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Abstract—Reconfigurable Intelligent Surfaces (RIS) are en-
visioned as a key enabler for sixth-generation (6G) wireless
networks, offering dynamic control over the radio environment
to improve coverage, capacity, and energy efficiency. However,
optimizing RIS-assisted systems presents significant challenges
due to high-dimensional configuration spaces and complex wire-
less propagation. Artificial Intelligence (AI) techniques have
emerged as powerful tools to address these challenges. This
survey provides a concise overview of AI-driven approaches
for RIS in 6G, focusing on three core applications: (1) RIS
configuration and beamforming, (2) RIS channel estimation, and
(3) resource management in RIS-assisted networks. For each
area, we highlight how learning-based methods – including su-
pervised learning, deep reinforcement learning (DRL), federated
learning (FL), and generative models – contribute to performance
gains. Recent IEEE works are cited to exemplify state-of-the-art
solutions. It conclude by identifying open research directions in
applying AI to RIS-empowered 6G communications.

Index Terms—AI, Reconfigurable Intelligent Surfaces (RIS),
6G.

I. INTRODUCTION

Next-generation 6G wireless networks demand unprece-
dented capacity, reliability, and adaptability. Reconfigurable
Intelligent Surfaces (RIS) planar metasurfaces with elec-
tronically tunable elements, have emerged as a promising
technology to reconfigure wireless propagation environments,
enabling smart radio environments in 6G. By adjusting each
element’s reflection phase, an RIS can shape and direct elec-
tromagnetic waves to enhance signal quality or coverage. Tra-
ditional optimization of RIS (e.g., for beamforming or resource
allocation) often relies on iterative or brute-force methods
that struggle with the high-dimensional, dynamic nature of
RIS control in real-world scenarios. Artificial Intelligence (AI)
has therefore gained traction for handling RIS optimization
problems by leveraging data-driven models and learning al-
gorithms. Recent surveys highlight a broad spectrum of AI
techniques applied to RIS, from supervised and unsupervised
learning to reinforcement and federated learning, which can
outperform classical approaches in complex settings [1]–[3].
In this survey, we focus on three critical application areas
configuration/beamforming, channel estimation, and resource
management, detailing how AI methods are employed in each.
Each section discusses relevant AI paradigms.

II. RIS CONFIGURATION AND BEAMFORMING

Problem context: Optimizing the configuration of RIS el-
ements (phase shifts or amplitude coefficients) jointly with
transmitter/receiver beamforming is essential to reap RIS
gains. The objective is typically to maximize some system
metric (e.g., received signal power, sum-rate, or energy ef-
ficiency) by adjusting potentially hundreds of RIS elements.
The search space is enormous, and optimal solutions depend
on real-time channel conditions and network topology, which
may vary rapidly in 6G use cases.

AI methods for configuration: Reinforcement learning (RL)
has been widely adopted to tackle the dynamic RIS beamform-
ing problem. An RL agent can treat the RIS configuration as
an action and the communication performance as a reward,
learning to select near-optimal phase configurations through
interaction with the environment. Recent works use deep RL
(e.g., deep Q-networks or deep deterministic policy gradients)
to adaptively refine RIS phase shifts and beamformer settings,
achieving significant throughput and coverage improvements
in multi-user scenarios without exhaustive search [4], [5]. For
example, Idrees et al. employ an unsupervised learning strat-
egy (leveraging a form of self-learning without labeled optimal
configurations) to jointly design active BS beamforming and
passive RIS reflecting coefficients, maximizing the SNR in
a backscatter communication system [4]. Such approaches
demonstrate that neural networks can learn the mapping from
observed channel state or user location information to good
RIS configurations, bypassing explicit channel inversion or
iterative optimization. In scenarios with multiple distributed
RIS or highly mobile users, multi-agent reinforcement learning
can coordinate multiple controllers or time-varying decisions,
enabling real-time beam adaptation in complex environments
[5], [6].

Supervised learning has also been explored: e.g., training
deep neural networks offline to predict optimal phase con-
figurations from inputs like estimated channel parameters or
user positions. While supervised models require ground-truth
data (obtained from e.g. solving the optimization offline),
once trained they can output near-instantaneous beamforming
decisions. These models have shown the ability to closely
approximate optimal or iterative solutions with negligible
online computation, which is attractive for low-latency 6G



scenarios [2]. In addition, transfer learning can be used to
fine-tune a pretrained model to new environments or hardware
conditions, reducing the need to train from scratch for every
deployment [1]. Across these methods, AI enables proactive
and adaptive RIS configuration, learning from experience or
data to respond to environment changes more efficiently than
conventional heuristics.

III. CHANNEL ESTIMATION FOR RIS

Problem context: Channel estimation (CE) is notoriously
challenging in RIS-aided systems. An RIS does not have
active transceivers, so the cascaded channel (e.g., base sta-
tion–RIS–user link) must be inferred indirectly, often requiring
many training pilots and high overhead. Traditional sparse
or compressive sensing techniques exploit channel structure
but can falter when channel conditions deviate from assumed
models or when pilot budgets are severely limited.

AI methods for RIS channel estimation: Deep learning
provides powerful tools to learn complex channel mappings
and denoise observations, thereby reducing pilot overhead.
Supervised deep neural networks (DNNs) or convolutional
neural networks (CNNs) can be trained to map limited pilot
signals or received signal patterns to channel state information
(CSI). For instance, researchers have modeled RIS channel
estimation as an image super-resolution or completion task,
where a DNN fills in missing channel coefficients from a
small set of measurements [2]. Such data-driven estimators
can outperform linear estimators by leveraging learned prior
knowledge of channel distributions. In practice, a DNN-based
estimator can rapidly output the cascaded CSI given new
pilot signals, cutting down the training period required for
configuring the RIS.

Beyond fully supervised approaches, generative models
have started to play a role in RIS channel acquisition. Gen-
erative Adversarial Networks (GANs) and other generative
networks can learn the underlying distribution of channels and
produce refined CSI estimates or synthetic training samples.
A notable example is the work of Guo et al., who integrate
a GAN-based channel estimator with federated learning to
improve accuracy while preserving data privacy [7]. In their
framework, distributed users collaboratively train a GAN
(sharing model updates instead of raw data) to enhance a
coarse channel estimate, achieving high accuracy with reduced
pilot overhead [7]. This FL-enhanced approach is particu-
larly relevant for 6G, where network nodes may want to
cooperatively improve channel knowledge without centralized
data collection. Federated learning in general allows multiple
base stations or devices to train a shared channel prediction
model on local data, which is valuable for heterogeneous RIS
deployments where channel characteristics vary by location.

Unsupervised learning methods have also been applied to
RIS channel estimation. For example, autoencoder networks
can be designed to reconstruct channel information from pilot
signals, training themselves by minimizing reconstruction er-
ror without labeled data. Reinforcement learning can indirectly
aid channel acquisition as well: rather than estimating the

channel explicitly, a DRL agent might learn a policy of beam
training (selecting RIS configurations that probe the channel)
to quickly find a high-gain configuration, effectively bypassing
full CSI estimation. This concept of sensing-aided beamform-
ing uses AI to balance exploration (learning the channel) and
exploitation (delivering data) in RIS operation [1]. Overall,
AI techniques allow more efficient CSI acquisition for RIS by
extracting features and patterns that classical methods cannot
easily capture, thereby mitigating one of the main bottlenecks
in RIS-enabled systems.

IV. RESOURCE MANAGEMENT IN RIS-ASSISTED
NETWORKS

Problem context: Beyond direct beamforming and channel
issues, RIS can be leveraged to enhance broader resource
management tasks in wireless networks. Examples include
joint power allocation and RIS configuration, scheduling of
users or beams in multi-RIS systems, cell association and
handover decisions in networks with RIS-enhanced coverage,
and interference management across frequency/time resources.
These problems are often combinatorial and dynamic, com-
pounded by the extra control degrees of freedom introduced
by RIS. Solving them optimally in real-time is intractable with
conventional optimization alone, especially as 6G networks
scale up.

AI methods for resource management: Reinforcement
learning is again a prominent tool. DRL-based resource al-
location agents can observe the network state (e.g., traffic
loads, channel qualities, user QoS requirements) and take
actions such as adjusting RIS element states, allocating power
or bandwidth, and scheduling transmissions. By receiving
feedback such as achieved throughput or energy efficiency, the
DRL agent iteratively improves its policy. Recent studies have
shown that DRL can efficiently handle joint optimization of
continuous and discrete resources in RIS-empowered systems.
For instance, Hu et al. propose a DRL framework to jointly
allocate subchannels and configure RIS phase shifts in a
semantic communication scenario, yielding enhanced spectral
efficiency under practical constraints [8]. Such AI-driven re-
source management schemes can learn to coordinate between
the RIS and traditional network resources (like transmit power
or user scheduling) in a holistic way, adapting to network
dynamics that static algorithms cannot easily track.

In multi-cell or distributed deployments, federated learning
and multi-agent learning become useful. Federated reinforce-
ment learning can allow multiple base stations (each with
a local RIS or serving different RIS-assisted users) to col-
lectively train a global resource management policy without
sharing raw data, which addresses privacy and scalability
concerns [1]. Each agent (e.g., a base station) learns from
its local environment and periodically aggregates its model
with others, resulting in a more generalized policy that benefits
from wider experience. This approach is promising for com-
plex 6G scenarios such as ultra-dense networks with many
RIS, where a centralized controller would be overwhelmed



by information exchange. Furthermore, multi-agent RL tech-
niques enable separate decision-making entities (multiple RIS
controllers, base stations, or even end devices) to learn co-
operative strategies. For example, one agent might learn to
control the RIS configuration while another allocates power,
and their policies are trained jointly to maximize a common
reward (like network sum-rate or fairness). Such hierarchical
or cooperative learning frameworks can significantly improve
global performance in RIS-assisted networks, as demonstrated
in recent optimization studies [1], [5] and even across cross-
domain systems involving spatio-temporal control and hybrid
computing architectures [9].

Another line of research is using supervised learning to
approximate solutions of difficult resource optimization prob-
lems. For instance, a deep neural network can be trained
on examples of near-optimal solutions (obtained via offline
solvers for simplified scenarios) to directly predict resource
allocation decisions for new inputs. This has been applied to
power control and beam selection in MIMO networks and is
being extended to RIS-assisted cases. While purely supervised
approaches may struggle with generalization, combining them
with online reinforcement fine-tuning can yield robust perfor-
mance. Generative models can also aid resource management
indirectly by generating synthetic scenarios for training or by
capturing complex statistical relationships in network states
(e.g., using a generative model to simulate realistic traffic and
channel conditions, which a resource allocation agent can train
on).

In summary, AI techniques empower a more intelligent re-
source management in RIS-assisted 6G networks. They handle
high-dimensional decision spaces (RIS configuration coupled
with traditional resources), adapt to temporal changes, and can
learn strategies that balance competing objectives (throughput,
latency, energy) under RIS-specific constraints. The surveyed
works show that AI-driven resource control can outperform
fixed heuristics, especially as network environments become
more heterogeneous and dynamic in 6G.

V. CONCLUSION

Artificial intelligence is proving to be an indispensable
tool for unlocking the potential of reconfigurable intelligent
surfaces in 6G wireless networks. In this survey, we re-
viewed how various AI methods – from deep learning (su-
pervised/unsupervised) to reinforcement learning, federated
learning, and generative models – contribute to three key
aspects of RIS-enabled communications: configuration and
beamforming, channel estimation, and resource management.
By learning from data or interactions, AI algorithms can
tackle the complexity and dynamics of RIS optimization that
defy classical approaches. They enable real-time adaptation to
channel variations, efficient acquisition of CSI with minimal
overhead, and intelligent coordination of resources in multi-
faceted networks.

Looking forward, several open challenges remain. These
include improving the robustness and explainability of AI
models for RIS (ensuring reliable performance under model

mismatches or uncertainties), reducing training complexity and
convergence time for online learning agents, and addressing
privacy/security concerns (since RIS decisions might depend
on sensitive user data). Another frontier is the integration of
emerging AI paradigms – such as meta-learning, graph neural
networks for modeling RIS interactions, and large-scale pre-
trained models (wireless foundation models) – to further boost
the intelligence of RIS systems. Interdisciplinary research
combining communication theory with advanced machine
learning will be vital to realize truly smart radio environments
in 6G. The rapid progress in this area, as highlighted by the
recent works cited, gives confidence that AI-empowered RIS
will play a significant role in shaping future wireless networks.
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