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Abstract—Deep learning-based joint source-channel coding
(Deep JSCC) has demonstrated substantial promise for robust
image transmission in Unmanned Aerial Vehicle (UAV) systems.
However, conventional Deep JSCC models operate exclusively
at fixed Signal-to-Noise Ratios (SNRs) and exhibit severe per-
formance degradation when channel conditions deviate from
their design parameters. Furthermore, deploying multiple spe-
cialist models to accommodate varying channel qualities becomes
impractical for resource-constrained UAVs due to storage and
computational limitations. To address this challenge, we adopt
the Attention DL-based JSCC (ADJSCC) mechanism, which
conditions channel-wise soft attention on SNR to enable a single
model to maintain high performance across diverse channel
conditions, and tailor it for UAV semantic image transmission.
In particular, we integrate ADJSCC’s Attention Feature (AF)
modules throughout both encoder and decoder to modulate
features based on instantaneous SNR, and provide a UAV-focused
training and evaluation protocol. Our comprehensive evaluation
on the CIFAR-10 dataset demonstrates that this ADJSCC-based
model achieves robust performance across all tested SNRs,
consistently matching or surpassing specialist models within their
optimal operating regions while significantly outperforming them
under mismatched conditions, validating the practical viability
of ADJSCC for reliable UAV image transmission in dynamic
wireless environments.

Index Terms—Semantic Communication, Deep Joint Source-
Channel Coding, Unmanned Aerial Vehicle, Image Transmission,
SNR-Adaptive, Attention Mechanism.

I. INTRODUCTION

In mission-critical applications such as post-disaster surveil-
lance, environmental monitoring, and precision agriculture,
Unmanned Aerial Vehicles (UAVs) function as indispensable
mobile sensing platforms that must transmit captured visual
data to ground control stations for real-time analysis [1]. Re-
lated multi-UAV surveillance and cooperative control studies
further underscore the need for reliable airborne sensing and
communication [2], [3].

These operations occur under challenging and dynamically
varying wireless conditions characterized by path loss varia-
tions, interference, and temporal channel fluctuations. Appli-
cations such as autonomous drone-delivery also require co-
operative mobility under tight energy budgets, reinforcing the
need for robust links and adaptive communication [3]. Deep

learning-based Joint Source-Channel Coding (Deep JSCC),
also referred to as semantic communication, has emerged as
a revolutionary paradigm that addresses these challenges by
fundamentally rethinking traditional communication system
design.

Unlike conventional approaches that strictly adhere to Shan-
non’s separation theorem [4], Deep JSCC employs a unified
deep neural network (DNN) autoencoder architecture to learn
direct mappings from source data to channel-robust symbol
representations. This end-to-end optimization strategy has
demonstrated exceptional performance characteristics, partic-
ularly in low Signal-to-Noise Ratio (SNR) regimes where
traditional methods often fail [5]. Moreover, Deep JSCC
systems exhibit graceful degradation properties and can prior-
itize semantically important information during transmission,
making them particularly suitable for bandwidth-limited UAV
applications [6]. Complementary quality-aware video delivery
research likewise emphasizes end-to-end adaptation to network
dynamics in mobile environments [7], [8].

Despite these advantages, a fundamental limitation con-
strains the practical deployment of existing Deep JSCC mod-
els: their inherently static nature. Contemporary approaches
are typically trained and optimized for specific, predeter-
mined channel SNR values [9]. When actual channel condi-
tions deviate from these design points—a frequent occurrence
for mobile UAVs operating in dynamic environments—the
model’s performance deteriorates dramatically. While deploy-
ing multiple specialist models, each optimized for different
channel conditions, might theoretically address this limitation,
such approaches become prohibitively expensive in terms of
storage requirements, memory consumption, and computa-
tional overhead for resource-constrained UAV platforms [10].
Parallel advances in energy-efficient adaptive communication
and learning further reinforce the imperative of lightweight,
unified designs in resource-constrained settings [11], [12].

To overcome this adaptability limitation, Xu et al. intro-
duced Attention DL-based JSCC (ADJSCC), which employs
SNR-conditioned, channel-wise soft attention to dynamically
recalibrate intermediate features and enable a single model
to operate robustly over a wide SNR range; in this work,



this attention mechanism is adopted and specialized for UAV
semantic image transmission [13], [14]. This Attention Feature
(AF) block accepts estimated channel SNR as a conditional
input and generates channel-aware attention scores that dy-
namically recalibrate feature map activations. Consequently,
the network learns to implement context-aware transmission
strategies—for instance, emphasizing protection of essential
features under adverse channel conditions while transmitting
detailed information when channels permit higher fidelity
reconstruction.
Our principal contributions are threefold:

1) We adopt the ADJSCC mechanism of Xu et al. and
integrate its SNR-conditioned Attention Feature mod-
ules into a UAV-oriented pipeline, documenting design
choices and implementation details for aerial image links
[13].

2) We develop a comprehensive evaluation methodology
that systematically compares the unified ADJSCC-based
model against multiple specialist baselines trained for
fixed SNR operating points, across extensive channel
condition ranges.

3) We demonstrate through PSNR, SSIM, and LPIPS that
the ADJSCC-based approach provides consistently ro-
bust image reconstruction, underscoring its practical
utility for UAVs in fluctuating channel environments.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a UAV-to-ground image transmission system
wherein the channel SNR information is available at both
transmitter and receiver to guide adaptive encoding and decod-
ing processes, as assumed by ADJSCC’s SNR-feedback setting
[13]. This assumption reflects practical scenarios where chan-
nel state information can be estimated through pilot signals
or feedback mechanisms [15]. Analogous adaptivity demands
appear in mobility-centric streaming systems, motivating SNR-
aware policies for stable perceptual quality under motion [16].

A. Transmitter Model and Channel Characterization

At the UAV transmitter, a source image x € R¥>*WxC and
the instantaneous channel SNR + are jointly processed by the
semantic encoder fen.(-,7). The encoder, implemented as a
deep neural network with learnable parameters 6.,,., maps the
input to a compact latent representation:

z = fenc(xa Vs eenc) (1)

Subsequently, the latent tensor z undergoes flattening and
power normalization to satisfy average transmission power
constraints [17]. The resulting normalized vector s is transmit-
ted over the wireless channel. For this investigation, we model
the communication link as an Additive White Gaussian Noise
(AWGN) channel, representing scenarios with stable Line-of-
Sight propagation paths. This choice enables direct analysis
of the model’s SNR adaptability without complications from
fading effects. The received signal at the ground station is:

y=s+n 2

where n ~ N(0, o*I) represents additive Gaussian noise with
variance 02 = 105%’ where P denotes the signal power.
B. Receiver Model and Optimization Objective

At the ground station receiver, the reconstruction objective
is to recover the original image from the noisy received vector
y. Both the received signal and the same SNR value v are
input to the semantic decoder ggec(-,7):

X = gdec(ya v edec) (3)

The fundamental optimization problem involves designing a
single encoder-decoder pair with parameters 6 = {0y, Odec }
that minimizes expected reconstruction error across distribu-
tions of both images and SNR values:
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where d(-,-) represents a distortion measure such as Mean
Squared Error (MSE). This formulation explicitly incorporates
SNR variability into the learning objective, enabling the net-
work to develop adaptive strategies across channel conditions,
contrasting with traditional separate source-channel coding
approaches [4].

III. SNR-ADAPTIVE FRAMEWORK

Our design follows the ADJSCC architecture by Xu et al.,
which augments a convolutional autoencoder backbone with
AF modules to achieve SNR-conditioned feature recalibration
across the encoder and decoder [13].

A. Backbone Architecture Design

The encoder architecture comprises a sequence of convo-
lutional residual blocks that progressively downsample input
images while extracting hierarchical feature representations
[18]. Each residual block incorporates two convolutional lay-
ers with GDN activations, which have proven effective for
decorrelating feature responses in image compression ap-
plications [19]. The symmetric decoder employs transposed
convolutional residual blocks to upsample encoded features
and reconstruct output images.

The encoder configuration consists of five residual blocks
with the following channel progressions: 3 — 128 — 128 —
128 — 128 — 48, where the final output maintains spatial di-
mensions of 8 x 8 pixels. The decoder mirrors this architecture
in reverse, ultimately producing RGB images with sigmoid ac-
tivation to ensure pixel values within [0, 1]. This design choice
leverages the proven effectiveness of residual connections in
enabling training of deep networks while avoiding vanishing
gradient problems [18].

B. Attention Feature (AF) Block for Dynamic SNR Adaptation

The AF block represents the core component enabling
channel-aware adaptation and is strategically inserted after
each residual block in both encoder and decoder paths.
Drawing inspiration from successful attention mechanisms in
computer vision and natural language processing [14], the AF
block operation proceeds as follows:



1) Feature Aggregation: Given input feature map X, €
REXCXHXW and scalar SNR value +, the block com-
putes channel-wise feature statistics:

1 H W
w= g O O Xinln bl (5)

h=1w=1

2) Context Integration: The mean vector u € RB*C is
concatenated with the SNR value to form a joint feature-
channel representation:

c = [p,q] € REX(EFD (6)

3) Attention Score Generation: A compact two-layer
Multi-Layer Perceptron (MLP) with ReLU and sigmoid
activations learns the mapping from joint features to
attention scores:

a = Sigmoid(W32 - ReLU(W; -c+b1) +ba) (7)

where W, € RE/2x(C+) W, ¢ REXC/2 are learn-
able weight matrices.

4) Feature Modulation: The attention scores are applied
channel-wise to modulate the input features:

Xout = Xin O reshape(a, [B,C,1,1]) 8)

This design enables the network to learn content- and
channel-aware transmission strategies within a unified model,
dynamically emphasizing or suppressing feature channels
based on both semantic content and channel quality. The
lightweight nature of the AF blocks ensures minimal com-
putational overhead while providing significant adaptability
benefits. This approach also aligns with quality-aware delivery
principles that balance fidelity and robustness under varying
network conditions [8].

IV. EXPERIMENTAL EVALUATION
A. Experimental Setup and Configuration

We conduct comprehensive evaluations using the CIFAR-10
dataset [20], which provides standardized benchmarks for im-
age transmission tasks with 60,000 32x32 color images across
10 classes. The experimental configuration encompasses the
following components:

o Proposed ADJSCC Model: Our SNR-adaptive architec-
ture employs N¢ = 128 channels throughout the network
with convolutional kernels of size 5 x 5. The model
undergoes end-to-end training on the CIFAR-10 training
set using a batch size of 64 for 50 epochs with Adam
optimizer and learning rate of 10~#. During training, SNR
values are uniformly sampled from the continuous range
[0,20] dB for each batch to encourage adaptation across
diverse channel conditions.

« Baseline Specialist Models: We implement three base-
line vanilla Deep JSCC models using standard CNN
autoencoder architectures without AF blocks. Each spe-
cialist model is trained exclusively for a single, fixed
SNR value from the set {0,10,20} dB, representing
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Fig. 1. Peak Signal-to-Noise Ratio (PSNR) versus SNR for the proposed

SNR-Adaptive DeepSC and vanilla CNN baselines trained at fixed SNRs.

low, medium, and high-quality channel conditions respec-
tively.

o Evaluation Protocol: All models undergo evalua-
tion across a comprehensive discrete SNR range of
[—10,—8,...,18,20] dB using the CIFAR-10 test set to
assess generalization capabilities under diverse channel
conditions.

o Performance Metrics: We employ three complementary
image quality assessment metrics [21]:

1) Peak Signal-to-Noise Ratio (PSNR): Quantifies
reconstruction fidelity in decibels (higher values
indicate better quality).

2) Structural Similarity Index Measure (SSIM):
Evaluates perceptual similarity considering lumi-
nance, contrast, and structural information (values
range from O to 1, with 1 representing perfect
similarity) [21].

3) Learned Perceptual Image Patch Similarity
(LPIPS): Employs pre-trained deep networks to
measure perceptual distances between images
(lower values indicate greater perceptual similarity)
[22].

B. Results and Analysis

The experimental results, illustrated in Figures 1, 2, and 3,
demonstrate the substantial advantages of our SNR-adaptive
approach over fixed-SNR specialist models across all evaluated
metrics.

Peak Signal-to-Noise Ratio Analysis: Fig. 1 reveals that
each specialist vanilla model achieves optimal performance
only within a narrow range surrounding its training SNR,
consistent with findings in traditional Deep JSCC literature [5].
Specifically, the model trained at 0 dB demonstrates superior
performance in low-SNR conditions (approximately -10 to
5 dB) but experiences rapid degradation as channel quality
improves. Conversely, the model trained at 20 dB excels
in high-SNR environments but exhibits catastrophic failure
under noisy conditions, with PSNR values dropping below 15
dB at negative SNRs. The model trained at 10 dB provides
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comparing the adaptive model with fixed-SNR baselines.
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Fig. 3. Structural Similarity Index Measure (SSIM) versus SNR across the
same set of models and evaluation points.

moderate performance across medium-range SNRs but fails
to achieve the peak performance of either extreme specialist.
In contrast, our SNR-adaptive model maintains consistently
high PSNR values across the entire evaluated range, achieving
near-optimal performance comparable to each specialist within
their respective optimal regions while providing significantly
superior robustness under mismatched conditions, similar to
the adaptive approaches demonstrated in recent Deep JSCC
research [23].

Perceptual Quality Assessment: Fig. 2 shows that the
adaptive model consistently achieves lower LPIPS values (in-
dicating better perceptual quality) across most SNRs, whereas
fixed-SNR models incur noticeably larger perceptual distances
when operated away from their design points. The LPIPS
metric, which employs pre-trained deep networks to measure
perceptual distances between images [22], provides critical
insights into perceptual reconstruction quality beyond pixel-
level metrics. The results demonstrate that specialist models
suffer from significant perceptual artifacts when operating out-
side their design parameters, with LPIPS values exceeding 0.5
in extreme cases. Our adaptive model consistently maintains
low LPIPS values below 0.1 across the majority of tested
conditions, indicating superior perceptual quality preservation.

This performance characteristic proves particularly important
for UAV applications where visual interpretation by human op-
erators or computer vision algorithms requires high perceptual
fidelity [10], [16].

Structural Similarity Analysis: Fig. 3 confirms that struc-
tural similarity gains follow the same trend as the PSNR
results. The SSIM metric, which evaluates perceptual similar-
ity considering luminance, contrast, and structural information
[21], demonstrates that our adaptive model reaches high SSIM
values at moderate-to-high SNR without collapsing at low
SNR, whereas each specialist saturates near its training point
and drops markedly otherwise. This stability is consistent
with the encoder-decoder residual design enhanced with GDN
layers [19] and the channel-aware AF blocks applied after each
stage, which together enable selective emphasis of structure-
preserving channels in adverse conditions while restoring fine
details as the channel improves. The adaptive model maintains
SSIM values above 0.8 across most evaluated conditions and
approaches 0.95 at high SNRs, indicating excellent preserva-
tion of structural information regardless of channel quality.

Robustness and Practical Implications: The comprehen-
sive evaluation across all three metrics establishes that our
single SNR-adaptive model provides a practical and efficient
solution for real-world UAV deployments, addressing the
channel variability challenges identified in recent semantic
communication research [9], [24]. Unlike specialist models
that require a priori knowledge of channel conditions and
potentially multiple model deployments, our approach offers
consistent performance with a single unified model. The
graceful degradation characteristics and superior adaptation
capabilities make it particularly suitable for dynamic wireless
environments typical of UAV operations [1]. The attention
mechanism integration enables dynamic feature modulation
based on channel conditions, providing the flexibility nec-
essary for robust performance across diverse operating envi-
ronments while maintaining computational efficiency suitable
for UAV platforms with limited processing capabilities. Sim-
ilar adaptation needs also arise in integrated terrestrial/non-
terrestrial networks with highly dynamic access, underscoring
the value of channel-aware scheduling and control [25].

V. CONCLUSION

This paper addresses the fundamental challenge of channel
variability in UAV image transmission systems by proposing
a novel SNR-adaptive Deep JSCC framework. Our approach
employs an innovative attention mechanism that conditions
network behavior on instantaneous channel quality, enabling
a single model to adapt dynamically across diverse operating
conditions. Through comprehensive experimental validation,
we demonstrate substantial improvements in robustness com-
pared to traditional static models trained for fixed SNRs.

The key innovation of our Attention Feature blocks enables
the network to learn context-aware feature modulation strate-
gies that optimize transmission for specific channel conditions.
Our experimental results conclusively show that the adaptive
model maintains high reconstruction quality across extensive



SNR ranges, providing a far more practical solution for real-
world UAV operations where channel quality fluctuates un-
predictably. The single-model approach significantly reduces
storage and computational requirements compared to deploy-
ing multiple specialist models, making it particularly attractive
for resource-constrained UAV platforms.

Future research directions include investigating the integra-
tion of realistic UAV mobility models and channel fading
effects beyond AWGN, extending the framework to more
complex time-varying fading channels, and exploring joint op-
timization of UAV trajectory planning with adaptive commu-
nication strategies. Additionally, the incorporation of semantic
segmentation and object detection tasks could further enhance
the practical utility of the proposed framework for autonomous
UAV missions. The extension to other image datasets and
evaluation under practical channel estimation errors represents
another promising avenue for future work.
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