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Abstract—Bistatic backscatter systems are a key enabler for
energy-efficient IoT, but their covert operation is threatened by
the rise of intelligent adversaries. While prior work has focused
on designing covert transmission strategies against simple, static
detectors, the resilience of an intelligent detector against an
adaptive adversary remains underexplored. This paper addresses
this gap from the perspective of an AI-powered warden. We
model the warden as a Deep Reinforcement Learning (DRL)
agent trained to dynamically adjust its detection threshold. To
create a formidable threat, we introduce an evolving adversarial
jammer, modeled as a generator network, which is trained using
a black-box optimization technique—Evolution Strategies (ES)—
to produce maximally deceptive noise signals. We evaluate the
DRL-based warden’s performance across several scenarios, in-
cluding no jamming, Gaussian noise jamming, and our proposed
evolving ES-based jammer. Simulation results demonstrate that
while the evolving ES-jammer poses a significant threat that
actively suppresses the warden’s performance, the DRL agent
successfully learns a robust counter-policy. It proves its resilience
by maintaining a stable detection accuracy significantly above the
random guess baseline, highlighting the necessity of adaptive,
learning-based defenses in modern adversarial communication
environments.

Index Terms—Covert communication, bistatic backscatter,
deep reinforcement learning (DRL), evolution strategies (ES),
adversarial jamming, physical layer security.

I. INTRODUCTION

Bistatic backscatter communication has emerged as a key
enabler for energy-efficient Internet of Things (IoT) networks,
allowing passive tags to transmit data by reflecting carrier
signals [1]. However, the open nature of the wireless medium
exposes these transmissions to adversaries, or ”wardens,”
necessitating robust security measures. Beyond traditional en-
cryption, covert communication, which aims to hide the very
existence of a transmission, provides a fundamental layer of
security [2].

Much of the existing research in this domain focuses on
designing sophisticated transmission or jamming strategies
for the legitimate user to remain undetected by a simple,
static warden [1], [3]. A key limitation of such work is
the assumption of a non-adaptive adversary. This assumption
creates a significant vulnerability, as it fails to account for
a modern, intelligent adversary that can learn and adapt its

strategy over time. This raises a critical question: how can a
detector maintain its effectiveness when the adversary is also
intelligent and actively evolving its attack strategy?

This paper addresses this challenge by shifting the focus
from the transmitter to the receiver, framing the problem
from the perspective of an AI-powered warden that must
ensure robust detection. We model an adversarial arms race
between two learning agents, a paradigm that reflects the
growing application of advanced DRL algorithms like Deep
Q-Networks (DQN) and Deep Deterministic Policy Gradient
(DDPG) in complex IoT network environments [5], [7]. The
main contributions of this work are as follows:

• We model the Warden as an intelligent Deep Reinforce-
ment Learning (DRL) agent. Instead of using a fixed
detection rule, our Warden learns a dynamic policy to
adjust its detection threshold in real-time based on the
observed signal characteristics.

• We design a formidable, adaptive adversary: an Evolving
Adversarial Jammer. This jammer is modeled as a gener-
ator network trained with a black-box optimization tech-
nique known as Evolution Strategies (ES) to continuously
refine its jamming waveform to be maximally deceptive.

• We demonstrate through simulation that our DRL-based
Warden learns a robust and adaptive policy. While its
performance is challenged by the evolving ES-based
jammer, it successfully maintains a stable and positive
accuracy margin, highlighting the necessity of adaptive
defenses against intelligent adversaries.

II. SYSTEM MODEL AND ADVERSARIAL PROBLEM
FORMULATION

A. System and Channel Model

We consider a bistatic backscatter system operating in a hos-
tile environment, as depicted in Fig. 1. The system comprises
a Carrier Emitter (CE), a passive Tag, a legitimate Reader,
and our intelligent Warden. We introduce an external, adaptive
adversary, the Evolving Adversarial Jammer, whose objective
is to transmit a confusing artificial noise (AN) signal, z(i), to
prevent the Warden from detecting the Tag’s transmissions.



Fig. 1. System model for robust detection. The DRL-powered Warden must
learn to detect the Tag’s faint reflected signal in the presence of a sophisticated,
Evolving Adversarial Jammer.

The Warden faces a binary hypothesis testing problem to
determine if the Tag is active (H1) or silent (H0). The signal
received at the Warden, yw(i), is given by:

yw(i) =


hcwc(i) + hjwz(i) + nw(i), under H0√
βhctftws(i)c(i) + hcwc(i)

+ hjwz(i) + nw(i), under H1

(1)

where c(i) is the carrier signal from the CE, s(i) is the Tag’s
symbol, β is the reflection coefficient, and nw(i) is thermal
noise. The term z(i) represents the sophisticated jamming
signal from the adaptive adversary.

To create a challenging and realistic simulation environ-
ment, we implement a specific channel model. The direct path
from the CE to the Warden is modeled as a stable, line-of-
sight channel with a fixed gain (hcw = 1.0). In contrast, all
other paths, including the backscatter path (hct, ftw) and the
jamming path (hjw), experience independent Rayleigh fading,
with their gains drawn from a complex Gaussian distribution
for each signal sample. Furthermore, to encourage the Warden
to learn a truly robust policy, the environment operates in a
”stationary realism” mode. In each step of the simulation,
the power of both the backscatter signal and the jamming
signal are randomly scaled, forcing the Warden to adapt to
a constantly changing Signal-to-Noise and Interference Ratio.

B. The Adversarial Arms Race

We formulate the interaction between the two intelligent
agents as a continuous, zero-sum ”arms race,” where each
agent’s objective is to counter the other. The protagonist of our
framework is the DRL-Warden, modeled as a Deep Reinforce-
ment Learning (DRL) agent. Its goal is to learn a detection
policy, πW , that maps its observation of the environment (the
state, st) to an optimal action, at (the choice of a detection
threshold, τt). The agent’s performance is measured by its
ability to maximize its long-term cumulative reward, which
is based on the accuracy of its H0/H1 classification. The

Warden’s objective is to learn a policy that is robust enough to
maintain high accuracy even as the jammer’s strategy evolves.

Conversely, the antagonist is the ES-Jammer, modeled as a
generator network GJ trained with Evolution Strategies (ES).
Its goal is to learn an optimal generator, G∗

J , that produces
a jamming waveform z(i) which is maximally deceptive. In
this arms race, the jammer’s objective at any given time is to
find a strategy that minimizes the Warden’s current detection
accuracy. This creates a challenging, non-stationary environ-
ment where the Warden cannot rely on static assumptions
about the interference and must instead learn an adaptive and
generalizable detection policy.

C. The DRL-Powered Warden

To create a resilient detector, we model the Warden as an
intelligent agent trained with Deep Reinforcement Learning
(DRL). DRL has been shown to be a powerful tool for opti-
mizing complex surveillance and monitoring tasks in dynamic
wireless environments [4], [6]. The core of our Warden’s
intelligence lies in its ability to process raw signal data directly.
This follows a broader trend in wireless communications
where deep learning models, particularly Convolutional Neural
Networks (CNNs), are increasingly used as the foundation for
complex tasks, ranging from semantic understanding [8] to the
adversarial detection explored in this work. This allows the
Warden to learn a dynamic decision-making policy to adjust
its detection threshold, τ . To handle the high-dimensional, raw
signal data, we design a hybrid architecture that combines a
Convolutional Neural Network (CNN) for perception and a
Deep Q-Network (DQN) for decision-making.

Fig. 2. Conceptual architecture of the Hybrid DRL-Warden. A CNN processes
the raw signal into a feature vector, which serves as the state for a DQN that
selects the optimal detection threshold.

The Warden’s learning problem is formulated as a Markov
Decision Process (MDP):

• State (S): The state, st, is not the raw signal itself, but
a compact feature vector extracted from a block of I/Q
samples by a dedicated 1D CNN, as depicted in Fig. 2.
This allows the agent to base its decisions on high-level
patterns rather than noisy, low-level data.

• Action (A): The action, at, is the selection of a detection
threshold, τt, from a discrete set of ten possible power



levels. The Warden compares the received power of an
incoming signal block to this threshold to decide between
H0 and H1.

• Reward (R): The agent receives a simple and direct
reward for its actions: rt = +1.0 for a correct detection
and rt = −1.0 for an incorrect detection. This reward
structure directly incentivizes the agent to maximize its
classification accuracy.

The Warden employs a DQN to learn its policy. The DQN
is trained using experiences stored in a replay buffer to
approximate the optimal action-value function, Q∗(s, a). This
enables it to learn a robust policy, πW (τ |s), that maps the
observed signal features to the optimal detection threshold,
thereby maximizing its long-term accuracy.

D. The Evolving Adversarial Jammer

To provide a truly adaptive and challenging adversary, we
model the jammer as a generative network, Gθ, parameterized
by weights θ. This network outputs a complex noise waveform
z(i) = Gθ(v) from a random latent vector v.

Critically, this generator is not trained with a conventional
GAN setup. Instead, we employ Evolution Strategies (ES),
a powerful, gradient-free optimization technique well-suited
for non-differentiable or black-box objectives, such as fooling
a separate DRL agent. The ES training algorithm, which
underpins the jammer’s ability to evolve, is outlined below:

1) A ”population” of candidate generators is created by
adding random Gaussian noise to the current generator’s
weights: θk = θ + σϵk, where σ is the noise standard
deviation.

2) The fitness of each perturbed generator, F (θk), is evalu-
ated based on its ability to deceive a discriminator. This
discriminator’s detection rate on H1 signals, denoted as
Drate, serves as a proxy for the DRL-Warden’s perfor-
mance. The jammer’s fitness is defined using a shaped
reward function to provide a stronger learning signal:

F (θk) = − log(Drate(Gθk)), (2)

where Gθk is the generator network with the perturbed
weights θk. A lower detection rate for the discriminator
results in an exponentially higher fitness score for the
jammer.

3) The central weights, θ, are updated by moving them
in the direction of the ”evolutionary gradient,” which is
calculated as a weighted sum of the perturbations, where
each perturbation is weighted by its corresponding fit-
ness score.

This process allows the jammer to continuously ”evolve” its
noise-generation strategy to find and exploit weaknesses in
the Warden’s current policy, creating a non-stationary and
perpetually challenging environment.

E. Adversarial Training Methodology

The DRL-Warden and the ES-Jammer are trained in an
interleaved loop, simulating a continuous arms race, as detailed
in Algorithm 1. In this co-evolutionary process, the jammer

periodically refines its strategy based on the warden’s current
performance, and the warden, in turn, continuously trains
against this newly evolved.

1) The Jammer’s Evolution: At a fixed interval, the ES-
based Jammer performs its learning step. This phase represents
the leader adapting its strategy. As a black-box optimization
technique, ES ”probes” the Warden’s current policy by cre-
ating a population of slightly different noise generators. The
fitness of each variant is determined by how successfully it
deceives the Warden, measured empirically. By rewarding the
perturbations that lead to a higher detection error for the
Warden, the jammer effectively estimates an ”evolutionary
gradient” and updates its generator network to produce more
deceptive signals.

2) The Warden’s Adaptation: In every episode, the DRL-
Warden performs its training step against the current, and
potentially newly evolved, adversary. The Warden faces a
”moving target”—a non-stationary environment where the
statistics of the jamming noise can change. The Warden
collects experiences into a large replay buffer, which is critical
for stabilizing learning in this adversarial setting. By training
on a diverse mix of both recent and past experiences, the
Warden is prevented from overfitting to the jammer’s latest
strategy. The Warden’s DQN is then updated by sampling
from this buffer and minimizing the Bellman error via gradient
descent. This step forces the Warden to learn a policy that
is not just optimal for one type of noise, but is robust and
generalizable enough to perform well against an evolving
adversary.

III. PERFORMANCE EVALUATION

In this section, we present the numerical results to validate
the robustness of our proposed DRL-based Warden. We eval-
uate its performance by training it within an adversarial arms
race against an Evolving Adversarial Jammer and compare its
learning dynamics to scenarios with simpler, static interfer-
ence.

A. Simulation Setup

The experiment models a co-evolutionary ”arms race”
where the DRL-Warden and an ES-Jammer are trained in an
interleaved loop.

1) The DRL-Warden: The Warden is a hybrid DRL agent
designed for robust, learning-based detection.

• Architecture: Its ”perception” module is a 1D Convolu-
tional Neural Network (‘WardenFeatureExtractor‘) that
processes raw signal waveforms of length 128 into a
feature vector. This CNN consists of two convolutional
blocks, each using ReLU activation and max pooling.
The ”decision” module is a Deep Q-Network (‘DQN‘),
a three-layer Multi-Layer Perceptron (MLP) with ReLU
activations, which takes the feature vector as its state.

• Action Space: The DQN’s output layer has 10 neurons,
corresponding to 10 discrete detection thresholds spaced
linearly from 0.1 to 2.5.



Algorithm 1 Adversarial Training of DRL-Warden and ES-
Jammer

1: Initialize:
2: Warden’s DQN parameters ψ.
3: Jammer’s generator parameters θ.
4: Replay buffer B with capacity Bmax.
5: Proxy discriminator Dproxy for fitness evaluation.
6: Learning rates αW , αJ ; population size N ; update fre-

quency KES .
7: for each training episode e = 1, . . . , E do
8: if e mod KES == 0 then {Evolve the Jammer}
9: for k = 1, . . . , N do

10: Sample perturbation ϵk ∼ N (0, I).
11: Create candidate weights θk = θ + σϵk.
12: Evaluate detection rate of the proxy discriminator:
13: Drate(Gθk) = Ev∼P (v)[Dproxy(Gθk(v))].
14: Calculate the fitness for the candidate:

F (θk) = − log(Drate(Gθk)).

15: end for
16: Estimate the evolutionary gradient:

∇θF ≈
1

Nσ

N∑
k=1

F (θk)ϵk.

17: Update the central jammer parameters: θ ← θ +
αJ∇θF .

18: end if
19: {Train the Warden for one episode}
20: Observe initial state s1 from the environment (using

Gθ).
21: for each step t = 1, . . . , T do
22: With probability ϵ, select random action at.
23: Otherwise, select at = argmaxaQψ(st, a).
24: Execute at, receive reward rt and next state st+1.
25: Store experience tuple (st, at, rt, st+1) in B.
26: if |B| > Bmin then
27: Sample a mini-batch of M experiences

{(sj , aj , rj , sj+1)}Mj=1 from B.
28: For each experience j, set the target Q-value:

yj = rj + γmax
a′

Qψ(sj+1, a
′).

29: Define the Bellman error loss function:

L(ψ) = 1

M

M∑
j=1

(yj −Qψ(sj , aj))2.

30: Update the Warden’s DQN parameters via gradient
descent: ψ ← ψ − αW∇ψL(ψ).

31: end if
32: end for
33: end for

• Training: The DQN is trained using an ϵ-greedy policy,
with epsilon decaying from 1.0 to 0.01 over the training
episodes. Experiences are stored in a replay buffer of size
10,000. The network weights are updated by sampling
batches of size 64 and minimizing the Mean Squared
Error (Bellman error) loss using the Adam optimizer
with a learning rate of 1e-4.

2) The Evolving Adversarial Jammer: The jammer is a gen-
erative network (‘Generator‘) trained via Evolution Strategies
(ES) to be a formidable, adaptive adversary.

• Architecture: The generator is a four-layer MLP with
LeakyReLU activations and LayerNorm for stabiliza-
tion. It takes a latent vector of dimension 64 as input and
outputs a complex noise waveform of length 128.

• Training (ES): The jammer evolves every 5 episodes
(‘ES UPDATE EVERY‘). In each evolution step, a pop-
ulation of 16 candidate generators (‘ES POPSIZE‘) is
created by perturbing the central weights with Gaussian
noise. The fitness of each candidate is evaluated against a
proxy detector (‘WardenDiscriminator‘) and be calculated
using a shaped reward function (2). The central weights
are then updated using the Adam optimizer along the
estimated evolutionary gradient.

3) Environment and Scenarios: To ensure the Warden
learns a generalizable and robust policy, the environment
operates in a ”stationary realism” mode (‘REALISM MODE
= ”stationary”‘). For each signal sample generated, the power
of both the artificial noise and the backscattered tag signal are
randomly scaled by uniform multipliers drawn from the ranges
[0.6, 1.3] and [0.6, 1.4], respectively. This forces the Warden
to adapt to constantly changing signal conditions rather than
overfitting to fixed power levels. We evaluate the Warden’s
performance across three distinct adversarial scenarios:

1) No AN: A baseline with only thermal noise.
2) Gaussian AN: A traditional adversary using statistically

simple Gaussian noise.
3) Generative AN (Ours): The most advanced adversary,

our proposed ES-trained generator, which actively adapts
its jamming signal every 5 episodes.

The key hyperparameters for the simulation are summarized
in Table I.

B. Numerical Results and Discussion

The results of our adversarial training simulation are sum-
marized in the four-panel dashboard in Fig. 3. This figure
provides a comprehensive view of the co-evolutionary learning
dynamics, tracking the performance of both the DRL-Warden
and the ES-Jammer over 1,000 training episodes.

1) Warden’s Detection Accuracy (Main Result): The top-
left panel is the primary result of our experiment, showing
the DRL-Warden’s smoothed detection accuracy. The results
clearly illustrate the Warden’s adaptive learning capability and
its resilience. In the ”No AN” baseline (orange curve), the
Warden effectively learns the task, with its accuracy steadily
rising and converging to the highest level of approximately



Fig. 3. Dashboard of adversarial training dynamics. (Top-Left) The DRL-Warden’s smoothed detection accuracy across the three scenarios. (Top-Right) The
fitness reward of the Evolving Adversarial Jammer over time. (Bottom-Left) Diagnostic plot of the jammer’s H1 detection rate. (Bottom-Right) The raw and
smoothed episode rewards for the DRL-Warden.

TABLE I
KEY SIMULATION PARAMETERS

Parameter Value
DRL-Warden Parameters

Training Episodes (RL_EPISODES) 1,000
Learning Rate (RL_LR) 1e-4
Replay Buffer Size 10,000
Action Space (Thresholds) 10 discrete levels

ES-Jammer Parameters
Population Size (ES_POPSIZE) 16
Learning Rate (ES_LR) 0.05
Update Frequency (ES_UPDATE_EVERY) 5 Episodes

System Parameters
Signal Length 128 samples
Backscatter Signal Power (POWER_TAG) 0.8
Batch Size 64

73%. When faced with a static ”Gaussian AN” jammer (green
curve), the task becomes more difficult, and the Warden’s
accuracy converges to a lower but still competent 67%.

The most critical result is the ”Generative AN (Ours)”
scenario (blue curve), where the Warden faces the evolv-
ing ES-Jammer. Here, the Warden’s learning is significantly
suppressed. Its accuracy struggles to rise, hovering around

55-56%, just above the 50% random guess baseline. This
demonstrates that the ES-Jammer is a far more formidable
adversary than static noise, as it actively adapts its strategy
to counter the Warden’s learning process. The fact that the
Warden’s accuracy does not collapse to 50% but instead
maintains a small but consistent positive performance margin
highlights its resilience.

2) The Adversarial Arms Race Dynamics: The top-right
and bottom-right panels provide deeper insight into the ad-
versarial arms race. The bottom-right panel shows the raw
and smoothed rewards received by the DRL-Warden. The
hierarchy of the smoothed lines directly mirrors the accuracy
plot, confirming that the Warden receives the highest rewards
in the easiest scenario (”No AN”) and the lowest rewards when
facing the most difficult adversary (”Generative AN”).

Conversely, the top-right panel shows the fitness reward of
the ES-Jammer over time. A higher reward for the jammer
means it is being more effective at deceiving the Warden. The
plot shows the jammer’s reward spiking initially as it quickly
finds exploits against the naive, untrained Warden. However,
as the DRL-Warden begins to learn and adapt (around episode
600 onwards), we see a distinct downward trend in the jam-
mer’s reward. This is a crucial finding: it is direct evidence that



the DRL-Warden is successfully learning a counter-strategy,
making the jammer’s task progressively harder and reducing
its effectiveness. This demonstrates the Warden’s robustness
and its ability to fight back in the adversarial arms race.

3) Jammer’s Deception Diagnostics: The bottom-left panel
provides a diagnostic view of the jammer’s performance during
its fitness evaluation. The plot tracks the raw H1 detection rate
by a proxy detector. The jammer’s goal is to minimize this
metric. The noisy but discernible trend corroborates the ”ES
reward” plot, showing the jammer’s initial success followed
by a struggle as the DRL-Warden learns and adapts.

In conclusion, the collective results from the dashboard
paint a clear picture. While the evolving ES-Jammer poses
a profound threat that significantly suppresses the Warden’s
performance, the DRL-Warden demonstrates remarkable re-
silience. It successfully learns a robust policy that prevents
the jammer from completely dominating the engagement,
maintaining a positive accuracy margin and actively pushing
back against the adversary’s adaptations. This highlights the
critical necessity of employing adaptive, learning-based de-
fenses like our DRL-Warden in modern, intelligent adversarial
environments.

IV. CONCLUSION

In this paper, we shifted the paradigm of covert communica-
tions security from designing elusive transmitters to architect-
ing a resilient, intelligent detector capable of operating against
adaptive adversaries. We proposed a novel framework where
the warden is modeled as a Deep Reinforcement Learning
(DRL) agent that learns a dynamic detection policy. To rigor-
ously test its capabilities, we introduced a formidable, evolving
adversary: a generative jammer trained with Evolution Strate-
gies (ES) to continuously refine its deceptive noise signals. Our
simulations demonstrated that while the evolving adversary
poses a significant threat that successfully suppresses detection
performance, the DRL-based Warden proves its resilience by
learning a robust policy. It successfully adapts to the jammer’s
changing strategy and maintains a stable detection accuracy,
proving its ability to operate effectively in a non-stationary,
hostile environment.
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