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Abstract—Deep learning (DL) has emerged as a vital compo-
nent of modern precision agriculture, enabling fast and reliable
plant disease diagnosis directly from leaf images. Despite this
progress, current models remain highly susceptible to adver-
sarial perturbations and environmental corruptions, which can
distort fine-grained lesion characteristics such as texture, edge
sharpness, and color variation. These failures become especially
concerning in real-world agricultural pipelines involving drones,
field cameras, and IoT devices, where blur, noise, haze, and
compression artifacts are common. To address these challenges,
we introduce a multi-scale masked autoencoder (MSAE)-based
defense framework integrated with a ConvNeXt V2 classifier to
enhance robustness against both digital attacks and natural cor-
ruptions. The MSAE is designed to reconstruct lesion structures
at multiple spatial resolutions, alleviating the over-smoothing
and detail loss observed in conventional single-scale denoisers.
By combining adversarial examples (Fast Gradient Sign Method
(FGSM), Projected Gradient Descent (PGD), and AutoAttack
(AA)) with ImageNet-C style corruptions, our method estab-
lishes a unified and realistic robustness evaluation pipeline.
Experimental evaluation on a benchmark plant leaf disease
dataset demonstrates that while the baseline ConvNeXt V2 model
achieves 98.98% accuracy on clean images, its performance
drops to 65.22% under combined adversarial and corruption
settings. With the proposed MSAE-ConvNeXt defense, accuracy
is restored to 85.64%, and the framework achieves a mean
robust accuracy (mRA) of 74.98% across FGSM, PGD, and
AutoAttack. These results confirm that multi-scale reconstruction
significantly strengthens model resilience, offering a promising
direction toward dependable and field-ready agricultural Al
systems.

Index Terms—Adversarial Robustness, Precision Agriculture,
Masked Autoencoder, Plant Disease Classification, Multi-Scale
Reconstruction.

I. INTRODUCTION

Plant pests and diseases threaten global food security,
causing an estimated 20-40% annual crop loss and over
USD 220 billion in economic damage [1], [2]. As agriculture
increasingly adopts data-driven practices, DL models deployed
on drones, smartphones, and IoT devices have become central
to automated leaf disease monitoring [3]-[5]. Modern CNN
and transformer architectures now achieve over 96% accuracy
on curated datasets such as PlantVillage and PlantDoc [3],
[6]. However, these systems are typically trained under clean
conditions, whereas real farms present noisy, variable, and

adversarial environments that can severely degrade DL per-
formance [7]-[9].

Recent studies have shown that even imperceptible pertur-
bations generated by FGSM, PGD, and related attacks can
drastically reduce classification accuracy [10]. You et al. report
an 87.6% error rate under a GP-MI-FGSM attack for an
EfficientNet-based model [11], demonstrating the fragility of
current plant disease classifiers. Such perturbations can flip
predictions across visually similar disease categories, degrad-
ing treatment decisions and propagating losses across the agri-
cultural supply chain [11], [12]. Beyond adversarial attacks,
field imagery suffers from blur, noise, haze, and compression
artifacts caused by drone motion, sensor limitations, dust, and
IoT bandwidth constraints. Robustness research commonly
models these degradations using ImageNet-C corruptions [13],
[14], yet corruption-aware evaluation remains underexplored
in agricultural Al

To improve robustness, prior works have explored adversar-
ial training, attention-enhanced architectures, and lightweight
compression [11], [12]. Reconstruction-based defenses such
as CAEs and denoisers have also been applied, but their
single-scale decoders often over-smooth critical lesion struc-
tures—blurring edges, suppressing fine necrotic spots, and
weakening discoloration cues. Our earlier encoder-based CAE
defense partially improved robustness under FGSM and PGD
but still failed to preserve multi-scale lesion details [15], [16].

These limitations motivate a defense mechanism that (i)
jointly addresses digital adversarial attacks and real-world
corruptions, and (ii) reconstructs images in a lesion-preserving,
multi-scale manner. In this work, we introduce a robust
classification pipeline integrating a multi-scale convolutional
masked autoencoder (MSAE) with a ConvNeXt V2 backbone.
The MSAE operates as a front-end reconstruction module
that restores fine-grained lesion textures, edges, and color
variations from images distorted by FGSM, PGD, AutoAttack,
or ImageNet-C corruptions. The reconstructed output is then
classified by ConvNeXt V2.

Our contributions are summarized as follows:

« We present a unified robustness setting for plant disease

classification that jointly evaluates digital adversarial at-



tacks (FGSM, PGD, AutoAttack) and ImageNet-C based
real-world corruptions.

e We propose a multi-scale convolutional masked autoen-
coder capable of reconstructing lesion-preserving features
that conventional CAEs fail to recover.

o We develop a two-stage robust pipeline (MSAE + Con-
vNeXt V2) and demonstrate improved prediction stabil-
ity across diverse perturbations while maintaining high
clean-image accuracy.

II. RELATED WORK

Deep learning has shown strong performance in plant
disease classification, with recent studies combining CNNs,
transformers, and IoT-based imaging systems to support au-
tomated field monitoring [17], [18]. These works highlight
that modern architectures can achieve high accuracy under
clean conditions but seldom address robustness to real-world
noise or perturbations. Adversarial robustness in agricultural
vision has only recently gained traction. You et al. demonstrate
that gradient-based attacks such as GP-MI-FGSM can induce
error rates exceeding 80% on plant leaf classifiers despite
strong clean performance [11]. More recent explainability-
driven methods incorporate adversarial training or knowledge
distillation to improve stability [19], yet these approaches
primarily focus on specific attack types and do not consider
robustness to environmental corruptions common in drone or
IoT image capture.

Reconstruction-based defenses have been explored through
denoising networks and autoencoders. Chung, Seyeon, et al.
propose a denoising—DenseNet pipeline to handle noisy agri-
cultural images [20], while variational autoencoder designs
have been used to enhance interpretability rather than adver-
sarial robustness [21]. These methods, however, rely on single-
scale decoding, which often oversmooths fine-grained lesion
patterns critical for disease identification. Masked autoen-
coders have recently been adopted for self-supervised feature
learning in crop disease recognition [22]-[24], but they are
typically used for representation learning on clean images [25].
Their potential as a front-end defense against both adversarial
and corruption-based degradation remains unexplored.

In contrast to the above, our previous encoder-based defense
study integrated a CAE with ConvNeXt V2 to mitigate FGSM
and PGD attacks on plant leaf images [15]. While this ap-
proach partially restored accuracy, qualitative analysis revealed
that single-scale CAE reconstruction tends to over-smooth
lesion boundaries and suppress fine-grained discoloration pat-
terns. The present work advances this line of research by
(i) adopting a multi-scale masked autoencoder specifically
designed to preserve lesion structures across scales, and (ii)
evaluating robustness under a unified threat model that com-
bines gradient-based adversarial attacks with ImageNet-C style
corruptions, thereby addressing a gap left by prior adversarial
training, denoising, and MAE-based representation learning
approaches.

III. METHODOLOGY

This section presents the complete design of our robust
plant disease classification framework. We begin with an
overview of the full pipeline (Fig. 1), followed by a detailed
description of (i) digital adversarial attacks, (ii) real-world
corruption modeling through ImageNet-C, (iii) the proposed
multi-scale convolutional MAE, and finally (iv) the Con-
vNeXt V2 classification head. Figure 1 illustrates the two-stage
architecture comprising a clean classification pipeline and a
robust reconstruction pipeline. In the clean setting, images
from the PlantVillage dataset are preprocessed and directly
fed into ConvNeXt V2 for disease classification. In the robust
setting, test images undergo adversarial perturbations (FGSM,
PGD, AutoAttack) and ImageNet-C corruptions before being
reconstructed by the proposed multi-scale MAE. The recon-
structed image is then forwarded to ConvNeXt V2 for final
classification.
A. Digital Adversarial Attacks

Adversarial attacks aim to generate minimally perturbed
inputs that mislead the classifier. Given an image x and true
label y, an adversarial example 2% ig defined as:

29 =246, st ||0]le <, ()

where € controls the perturbation strength. Examples of adver-
sarial samples used in our evaluation are shown in Fig. 2.

1) Fast Gradient Sign Method

FGSM [26] generates a perturbation by taking a single
gradient step that maximizes the loss:

TFGSM = T + € - Sign (VIJ(aa z, y)) ’ (2)

where J is the classification loss. FGSM perturbs all pixels in
the direction of the gradient, often destroying high-frequency
lesion textures.

2) Projected Gradient Descent

PGD [27] extends FGSM with iterative refinement:

w1 =T, (o) (w0 + - sign(Va T (0, 20,9)), )

where « is the step size and II projects the result onto
the e-ball. PGD is widely considered the ‘“strongest first-
order attack” because it gradually removes lesion-specific
information.

3) AutoAttack

AutoAttack [28] is a parameter-free ensemble attack com-
posed of: APGD-CE: Auto-PGD on cross-entropy; APGD-
DLR: Auto-PGD on DLR loss; FAB Attack: decision bound-
ary-based perturbation; Square Attack: score-based black-box
attack. AutoAttack is considered more reliable than single-step
attacks since it searches in multiple perturbation subspaces,
producing highly diverse perturbation patterns that emulate
real-world noise amplification.
B. Real-World Corruptions: ImageNet-C Adaptation

Digital attacks represent worst-case perturbations, but agri-
cultural images captured via drones and IoT devices often
degrade due to physical factors. To simulate these conditions,
we apply the full set of 15 ImageNet-C corruption types to the
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Fig. 1. Overall framework consisting of (A) the clean pipeline using ConvNeXt V2 and (B) the robust pipeline. Test images are perturbed by digital attacks
or ImageNet-C corruptions and then reconstructed by a multi-scale masked autoencoder before classification.

Fig. 2. Examples of adversarial perturbations applied to PlantVillage leaves
using FGSM and PGD at multiple € values. Even low-magnitude perturbations
distort fine texture, color, and lesion boundaries.

PlantVillage dataset [13]. Given a corruption operator ¢ (-, s)
of type k and severity s:

el = op(x,s), sefl,....5} 4)

Figure 3 shows examples of noise, blur, weather, and digital
corruptions applied to our dataset.

These corruptions degrade lesion boundaries, color contrast,
and small-spot structures—making them ideal for evaluating
real-world robustness.

C. Multi-Scale Convolutional Masked Autoencoder

The core defense module is a multi-scale convolutional
MAE designed to reconstruct lesion-preserving features from
corrupted inputs. Its architecture is shown in Fig. 4.

The input image x is divided into patches P = {p;}. A
random subset is masked using a binary mask m:

Di = My - P;. (5)
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Fig. 3. Examples of ImageNet-C corruptions adapted to PlantVillage leaf
images, including noise (Gaussian, shot), blur (defocus, zoom), weather effects
(fog, frost), and digital distortions (JPEG, pixelate, brightness).

Masked patches are processed by three convolutional
blocks:

Zi = Elee (ﬁz)’ (6)

where each block captures different receptive-field scales:

o Block 1: high-frequency lesion edges

o Block 2: mid-level spot boundaries

« Block 3: large necrotic regions and leaf shape

Transformer blocks then model global dependencies across
patches. The Multi-Scale Decoder reconstructs missing
patches using:

& = Dy, (z,m), @)
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Fig. 4. Architecture of the proposed multi-scale convolutional masked autoencoder. Masked convolution blocks extract robust local features, transformer
blocks capture long-range dependencies, and the multi-scale decoder reconstructs high-fidelity leaf structures.

A multi-scale fusion step aggregates features:

S
Fruse = Z WSFS7

s=1

®)

where each Fj corresponds to a specific resolution. The
reconstruction loss of MAE is trained with pixel-level L2 loss:

9

This enables the model to recover subtle lesions without
over-smoothing. Finally, the reconstructed image z is for-
warded to ConvNeXt V2:

Lyap = ||z — #]3.

h = fcomNextva (%), (10)
followed by a fully connected layer:
o=Wh+b, (11)
and softmax:
9 = softmax(0), (12)

producing the predicted plant disease class among 15 cate-
gories. This separation improves robustness to both digital and
real-world corruptions.

IV. EXPERIMENT & ANALYSIS

We conducted all experiments on the PlantVillage
dataset [29], a widely used benchmark for leaf-based disease
classification comprising high-resolution images of pepper,
potato, and tomato leaves across 15 classes, including both
diseased and healthy samples. Each image was resized to
256 x 256, normalized to [0, 1], and augmented through random
flipping and color jitter during training. For the robustness
pipeline, we further generated adversarial samples (FGSM,
PGD, AutoAttack) at multiple perturbation magnitudes and
applied the full set of 15 ImageNet-C corruptions to sim-
ulate real-world acquisition conditions. Model training was
implemented in PyTorch using an NVIDIA RTX 4070 GPU
with 12 GB VRAM, 32 GB system RAM, and an Intel Core

i7-14700KF processor. The clean ConvNeXt V2 classifier
was trained for 60 epochs using the AdamW optimizer with
a learning rate of 1 x 10™* and cross-entropy loss. The
multi-scale MAE defense module was trained separately for
200 epochs using mean squared error (MSE) reconstruction
loss and the same optimizer settings. During inference, the
reconstructed image produced by the MSAE was passed
through the pre-trained ConvNeXt V2 classifier. To provide
a comprehensive evaluation of model robustness, we report
standard classification metrics including accuracy, precision,
recall, and F1-score for clean, attacked, and reconstructed im-
ages. Additionally, following robustness evaluation protocols,
we compute the per-attack robust accuracy for FGSM, PGD,
and AutoAttack, and report the mean robust accuracy (mRA)
to summarize overall resilience against diverse perturbations.
We generate perturbations and AutoAttack under an ¢, threat
model. FGSM is applied with € € {8/255}, while PGD uses
e = 8/255, a step size of a = 2/255. AutoAttack is evaluated
using the AA-standard configuration. To model real-world
image degradation, we apply all 15 ImageNet-C corruption
types at severity levels s € {1,2,3,4,5}. Results are averaged
over all corruption types and severities per test image.

A. Results

The baseline ConvNeXt V2 classifier was trained for a
maximum of 100 epochs, with the best performance observed
at epoch 60, achieving a training loss of 0.0012, a valida-
tion loss of 0.0056, and a clean accuracy of 98.98%. This
model serves as the reference for evaluating robustness before
and after applying our defense module. Figure 5 shows the
reconstruction loss (MSE) of the proposed multi-scale MAE
over 200 training epochs. The MAE exhibits smooth and
consistent convergence, with the training and validation curves
stabilizing at 0.0100 and 0.0096, respectively. The validation
loss remaining slightly below the training loss indicates strong
generalization and effective reconstruction of lesion structures
under adversarial and corrupted inputs.

Table I summarizes the performance of the baseline Con-
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Fig. 5. Reconstruction: both training and validation losses decrease steadily,
demonstrating stable convergence and effective reconstruction capability.

vNeXt V2 classifier, the model under adversarial and corrup-
tion stress, and the final robust pipeline incorporating the MAE
reconstruction module.

TABLE I
COMPARISON OF CLEAN, ATTACKED, AND MAE-ENHANCED ROBUST
CLASSIFICATION PERFORMANCE ON THE PLANTVILLAGE DATASET.

Model Accuracy Precision  Recall F1

Clean ConvNeXt V2 0.9898 0.9892 0.9895  0.9799
Under Attack/Corruption 0.6522 0.6617 0.6522  0.6470
MSAE + ConvNeXt V2 0.8564 0.8594 0.8464  0.8545

We additionally evaluate robustness using FGSM, PGD,
and AutoAttack. The robust pipeline achieves strong per-
attack performance and a high mean robust accuracy (mRA):
FGSM: 0.8427, PGD: 0.6956, AutoAttack: 0.7112, and mRA:
0.7498. These results validate the effectiveness of the MSAE
in restoring perturbed lesion structures prior to classification.
B. Discussion

The clean ConvNeXt V2 model achieves near-perfect per-
formance, confirming the high separability of PlantVillage
under ideal conditions. However, applying adversarial attacks
and ImageNet-C corruptions causes accuracy to drop by more
than 33% (from 0.9898 to 0.6522), highlighting the vulnera-
bility of standard CNN/transformer models to both digital and
real-world distortions. Integrating the proposed MSAE signif-
icantly mitigates this degradation. The MSAE+ConvNeXt V2
pipeline restores accuracy from 0.6522 to 0.8564, recovering
over 20% absolute performance. The high mRA score of
0.7498 further indicates strong robustness across different
attack modalities. Overall, the results demonstrate that learning
multi-scale lesion-aware reconstructions is highly beneficial
for plant disease classification in operational settings such as
UAV monitoring and IoT-based crop inspection.

C. Comparison with Recent Adversarially Robust Models

Table II presents a condensed comparison between the
proposed MSMAE+ConvNeXt V2 pipeline and recent adver-
sarially aware plant disease classification systems. Here, we
report only three essential attributes: model backbone, defense

strategy, and the available clean and adversarial robustness
metrics.

Compared with prior adversarially-aware models, our MS-
MAE+ConvNeXt V2 pipeline exhibits substantially stronger
robustness across diverse threat settings. SimAM-EfficientNet
achieves high clean accuracy but lacks a defense mechanism,
resulting in a large accuracy decline under GP-MI-FGSM
attacks. Models based on adversarial training and knowledge
distillation [19] improve resilience, maintaining approximately
83% accuracy under BIM perturbations. Denoising-based ap-
proaches such as RIDNet [?] preserve 89-92% accuracy
under PGD, while ViT models with FGSM-augmented training
sustain nearly clean-level performance under FGSM noise. In
contrast, the proposed model is evaluated under a broader and
stronger threat model, including FGSM, PGD, AutoAttack,
and additionally ImageNet-C corruptions. Despite this wider
stress test, our method maintains a mean robust accuracy
of 74.98% while retaining a high 98.98% clean accuracy.
This demonstrates that multi-scale masked reconstruction ef-
fectively preserves fine lesion structures and yields consistent
robustness under both digital adversarial attacks and real-world
corruptions.

V. CONCLUSION

This work presented a robust plant disease classification
framework that combines a multi-scale masked autoencoder
with a ConvNeXt V2 backbone to defend against both
adversarial attacks and real-world corruptions. While the
clean model achieved high accuracy, its performance dropped
sharply under FGSM, PGD, and AutoAttack perturbations as
well as ImageNet-C distortions. The proposed MSMAE sub-
stantially mitigated this degradation by reconstructing lesion-
preserving features before classification, restoring more than
20% absolute accuracy and achieving a strong mean robust
accuracy across diverse threat settings. In future work, we plan
to integrate additional defense strategies, such as adversarial
training, frequency-domain reconstruction, and certified ro-
bustness techniques. We also aim to incorporate large language
models into the pipeline to provide interpretable, human-
readable explanations for disease predictions and reconstruc-
tion behavior.
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TABLE 11
COMPARISON OF ADVERSARIAL ROBUSTNESS ACROSS RECENT PLANT MODELS. WHERE: C = CLEAN, R = MRA, F = FGSM, P = PGD, AND A = AA.

Backbone Defense Strategy

Accuracy / Robustness

EfficientNet + SImnAM  No defense; attack (GP-MI-FGSM) [11]

ResNet50 (KD)
DenseNet-41
ViT-B/16
Proposed

Adv. + Knowledge Distillation [19]
RIDNet denoiser + classifier [30]
FGSM-based adv. [31]
Multi-scale MAE reconstruction

C: 99.31%; robustness not reported; strong drop under attack.

C: ~94.7%; BIM: ~83.5%.
PGD (¢<0.1): 89.7-92.0%; FGSM: 92.9-98.8%.
FGSM (e 0.01-0.05): >99%; C: 99.4%.
C98.98%, R74.98%, ¥84.27%, P69.56%, A71.12%.

2025-RS-2023-00256629, 33%) grant funded by the Korea
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