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Abstract—The rapid growth of mobile data and IoT devices
demands seamless wireless coverage beyond terrestrial networks.
Non-Terrestrial Networks (NTNs) combining Low Earth Orbit
(LEO) satellites and Unmanned Aerial Vehicles (UAVs) of-
fer promising solutions for remote and disaster-affected areas.
However, efficient resource management in hybrid satellite-UAV
systems requires accurate traffic prediction to handle dynamic
topology changes, frequent handovers, and varying link con-
ditions. We propose a long short-term memory (LSTM)-based
deep learning framework that predicts network traffic using
seven features, including satellite elevation, link type, SNR,
latency, Doppler shift, and throughput. Our dual-layer LSTM
architecture with batch normalization achieves 9.15% MAPE,
outperforming ARIMA by 36.5% and vanilla RNN by 1.1%.
Experiments on real 5G traffic data demonstrate stable prediction
up to 30 minutes ahead with 8.72 Mbps MAE, enabling proactive
resource allocation in next-generation NTNs.

Index Terms—Non-Terrestrial Networks, LEO Satellites, UAV
Communications, Traffic Prediction, LSTM, Deep Learning

I. INTRODUCTION

The explosive growth of mobile data and IoT devices
has created unprecedented demand for worldwide wireless
coverage. Traditional terrestrial networks struggle to provide
seamless connectivity in remote areas, oceans, and disaster
zones. Non-Terrestrial Networks (NTNs) comprising Low
Earth Orbit (LEO) satellites and Unmanned Aerial Vehicles
(UAVs) offer complementary solutions [1]. LEO constellations
like Starlink provide wide coverage with low latency (30-40
ms) but face challenges from high velocities (∼7.5 km/s), fre-
quent handovers, and elevation-dependent degradation. UAVs
offer adaptive coverage with ultra-low latency (2-5 ms) but
limited reach. A hybrid satellite-UAV architecture combin-
ing global LEO coverage with flexible UAV deployment is
promising for next-generation NTNs [2]. Effective resource
utilization critically depends on accurate traffic prediction
for proactive allocation, congestion management, and im-
proved QoS. However, NTN traffic prediction presents unique
challenges: dynamic topology from high satellite velocities,
satellite-to-UAV switching with fluctuating latency, and com-
plex nonlinear relationships between orbital parameters and
link quality that traditional statistical methods cannot model.
Conventional forecasting models like ARIMA assume linearity
and stationarity, invalid for dynamic hybrid NTNs. Deep

Fig. 1. Conceptual Overview and Motivation for Intelligent Traffic Prediction
in Hybrid Satellite-UAV Non-Terrestrial Networks (NTNs).

learning, particularly long short-term memory (LSTM) net-
works, demonstrates superior ability to learn complex temporal
dependencies through gating mechanisms. However, existing
approaches target ground networks without considering NTN-
specific characteristics like frequent handovers and elevation-
dependent path loss. This paper presents an LSTM-based
traffic prediction framework for hybrid satellite-UAV NTNs
as shown in Fig 1. Main contributions include (i) A three-tier
hybrid architecture with dynamic link selection, (ii) a seven-
dimensional feature vector capturing traffic, orbital, and link
quality parameters, (iii) a dual-layer LSTM network achieving
9.15% MAPE on real 5G data, and iv) comprehensive evalu-
ation against ARIMA and RNN baselines.

II. RELATED WORK

Wireless network traffic forecasting has progressed from
traditional statistical approaches to advanced deep learning
techniques. Azari et al. [3] compared LSTM and ARIMA
for cellular traffic prediction, showing LSTM outperforms
when sufficient training data is available. Recent work by
Wu et al. [4] introduced CLPREM, combining LSTM with
data augmentation for real-time 5G prediction. Yang et al.
[5] developed Diviner to handle non-stationary patterns in 5G
traffic for long-term forecasting. Belhadj et al. [6] applied
LSTM for next-cell prediction in 5G IoT mobility manage-
ment. These methods excel in terrestrial networks but do not



Fig. 2. Traffic dataset distribution: (a) Number of samples by application
category showing live streaming and game streaming dominate the dataset;
(b) Proportional distribution revealing balanced mix of real-time and stored
content applications.

address unique NTN characteristics like orbital dynamics and
handover complexity. NTN research has accelerated through
3GPP standardization. Lin et al. [7] surveyed Release 17
NTN specifications, introducing time-based and location-based
conditional handovers for LEO satellites. Wang et al. [8]
proposed hybrid LEO-UAV architecture for IoT data collec-
tion. Yao et al. [9] optimized multi-UAV communication in
integrated satellite-aerial-terrestrial networks. Li et al. [10]
designed authentication schemes for satellite-UAV integration
in 6G systems. Jiang et al. [11] addressed privacy in satellite-
terrestrial networks using federated split learning.

III. SYSTEM MODEL AND PROBLEM FORMULATION

A. Hybrid Satellite-UAV Architecture

We propose a three-tier hybrid NTN architecture comprising
LEO satellites at 600 km altitude with 90-minute orbital
periods and 30-40 ms latency, UAVs operating at 1-5 km
altitude with 2-5 ms latency, and ground users. The system
implements dynamic link selection, switching to UAV when
satellite elevation θelev < 25 to ensure continuous coverage.
Fig. 2 shows the traffic distribution across six application
categories from our 5G dataset: game streaming (21.5%), live
streaming (23.6%), metaverse (8.0%), online games (18.9%),
stored streaming (15.0%), and video conferencing (12.9%).

B. Traffic Model

Let x(t) denote traffic load in Mbps at time t. We define
a seven-dimensional feature vector f(t) to capture the several
features, and can be written as

f(t) = [xnorm(t), θelv(t), ltp(t), SNR(t), τ(t), fd(t), C(t)]T ,

where xnorm(t) is the normalized traffic, θelv(t) is the satellite
elevation angle, ltp(t) is the active link type (0=satellite,
1=UAV), SNR(t) is the signal-to-noise ratio, τ(t) is the
latency, fd(t) is the Doppler shift, and C(t) is the throughput
capacity.

Fig 3 visualizes the relationship between traffic patterns and
link dynamics. Traffic demand varies from 5 to 140 Mbps with
clear peak periods, while satellite elevation oscillates between
70-80° with periodic drops below the 25◦ handover threshold
triggering UAV activation. The link quality comparison reveals
that satellite SNR fluctuates between 18-32 dB with fading

Fig. 3. Traffic and link characteristics: (a) Traffic demand overlaid with active
link type showing satellite (blue) and UAV (green) periods; (b) Link selection
based on satellite elevation with handover threshold at 25°; (c) Link quality
comparison showing SNR and latency differences between satellite and UAV
modes.

effects, while latency remains stable around 30-32 ms for
satellites versus 2-5 ms for UAVs.

C. Problem Statement

Given a historical observation window X(t) = [f(t −
11), . . . , f(t)] of T = 12 time steps (60 minutes with 5-
minute intervals), our objective is to predict future traffic
x̂(t + 1 : t + 6) for K = 6 steps (30 minutes ahead). We
formulate this as an optimization problem as

min
θ

E
[
∥x(t+ 1 : t+ 6)− g(X(t); θ)∥2

]
, (1)

where g(·; θ) represents the LSTM prediction function with
learnable parameters θ, x(t + 1 : t + 6) denotes the ground
truth future traffic values, and ∥ · ∥ represents the Euclidean
norm. The expectation E[·] is taken over the training data
distribution. This formulation allows the network to learn
optimal parameters θ∗ that minimize the expected prediction
error across all training samples.

IV. PROPOSED LSTM METHODOLOGY

A. Network Architecture

Our LSTM network addresses the optimization problem
formulated in (1) by leveraging gating mechanisms to capture
long-term temporal dependencies [12]. Unlike vanilla RNNs
that suffer from vanishing gradients, LSTM maintains a cell
state ct that selectively retains information through three
control gates: (i) Forget gate ft determines which information
from the previous cell state ct−1 should be discarded, (ii) Input
gate it controls what new information is added to the cell state,
and (iii) Output gate ot regulates what information is output
from the cell state.

The cell state update mechanism is governed by

ct = ft ⊙ ct−1 + it ⊙ tanh(Wc · [ht−1,xt] + bc), (2)



where ⊙ denotes element-wise multiplication, [ht−1,xt] con-
catenates the previous hidden state with current input features,
Wc represents learnable weight matrices, and bc is the bias
term. The hidden state output is then computed as

ht = ot ⊙ tanh(ct). (3)

The gating mechanisms in (2) and (3) enable the network
to learn which features among our seven NTN-specific inputs
are most relevant for prediction at each time step. This is
particularly important in hybrid NTNs, where the relevance of
features like Doppler shift and link type varies depending on
whether the satellite or UAV link is active. Our implementation
consists of multiple layers as follows.

• LSTM layer 1 with 32 units and
return_sequences=True to pass sequential
information to the next layer.

• Batch normalization to stabilize training and accelerate
convergence.

• Dropout layer 1 with rate 0.2 for regularization.
• LSTM layer 2 with 16 units for high-level feature extrac-

tion.
• Batch normalization layer 2.
• Dropout layer 2 with rate 0.2.
• Dense output layer with 6 units producing the multi-step

forecasts x̂(t+ 1 : t+ 6) that minimize (1).
The total architecture contains 8,550 parameters, of which
8,454 are trainable (96 are non-trainable from batch normal-
ization layers). This relatively compact architecture enables
efficient training on limited data while maintaining sufficient
capacity to capture complex NTN dynamics.

B. Training Procedure

Algorithm 1 outlines the training process. We create se-
quences where each input Xt contains 12 time steps of 7
features, and each output yt contains 6 future traffic values.
The dataset is split into 70% training, 15% validation, and
15% testing. We employ the Adam optimizer with learning
rate α = 0.001, mean squared error loss, and batch size of 32.
Early stopping with patience of 20 epochs and learning rate
reduction with a factor of 0.5 and patience 7 epochs prevent
overfitting. Training runs for up to 150 epochs, terminating
early if the validation loss does not improve.

V. EXPERIMENTAL SETUP

We utilize the 5G Mobile Traffic Dataset1 containing 328
hours of real network traces from gaming, streaming, and
conferencing applications. Sampling yields 2,000 time steps at
5-minute intervals with traffic ranging from 5.2 to 180.3 Mbps
(mean 52.9 Mbps, median 52.7 Mbps). Fig. 4 displays key
NTN parameters, including satellite elevation with handover
zones, SNR variations with fading effects, latency comparison
between LEO (30-34 ms) and UAV (2-5 ms), and Doppler
frequency shift patterns.

1A 5G traffic dataset measured by PCAPdroid: https://www.kaggle.com/
datasets/kimdaegyeom/5g-traffic-datasets

Algorithm 1 LSTM Training for Hybrid NTN Traffic Predic-
tion
Require: Traffic data D, NTN features F , window size T =

12, horizon K = 6
Ensure: Trained model parameters θ∗

1: Create sequences: Xt ← [f(t−T +1 : t)], yt ← [x(t+1 :
t+K)]

2: Split data: Train (70%), Validation (15%), Test (15%)
3: Initialize LSTM(32, 16 units) with batch normalization

and dropout
4: Initialize Adam optimizer with α = 0.001
5: for epoch = 1 to 150 do
6: Forward pass: ŷ← LSTM(X; θ)
7: Compute loss: L ← MSE(y, ŷ)
8: Backward pass: θ ← θ − α∇θL
9: if validation loss not improved for 20 epochs then

10: break (early stopping)
11: end if
12: if validation loss not improved for 7 epochs then
13: Reduce learning rate: α← 0.5× α
14: end if
15: end for
16: return θ∗ at best validation loss

Fig. 4. Satellite and network parameters: (a) LEO satellite elevation angle
showing periodic oscillations with handover zone below 25° highlighted; (b)
SNR variations demonstrating fading effects in satellite link; (c) Network
latency comparison between LEO satellite and UAV showing significant
latency reduction with UAV deployment.

VI. RESULTS AND DISCUSSION

A. Performance Comparison

Table I presents quantitative results. The proposed LSTM
achieves an MAPE of 9.15%, representing 36.5% improve-
ment over ARIMA (14.41%), and 1.1% improvement over
vanilla RNN (9.25%). For MAE, LSTM achieves 8.72 Mbps



TABLE I
PERFORMANCE COMPARISON OF PREDICTION METHODS

Method MAE (Mbps) RMSE (Mbps) MAPE (%)
ARIMA 12.86 20.86 14.41
Vanilla RNN 9.24 13.84 9.25
Proposed LSTM 8.72 13.03 9.15

Fig. 5. Traffic prediction comparison over 80 time steps: (a) 1-step ahead (5
minutes) showing LSTM and vanilla RNN closely track ground truth while
ARIMA shows larger deviations during peaks; (b) 6-step ahead (30 minutes)
demonstrating increased uncertainty for all methods but superior stability for
LSTM.

compared to ARIMA’s 12.86 Mbps (32.2% improvement) and
vanilla RNN’s 9.24 Mbps (5.6% improvement). Similarly,
RMSE shows LSTM at 13.03 Mbps outperforming ARIMA
(20.86 Mbps) by 37.5% and vanilla RNN (13.84 Mbps)
by 5.9%. The vanilla RNN performs competitively despite
having fewer parameters (4,998 vs 8,550), suggesting that for
this dataset size, simpler architectures may generalize better.
However, LSTM’s superior performance across all metrics
demonstrates its effectiveness in capturing complex temporal
patterns in hybrid NTN traffic. The substantial improvement
over ARIMA validates the necessity of deep learning ap-
proaches for nonlinear, non-stationary NTN traffic prediction.

B. Prediction Analysis

Fig. 5 compares prediction performance across different
time horizons. For 1-step ahead (5 minutes), LSTM tracks
ground truth closely with occasional deviations during traffic
spikes around 130 Mbps. ARIMA shows larger systematic
errors, particularly overshooting peaks around time step 25.
Vanilla RNN demonstrates smooth tracking similar to LSTM.
For 6-step ahead (30 minutes), all methods show increased pre-
diction variance, but LSTM maintains tighter bounds around
ground truth. ARIMA exhibits significant overshooting during
burst periods, while vanilla RNN and LSTM provide more
stable predictions.

VII. CONCLUSION

We presented an LSTM-based traffic prediction framework
for hybrid satellite-UAV NTNs using a seven-dimensional

feature vector capturing traffic, orbital, and link quality pa-
rameters. Our dual-layer LSTM architecture with batch nor-
malization achieved 9.15% MAPE on real 5G traffic data,
demonstrating 36.5% improvement over traditional ARIMA
methods and marginal improvement over vanilla RNN. The
model maintains stable prediction accuracy up to 30 minutes
ahead with 8.72 Mbps MAE, enabling proactive resource al-
location for satellite handovers, beam steering, and congestion
management in dynamic NTN environments.
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