requests. ATRDF provides detailed multiclass la-
bels of seven specific attack types: SQL Injection, XSS,

Algorithm 1 MagDDAE Vectorized Three-Lane Inference
Require: Batch inputs X , Thresholds τsafe, τreject, WAF

Model fwaf

1: Step 1: MagNet Detection (Gatekeeper)
2: Xmag ← MagNet(X) {Fast Autoencoder Reconstruc-

tion}
3: MSE ← mean((Xmag − X)2, dim = 1) {Calculate

Reconstruction Error}
4: Step 2: Lane Allocation (Masking)
5: Mgreen ←MSE < τsafe {Lane 1: Trusted}
6: Mred ←MSE > τreject {Lane 3: Anomalous}
7: Myellow ← ¬Mgreen ∧ ¬Mred {Lane 2: Suspicious}
8: Step 3: Conditional Execution
9: Ypred ← zeros(X.size(0))

10: if Mgreen.any() then
11: Ypred[Mgreen] ← fwaf (X[Mgreen]) {Pass Original

Data}
12: end if
13: if Myellow.any() then
14: t← ones(Myellow.sum()) {Set Timestep t = 1}
15: Xclean ← DDAE(X[Myellow], t) {Activate Diffusion

Reformer}
16: Ypred[Myellow] ← fwaf (Xclean) {Pass Reformed

Data}
17: end if
18: Step 4: Blocking
19: Blocked←Mred {Flag Lane 3 as Malicious}
20: return Ypred, Blocked

RCE, Log Forging, Cookie Injection, Directory Traversal, and
LOG4J. This allows us to directly address the limitation noted
by Holla et al. [10], who identified the lack of multiclass
adversarial evaluation as a critical gap in current research.

C. Threat Model and Attack Generation

The system was evaluated against three gradient-based
evasion attacks:

• FGSM (Fast Gradient Sign Method): A single-step
attack that perturbs inputs in the direction of the loss



gradient to maximize error [20].
• PGD (Projected Gradient Descent): An iterative variant

of FGSM which applies multiple small updates to refine
adversarial noise while projecting perturbations back into
a valid ϵ-ball [21].

• DeepFool: An optimization-based attack seeking the min-
imal perturbation required to cross the closest decision
boundary, often producing highly stealthy samples [22].

These attacks were generated using the Constraint-Based
Generator adapted from Grini et al. [16] to ensure attack
validity. Unlike their filtering approach, perturbation onto a
valid manifold was projected to ensure no data loss.

The feature space was partitioned into three semantic cat-
egories: Binary (Fbin), Count (Fcount), and One-Hot Groups
(G). Scalar features are constrained via clipping and rounding:

xi =

{
⌊clip(x̃i, 0, 1)⌉ if i ∈ Fbin

⌊max(0, x̃i)⌉ if i ∈ Fcount

(3)

For categorical groups (e.g., HTTP Method), we enforce
mutual exclusivity using an argmax operator. This ensures
that for every group g ∈ G, exactly one state is active:

xj =

{
1 if j = argmaxk∈g(x̃k)

0 otherwise
∀j ∈ g (4)

This projection ensures that all generated adversarial sam-
ples represent executable and semantically valid API payloads.

D. Target WAF Implementation

The target model is a Deep Neural Network (DNN) with
three hidden layers, batch normalization, and dropout regu-
larization to mitigate overfitting. The model was trained for
50 epochs using the Adam optimizer with an initial learning
rate of 0.001. On clean validation data, the model achieves
a baseline accuracy of 98.72%, serving as a high-standard
benchmark for evaluating adversarial robustness.

E. Experimental Environment

All models were implemented in PyTorch and evaluated
on an NVIDIA T4 GPU (12GB RAM). Inference latency is
counted as the average wall-clock time per batch (B = 512)
across the entire test set to simulate high-throughput condi-
tions.

F. Evaluation Scenario: ”All-in-One” Test Set

To simulate a real-world environment where a WAF faces
a heterogeneous mix of traffic, an ”All-in-One” test set was
conducted with this distribution:

• 60% Benign Traffic: Normal API user requests.
• 20% Malicious Traffic: Standard known attacks.
• 10% Adversarial Traffic: FGSM, PGD, and DeepFool

attacks.
• 10% Fuzzed Traffic: Attack generated using the

semantic-preserving fuzzing logic like in the WAF-A-
MOLE [9].

1https://github.com/Trevillie/MagNet
2https://github.com/sattarov/AnoDDAE

G. Performance Metrics

We evaluate detection performance using standard classi-
fication metrics: Accuracy, Precision, Recall, and F1-Score.
Additionally, to quantify the operational impact of the Three-
Lane architecture, we define three custom metrics:

1) Breach Prevention Rate (BPR): This metric measures
the relative reduction in successful adversarial evasions (False
Negatives) compared to the baseline defense (DDAE). It
measures the improvement in security coverage:

BPR =

(
FNbaseline − FNours

FNbaseline

)
× 100% (5)

where FN represents the count of malicious samples misclas-
sified as benign.

2) False Alarm Reduction (FAR): To assess the reduc-
tion in operational burden (”Alert Fatigue”), we measure the
decrease in False Positives (benign samples misclassified as
malicious):

FAR =

(
FPbaseline − FPours

FPbaseline

)
× 100% (6)

3) Effective Operational Cost (Ceff ): To measure the
efficiency gain from dynamic flow, we calculate the expected
computational cost per request. Let Cwaf , Cmag , and Cpurify

represent the isolated computational costs (FLOPs) for the
WAF classifier, the MagNet gatekeeper, and the diffusion
reformer, respectively.

The effective cost is the probability-weighted sum of the
operations performed in each lane:

Ceff = Pgreen(Cmag + Cwaf )

+ Pyellow(Cmag + Cpurify + Cwaf )

+ PredCmag

(7)

where PL is the fraction of traffic routed to Lane L.
Crucially, for Lane 3 (Red), the cost is strictly limited to Cmag ,
as the sample is dropped before WAF execution.

IV. RESULTS AND ANALYSIS

A. Attack Validity Verification

We evaluated the validity of samples generated by FGSM,
PGD, and DeepFool using the constraint logic defined in
Section III.

TABLE I
ADVERSARIAL ATTACK VALIDITY ANALYSIS

Attack Method Constraint Semantic Combined

FGSM 55.8% 49.7% 27.7%
PGD 59.3% 49.7% 26.5%
DeepFool 80.2% 49.7% 39.8%
CW 62.7% 49.7% 33.6%

As shown in Table I, DeepFool achieved the highest con-
straint validity (80.2%), higher than Carlini & Wagner (CW),
which has the highest proportion of valid adversarial samples
reported in the Grini et al. paper. This ensures that our defense
is tested against functionally plausible attacks.



B. Overall Detection Performance

We conducted our primary evaluation on the “All-in-One”
test chamber, representing a realistic mix of Benign (60%),
Malicious (20%), Adversarial (10%), and Fuzzed (10%) traf-
fic.

TABLE II
DEFENSE PERFORMANCE ON MIXED API TRAFFIC

Model Accuracy Precision Recall F1-Score

Plain WAF 0.9691 0.9999 0.9229 0.9598
MagNet 0.7631 0.6940 0.7294 0.7113
Base DDAE 0.9498 0.9468 0.9267 0.9366
MagDDAE 0.9729 0.9815 0.9501 0.9655

MagDDAE outperformed all baselines. Notably, it achieved
a Recall of 95.01%, significantly higher than the standalone
DDAE (92.67%). This confirms that using MagNet as a
gatekeeper enhances precision by filtering benign traffic before
it reaches the purifying step.

C. Robustness by Attack Vector

To understand specific strengths, we decomposed the evalu-
ation into distinct attack vectors. Table III details the Detection
Rate (Recall) for each scenario.

TABLE III
DETECTION RATE (RECALL) VS. SPECIFIC ATTACK VECTORS

Attack Type Plain WAF MagNet Base DDAE MagDDAE

FGSM 84.19% 74.33% 91.43% 94.00%
PGD 84.19% 74.25% 91.43% 94.00%
DeepFool 84.19% 73.79% 91.43% 94.03%

Against DeepFool—the most valid and stealthy attack,
MagDDAE improved detection from 84.19% to 94.03%,
demonstrating the effectiveness of the One-Step Purification
process.

D. Multiclass Classification Performance

We evaluated the ability to classify specific attack types on
the mixed test set.

TABLE IV
MULTICLASS PERFORMANCE

Model Accuracy Precision Recall F1-Score

Plain WAF 0.9654 0.9650 0.9654 0.9608
MagNet 0.7162 0.7322 0.7162 0.7200
Base DDAE 0.9348 0.9211 0.9348 0.9257
MagDDAE 0.9661 0.9663 0.9661 0.9618

MagDDAE achieved the highest multiclass performance (F1
0.9618), effectively recovering the classification capability of
the baseline WAF (98.72%). This confirms that the purifica-
tion process preserves the fine-grained features necessary for
accurate attack attribution.

It is important to note that the system’s feature reformatting
is used solely for analysis and classification. The backend will
still process the raw requests to preserve the original API
request.

E. Effective Computational Efficiency

We analyzed the computational cost (FLOPs) across differ-
ent processing paths to quantify the operational impact of the
Three-Lane architecture.

TABLE V
EFFECTIVE COMPUTATIONAL EFFICIENCY (PER SAMPLE)

Method Min (Lane 3) Max (Lane 2) Average Static

Plain WAF 359.94K 359.94K 359.94K 359.94K
MagNet 360.77K 360.77K 360.77K 360.77K
Base DDAE 369.54K 369.54K 369.54K 369.54K
MagDDAE 936 369.54K 355.78K 369.54K

As shown in Table V, MagDDAE introduces a dynamic cost
structure:

• Lane 3 (Minimum): Gross anomalies (1.60% of traffic)
are blocked immediately, costing only 936 FLOPs (a
99.7% reduction vs WAF).

• Lane 2 (Maximum): Ambiguous traffic (7.76%) under-
goes full purification, costing 369.54K FLOPs.

• Lane 1 (Standard): Safe traffic (90.64%) bypasses pu-
rification, incurring only standard detection costs.

Reason for Cost Reduction: This intelligent routing yields
an Effective Average Cost of 355.78K FLOPs—1.15%
lower than the baseline WAF. This net gain occurs because
the substantial savings from preemptively discarding Lane 3
anomalies (skipping the heavy WAF execution) effectively
subsidize the lightweight monitoring of valid traffic. Specif-
ically, while Lane 2 introduces a purification overhead, it is
mathematically outweighed by the 99.7% cost reduction for
every sample routed to Lane 3. Consequently, the architec-
ture turns the detection of gross anomalies into a latency-
optimization mechanism rather than a computational burden.

F. Security Impact: Breach Prevention

We analyzed the absolute number of successful evasions
(False Negatives) in our test sample compared to the standard
WAF:

• Plain WAF: Missed 607 attacks.
• MagDDAE: Missed 393 attacks.
MagDDAE prevented 214 additional breaches, represent-

ing a 35.3% reduction in security incidents compared to the
baseline WAF.

While the branching architecture increases the average
inference time (0.299s) compared to the standalone DDAE
(0.090s), this trade-off is justified by the massive reduction in
operational noise.

• DDAE False Alarms: 410 legitimate requests blocked.
• MagDDAE False Alarms: 141 legitimate requests

blocked.



This constitutes a 65.6% improvement in False Alarm re-
duction. In high-security contexts, the “alert fatigue” caused by
false positives vastly outweighs the millisecond-scale latency
increase.

V. CONCLUSION

This research addresses the vulnerability of modern API-
based WAFs to adversarial evasion by bridging the Efficiency-
Resilience Gap between lightweight manifold detectors and
robust generative purifiers. The proposed MagDDAE frame-
work utilizes a Three-Path Traffic Handling architecture to
optimize security and performance simultaneously. Empirical
results confirm a peak F1 score of 0.9655 and a 35.3% reduc-
tion in successful breaches. Crucially, MagDDAE eliminates
the traditional security-latency trade-off by achieving a 1.15%
reduction in computational costs alongside a 65.6% decrease
in false alarms compared to standard WAFs.

Future research will focus on two primary enhancements to
improve the framework’s performance and scalability. First,
efforts will be directed toward refining multiclass attribution
accuracy (currently 84%) to align with our high standards for
binary detection. This involves optimizing the latent repre-
sentation to better distinguish between specific attack types,
thereby improving forensic analysis and incident response.
Second, the architecture will be integrated with Federated
Learning (FL) to create a collaborative, privacy-preserving
defense network. By allowing distributed edge gateways to
share learned model updates rather than raw traffic logs,
the system can adapt to global zero-day threats in real-
time without compromising data privacy. This evolution will
transform MagDDAE from a localized defense into a globally
distributed, self-evolving security ecosystem.
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