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Abstract—Speech is a promising noninvasive biomarker for
early Parkinson’s disease (PD), but most PD voice classifiers
are trained centrally on single corpora and reported only
with global accuracy, obscuring variation across clinical sites
and patient subgroups. We study multilingual cross site fed-
erated learning for PD versus healthy control (HC) speech
classification, where each client is a clinical site that typically
also corresponds to a language or multi task dataset, yielding
strongly non IID features and heterogeneous label balances. We
introduce a subpopulation aware aggregation rule that uses
site by diagnosis performance statistics to shape client level
contributions during automatic mixed precision fine tuning
of a pretrained Wav2Vec2 speech encoder. The server tracks
metrics for each site by diagnosis subgroup and upweights
clients associated with weaker subpopulations while leaving
the client side loop and encoder architecture unchanged. On
multilingual PD speech from multi task recording sites, this
aggregation strategy keeps global performance metrics closer
to a strong FedAvg baseline, while explicitly steering training
toward a more balanced performance distribution across sites
and diagnosis subgroups.

Index Terms-Medical Al, Federated learning, Fine-
tuning, Speech Classification

1. Introduction

Parkinson’s disease (PD) is a progressive neuro-
degenerative disorder that affects motor control and speech,
with prevalence estimates reaching up to 3% among indi-
viduals over 65 years of age. Voice and speech changes
are among the earliest and most accessible biomarkers,
and a large body of work shows that machine learning
models can detect PD from sustained phonation and read or
spontaneous speech with competitive accuracy [28]. Clinical
speech datasets, however, are typically collected at individ-
ual hospitals or research sites, often in different languages
and under different recording protocols. Regulatory and eth-
ical constraints make it difficult to pool raw audio centrally,
which motivates federated learning (FL) for speech-based
PD detection across institutions and languages [3]-[5].
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Figure 1: Fed SAFE overview: a subpopulation aware fed-
erated speech encoder that aggregates site updates using
fairness weights from site x diagnosis performance, under
non IID PD vs HC speech distributions and heterogeneous
network resources across sites.

Federated learning allows multiple sites to train a shared
model without sharing raw data, but in practice naive FL
protocols can amplify existing heterogeneity. Differences
in language, microphone setup, disease stage, and patient
demographics lead to highly non IID partitions. Standard
FedAvg, which optimizes an average loss over clients, can
exhibit strongly unequal performance across sites and sub-
groups, even when the global accuracy looks acceptable
[12], [16]. This has motivated a growing literature on fair
FL, including client-level objectives such as q Fair Feder-
ated Learning (q-FFL) that trade off mean accuracy and
uniformity across clients [16], fair averaging rules and client
reweighting, and healthcare-specific frameworks that unify
client-, group-, and sample-level fairness or target particular
demographic gaps [12]. Recent surveys emphasize that fair-
ness in FL is multi-dimensional and that group-level criteria
are particularly important in high-stakes domains such as
digital healthcare.

For PD speech, existing FL studies focus primarily on
feasibility and global performance under cross-site hetero-



geneity. Sarlas et al. report that FL can match or surpass site-
specific models while respecting data locality [3]; Tayebi
Arasteh et al. train FL models across three European lan-
guage corpora and show that federated PD detection can
approach centrally trained baselines without sharing raw
recordings [5]; and Quan et al. propose FedOcw, an op-
timized FL framework for cross-lingual PD speech that im-
proves convergence and cross-language transfer [4]. These
works, however, primarily evaluate performance at the level
of sites or languages and do not explicitly model or optimize
fairness for clinically meaningful subpopulations such as the
combination of site and diagnosis.

In this work we study subpopulation aware fairness
for federated PD speech models. Rather than treating each
hospital as a single unit, we use site by diagnosis cells
as basic units and track their error and balanced accuracy,
viewing fairness as how quickly and how uniformly these
cells reach acceptable accuracy under a fixed communi-
cation budget. Building on q style reweighting [16] and
healthcare FL frameworks that reweight clients or groups
by loss or error [12], we define a subpopulation aware q
fair, site by diagnosis based aggregation family that applies
bounded emphasis to high error cells. All configurations
share the same pretrained speech encoder, local optimizer,
and protocol, and differ only in the strength of this emphasis.
Our main configuration, FedSafe, uses a moderate q value
with a bounded fairness factor derived from PD and HC
errors; we compare it to ablations that weaken or remove
this factor. Following fixed budget FL. comparisons [12],
[15], we focus on a shared intermediate round where Fe-
dAvg like baselines have largely left the underfitting regime,
and we also report best round (oracle) summaries. Overall,
our contributions are: (i) a subpopulation view of fairness
for federated PD speech using site by diagnosis cells and
metrics such as minimum balanced accuracy, worst cell
error, and error dispersion; (ii) the FedSafe aggregation
family, which keeps the Wav2Vec 2.0 encoder and local
training unchanged while modulating aggregation weights
via bounded functions of PD and HC error statistics at each
site; and (iii) an empirical study on three PD speech corpora
(Italian clinical, MDVR KCL mobile, and UAMS telephone
vowels) under a fixed communication budget and an oracle
view, showing improved early worst cell performance and
dispersion relative to FedAvg like baselines, together with
the tradeoff in later rounds avgerage accuracy.

2. Federated Subpopulation Aware Fairness
Encoder aggregation

We consider cross site federated learning (FL) for speech
based Parkinson’s disease (PD) detection, where each client
is a clinical site. Privacy and regulatory constraints make
FL preferable to centralizing audio data, and prior work
shows that speech based PD detection is feasible [2] and that
FL can train PD models across institutions and languages
[4]-[6]. We introduce a subpopulation aware fairness ob-
jective for a site by diagnosis cell based aggregation rule.

Our main configuration, FedSafe (Federated Subpopulation
Aware Fairness Encoder aggregation), applies moderate q
style emphasis on high error cells together with a variance
style regularizer across sites. Variants with different ¢ values
(for example ¢g=0.0 or ¢g=0.1) or alternative penalty sched-
ules are treated as ablations of the same family rather than
distinct algorithms.

2.1. Federated setting and subpopulation structure

We consider S federated clients (sites) indexed by s €
{1,...,5}, each with local data

Ds - {(xuytagl)}?:bl? (1)

where x; is a speech segment, y; € {0,1} is the diag-
nosis label (PD vs healthy control, with y=1 for PD), and
¢; denotes site specific attributes (for example language or
recording protocol). A central server runs I’ communication
rounds; at round ¢ it broadcasts fy(:) to sampled sites, which
fine tune on D, and return updates aggregated into #(*+1),
Local training uses the cross entropy loss

Lo =1 Y CB(h@y), @

° (z,9)€Ds

and the global FL objective

S
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with ps o« ng recovering FedAvg weighting [1].

Client level averages can hide clinically important dis-
parities. Motivated by worst group and equal performance
viewpoints [10]-[12], [27], we treat each subpopulation
cell (s,g), where s is a site and ¢ € {PD,HC}, as a
basic unit and track its validation recall (or error) R 4. If
some IZ, 4 is consistently lower, patients in that cell receive
systematically worse performance even when global metrics
look acceptable. Our goal is to introduce a server side
fairness objective that keeps global performance comparable
to a strong FedAvg baseline while explicitly pushing site
by diagnosis performance toward a more balanced profile,
especially in worst cell accuracy and dispersion. Rather than
assuming perfect equalization, we empirically show that
members of our aggregation family can improve early round
worst cell metrics under a fixed communication budget.

2.2. Client model and local fine tuning

Each client uses the same speech encoder architecture:
a pretrained self supervised model (Wav2Vec 2.0 [24]) plus
a lightweight classification head, following FL work on
speech and ASR [7]. Each model is fo(z) = he(gy(x)),
with encoder g, and task head hg. In all experiments we
fine tune only the last L transformer layers of g, together
with hg using AdamW and mixed precision, consistent with
standard Wav2Vec transfer learning [7], [24]. On client s,
local training runs for E epochs per round, minimizing



¢5(0) with minibatch SGD. This procedure and architecture
are identical across all configurations (FedAvg like baseline
and subpopulation aware variants), so differences in fairness
metrics stem solely from the aggregation rule. After local
training, each client evaluates fy:) on its validation split,
computing accuracy, macro F1, and class specific recalls
for PD and HC. Let TPRpp s and TPRyc,s denote PD
and HC recall on site s; the site level balanced accuracy
BA, = %(TPRPQS + TPRHC’S) is less sensitive to label
imbalance than raw accuracy [14]. These site level metrics
are returned to the server along with model updates; the
aggregation family uses only the per site PD and HC recalls
to build site by diagnosis error statistics, without accessing
raw audio or per example data.

2.3. Subpopulation error statistics

For each site s we define PD and HC error rates
€pPD,s — 1 - TPRp]lS and €HC,s — 1 — TPRHC’S. At
the end of round ¢ the server computes cross site means
&p = > ,epp,s and éuc = + Y, enc,s, and empirical
standard deviations opp, ogc. These statistics support fair-
ness metrics such as mean and minimum balanced accuracy
over site by diagnosis cells, maximum subpopulation error,
and simple dispersion summaries, in line with worst group
and dispersion based criteria in healthcare [11], [12], [27].

For the aggregation weights we focus on how much each
site’s PD and HC error exceeds the cross site mean. We
define positive normalized deviations

+ _ €g9,s — €y
Z, s = max {O, . } , g€ {PD,HC}, 4

where § > 0 is a small stabilizing constant. This follows
group DRO style objectives that emphasize groups with
above average loss [11] and federated group DRO formu-
lations that shift weight toward high loss clients [9], with
groups here defined as site by diagnosis cells.

2.4. Subpopulation aware q fair aggregation family

In FedAvg, server side aggregation uses sample size
weights w58 oc n, [1]. This is communication efficient
and widely used [1], [26], but can favor large or well
performing clients and exacerbate disparities when some
sites are under represented or harder to classify [27].

q Fair Federated Learning (q FFL) mitigates this by

upweighting high loss clients [16]:
Wi o (€5(61) 4 €), 5)

where ¢ > 0 controls reweighting strength and € > 0
smooths the loss. Larger ¢ increases the influence of high
loss clients and can reduce accuracy spread across devices
at a given average performance [16], but ¢ is a coarse client
level summary that does not indicate which subpopulations
are poorly served.

Our subpopulation aware q fair aggregation family keeps
the q FFL base weights and multiplies them by a fairness

factor ~, tied to PD and HC errors at each site. Intuitively,
sites whose PD or HC subpopulations have above average
error receive a larger 75, and hence more influence in
aggregation. Concretely,

Vs = Clip(l + T(OzpDZ;QS + OZHCZ;[rC,s)7 Ymin; 'Ymax), (6)

where 2;5 is the positive part of the standardized error
for group g € {PD,HC} at site s, app,anc > 0 con-
trol emphasis on PD vs HC disparities, 7 sets the overall
strength, and Ymin, Ymax bound the correction to avoid ex-
treme weights, in line with group DRO style observations
about overfitting small groups [11], [12], [27].

The aggregation weight in this family is
w™™ o n (ES (O(t)) + S)q%. @)

It recovers standard FedAvg when ¢=0 and v,=1, and
client level q FedAvg when ¢>0 and ~,=1 [16]. When
q>0 and 7>0, the fairness factor - increases the weight
of sites whose PD or HC error is above the cross site mean.
Intuitively, groups (site by diagnosis cells) with unusually
high error receive extra emphasis, similar in spirit to group
DRO and federated group DRO [9], [11], while clipping
keeps the method closer to an average case optimizer than
to pure worst group optimization.

2.5. FedSafe configuration and ablations

All configurations studied in our experiments share the
same encoder, local optimizer, and communication protocol.
They differ only in how they instantiate the subpopulation
aware q fair weighting. We summarize the main settings
here; the exact hyperparameters for FedSafe are made ex-
plicit so that our configuration is reproducible.

o Subpop FedAvg (¢g=0.0). Sets g =0 and 7 = 0, so v5 =
1 and wi"™ o ng. This is the closest variant to standard

FedAvg, while still computing and logging subpopulation

statistics.

Subpop q FedAvg (¢=0.1). Uses a small ¢ > 0 with 7 =

0, giving a q FFL style client level reweighting without

explicit site by diagnosis emphasis, analogous to [16].

e UP Pen (¢=0.2). Uses ¢ > 0 together with a tighter upper
clipping to moderate the contribution of already strong
cells, probing whether downweighting high performing
cells alone can improve fairness.

o FedSafe (¢=0.2 with fairness factor). Our main con-
figuration fixes ¢ = 0.2 and ¢ = 1073, defines u, =
apDz;qus + aHCzﬁLC_S with (app, apc) = (1.0,0.5), and
mixes worst cell and mean deviations with coefficient 0.7
(70 percent worst, 30 percent mean). The overall push
toward high error cells is controlled by 7 = 0.3 and
a small extra bump on the worst cell, and the fairness
factor v, = clip(1 + 7 bs, Ymin, Ymax) is bounded with
Ymin = 0.7 and ypax = 1.4, so no site is downweighted
by more than 30 percent or upweighted by more than 40
percent. These bounds keep FedSafe closer to an average
case optimizer than a pure worst group procedure [11],
[12], [27].



We emphasize that these four settings are not four indepen-
dent algorithms. They are operating points within the same
subpopulation aware q fair aggregation family, chosen to
probe the effect of (i) activating q style client reweighting
and (ii) activating site by diagnosis fairness factors. In the
experiments we examine whether and where it can improve
early round worst cell performance and dispersion metrics
while keeping global accuracy in a comparable range to the
most relevant baselines, in line with recent work that studies
performance fairness trade offs under realistic communica-
tion budgets [12], [15].

2.6. Fairness metrics and analysis

To assess whether FedSafe meets its subpopulation ori-
ented fairness goal, we follow fairness evaluation practices
from medical ML and group robust optimization [4], [10],
[11], [27]. At each round we track: (i) global utility via
overall accuracy and macro F1 on all validation speech, to
check clinically acceptable discrimination [13]; (ii) mean
and worst balanced accuracy, computing BA per site and
reporting its mean and minimum to summarize typical and
worst site level performance under label imbalance [14],
[27]; and (iii) a site X diagnosis dispersion metric given
by the worst cell error across all site by diagnosis sub-
groups, analogous to worst group risk in group DRO [11]
and highlighting under served subpopulations. FedSafe is a
lightweight, encoder preserving reweighting layer that steers
optimization toward under performing site by diagnosis cells
while remaining compatible with strong speech FL baselines
and common healthcare FL practices [4], [7], [8].

3. Experimental Setup

We evaluate our subpopulation aware aggregation family
on a binary PD vs healthy control (HC) task using three PD
speech corpora that are widely used or recently introduced
in voice based PD studies [28]. Italian Parkinson’s Voice
and Speech (ItalianPVS). This corpus comes from a study
at the Universita degli Studi di Bari on speech intelligibility
in PD [17]. We use 50 participants (22 elderly HC, 28 PD),
each providing fixed read text recordings at 44.1 kHz, for
HC vs PD classification.

MDVR-KCL mobile speech. The English MDVR-KCL cor-
pus contains clinical recordings from King’s College Hos-
pital, London [18]. Speech was captured with a Moto G4
smartphone at 44.1 kHz while participants read two fixed
passages and produced brief spontaneous dialogue; record-
ings are annotated with PD vs HC diagnosis and severity
scores (Hoehn—Yahr, UPDRS-II, UPDRS-III).

UAMS telephone vowel dataset (PD-Voice figshare). The
“Voice Samples for Patients with Parkinson’s Disease and
Healthy Controls” dataset from UAMS provides telephone
collected sustained /a/ vowels from 50 PD and 50 HC partic-
ipants [19]. Callers sustained /a/ for about 3 seconds into a
voicemail line, recorded at 8 kHz with 16 bit resolution. The
corpus was introduced by Iyer et al. for telephone based PD
detection [22] and has since been reused in deep learning

studies on spectrograms and multimodal voice features [20],
[21].
Federated sites and subpopulations. Following cross site
FL studies on PD speech [4], [S], we treat each corpus
as a federated client (site). ItalianPVS, MDVR-KCL, and
UAMS thus form three sites with both PD and HC speech
but different languages, microphones, and recording condi-
tions. Within each corpus we create speaker disjoint train,
validation, and test splits so that no speaker appears in more
than one split, mirroring prior PD speech protocols [23].
Subpopulation cells for fairness analysis are defined as site
by diagnosis (PD vs HC), so each site contributes two cells.
All audio is converted to mono 16 kHz to match the
pretrained Wav2Vec 2.0 encoder [24]. Following recent PD
speech work with self supervised encoders [22], [23], [25],
we apply per recording amplitude normalization, energy
based VAD trimming at the beginning and end, discard
sustained vowels shorter than 1.5 s after trimming [22],
and use task specific cropping or zero padding so that
sustained vowels use a central 1.5 s window while read
speech has a fixed maximum duration. UAMS telephone
recordings are first upsampled from 8 kHz to 16 kHz by
band limited interpolation and then processed with the same
pipeline, without attempting to restore frequencies beyond
the telephone bandwidth [20], [22], so that performance
differences mainly reflect federated aggregation rather than
corpus specific preprocessing.

3.1. Wav2Vec 2.0 model and training setup

Base encoder and head.. All sites share the same pre-
trained encoder and classifier head. We use a Wav2Vec 2.0
base model pretrained on large scale read speech [24], which
has shown strong performance on pathological and clinical
speech, including PD voice tasks [7], [23], [25]. On top of
the encoder we attach a lightweight two layer feedforward
head hg that maps the pooled representation to a PD vs HC
logit, so each client implements

fo(x) = he(gy (), ®)

with Wav2Vec 2.0 encoder g, and task specific head hgs. We
fine tune only the last L transformer blocks of g, together
with hg, keeping earlier blocks frozen, following recent
clinical and cross site adapters for Wav2Vec 2.0 [7], [23],
[24]. This provides enough capacity to adapt to language and
channel differences while keeping the trainable parameter
count moderate for FL.

3.1.1. Local training and evaluation protocol. Local op-
timization uses AdamW with weight decay and mixed pre-
cision, as in standard Wav2Vec 2.0 fine tuning [7], [24].
Unless otherwise stated, we use a learning rate in the
range 107* to 5 - 10~® with cosine decay, minibatch sizes
chosen to fit a single GPU, and one or two local epochs
per round, in line with prior PD speech and cross site FL
studies with Wav2Vec style encoders [4], [5], [23], [25]. All
configurations (FedAvg like baselines and FedSafe variants)
share the same local settings so that differences arise only



TABLE 1: Fixed communication budget comparison at round Rpygeer = 33. All methods are trained for the same number of
global rounds; we report overall accuracy, mean and minimum balanced accuracy over site-by-diagnosis cells, the maximum
subpopulation error, and dispersion measures of PD and HC error across sites.

Method Acc  Mean BA Min BA  Max subpop err  SBER  Var(epp) Var(enc)
FedSafe (q=0.2) 0.783 0.785 0.528 0.500  0.215 0.043 0.045
Subpop-FedAvg (q=0.0) 0.756 0.735 0.347 0.750  0.265 0.049 0.058
UP-Pen (q=0.2) 0.677 0.664 0.500 1.000  0.336 0.076 0.112
Subpop-qFedAvg (q=0.1)  0.515 0.550 0.267 1.000  0.450 0.076 0.088

TABLE 2: Comparing the metrics over number of rounds it takes. For each method we report the round at which its
mean balanced accuracy is maximized, together with the corresponding test metrics. These oracle early stopping points

complement the fixed budget comparison in Table 1.

Method Round Acc  Mean BA Min BA Max subpop err  SBER  Var(epp) Var(emc)
FedSafe (q=0.2) 33 0.783 0.785 0.528 0.500  0.215 0.043 0.045
Subpop-FedAvg (q=0.0) 85 0.855 0.855 0.472 0.556  0.145 0.047 0.053
UP-Pen (q=0.2) 59 0.797 0.798 0.493 0.889  0.202 0.019 0.125
Subpop-qFedAvg (q=0.1) 11 0.732 0.694 0.486 0.778  0.306 0.071 0.110

from aggregation. We run synchronous FL for T'=100 global
rounds with a fixed fraction of sites participating each round,
following PD speech FL protocols [4], [5]. After every round
we evaluate the global model on each site’s held out test
set, compute per cell recalls and balanced accuracies, and
log the fairness metrics from Section 2. In line with fairness
aware FL under limited communication [12], [15], our main
comparison focuses on an intermediate round Rpygger=33,
where a FedAvg like baseline has largely left the underfitting
regime, complemented by an oracle best round summary
based on mean balanced accuracy per method.

4. Evaluation and Discussion

We hypothesize that subpopulation-aware reweighting is
most useful under realistic, limited communication budgets.
Table 1 therefore reports test performance at a shared budget
of Ryugger = 33 global rounds, which we treat as a practically
relevant regime for cross-site PD speech FL (Section 3).
At this budget, FedSafe attains the best overall and mean
balanced accuracy (Acc = 0.783, Mean BA = 0.785) and,
from a fairness perspective, the highest minimum balanced
accuracy (0.528) and lowest maximum subpopulation error
(0.500). Relative to Subpop-FedAvg (¢=0.0), FedSafe im-
proves mean balanced accuracy (0.785 vs 0.735), raises the
minimum cell BA (0.528 vs 0.347), and reduces the worst-
cell error (0.500 vs 0.750), with slightly lower dispersion
(SBER and error variances). UP-Pen and Subpop-qFedAvg
perform worse at this budget: both show lower mean BA and
higher maximum subpopulation error, and Subpop-qFedAvg
is weakest overall, consistent with the idea that client-level
q reweighting without explicit subpopulation structure is a
poor proxy for subgroup fairness [12], [16]. Overall, the
fixed-budget view suggests that incorporating simple site-
by-diagnosis error statistics into the aggregation weight can
improve the balance of accuracies across cells while keeping
global performance competitive with a strong FedAvg-like
baseline. Table 2 reports a best-round oracle analysis, where

for each method we select the training round with highest
test mean balanced accuracy, following best-epoch sum-
maries in fair FL benchmarks [12], [15]. Subpop-FedAvg
(g=0.0) peaks late and achieves the strongest average per-
formance, while FedSafe’s oracle round (33) attains the
highest minimum balanced accuracy and lowest maximum
subpopulation error but lower averages than late Subpop-
FedAvg. UP-Pen and Subpop-qFedAvg peak earlier and
never dominate on both average and worst-cell metrics, in-
dicating that mild client-level ¢ reweighting without explicit
subpopulation structure does not equalize site-by-diagnosis
cells. Overall, the oracle view suggests that average-focused
objectives can eventually narrow fairness gaps, whereas
FedSafe mainly reshapes the early to mid training trajectory
in favor of underperforming cells rather than improving
asymptotic averages.

5. Conclusion

We studied fairness for site by diagnosis subpopulations
in multilingual cross site federated PD speech classifica-
tion. Our federated system design, keeps the Wav2Vec 2.0
encoder and local training unchanged and adds a bounded
reweighting layer based on per-site PD and HC error statis-
tics. On a three-site FL setting (Italian clinical recordings,
MDVR-KCL mobile speech, and UAMS telephone vowels),
FedSafe achieved higher mean and minimum balanced ac-
curacy and lower worst-cell error than a closely matched
FedAvg-like baseline at a moderate communication budget,
while maintaining comparable overall accuracy. An ora-
cle early-stopping view showed that a plain subpopulation
FedAvg objective can eventually recover stronger average
performance if training continues, whereas FedSafe mainly
reshapes the early-mid training trajectory in favor of un-
derperforming site-by-diagnosis cells. These results sug-
gest that even lightweight, encoder-preserving subpopulation
reweighting can be a practical tool for improving early-
round subgroup behavior in federated PD speech, but also



highlight that it trades off with late-stage average perfor-
mance. In the future, we will extend this idea to richer
subgroup structures, larger cohorts, and broader fairness
objectives.
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