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Abstract— Massive MIMO has become a cornerstone of
modern wireless communication, yet its performance in
traditional cell-centric architectures remains constrained by
inter-cell interference and feedback overhead. To address these
limitations, Cell-Free Massive MIMO (CF-mMIMO)
eliminates cell boundaries by allowing a large number of
distributed access points (APs) to cooperatively serve users.
However, the system’s efficiency still depends critically on
accurate and efficient Channel State Information (CSI)
acquisition—particularly in Frequency Division Duplexing
(FDD) systems where feedback overhead is substantial.

This paper presents a comprehensive survey of recent
advancements in Al-enhanced CSI feedback techniques
tailored for CF-mMIMO systems. Specifically, we review five
key research directions: 1) deep convolutional compression, 2)
end-to-end learning for feedback and precoding, 3) implicit
feedback, 4) predictive feedback using Transformers and
meta-learning, and 5) variable-rate and variable-length
adaptive encoding. By leveraging deep learning, these
approaches achieve significant reductions in feedback
overhead while maintaining reconstruction accuracy and
temporal adaptability. Furthermore, they open promising
opportunities for dynamic feedback scheduling and distributed
cooperation in CF-mMIMO networks, offering a scalable path
toward the realization of Al-native 6G wireless systems.
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I. INTRODUCTION

Massive MIMO technology has established itself as a
core component of 5G and 6G networks, maximizing spatial
multiplexing gains through large antenna arrays. However, in
traditional cell-bound architectures, inter-cell interference
and load imbalance continue to impose fundamental
performance limitations.

To overcome these challenges, Cell-Free Massive MIMO
(CF-mMIMO) has emerged, in which a large number of
distributed Access Points (APs) cooperatively and
simultaneously serve all users without predefined cell
boundaries [1][2]. Unlike conventional architectures, CF-
mMIMO adopts a user-centric topology wherein each user is
dynamically surrounded by multiple APs. This mitigates
cell-edge degradation and enhances macro-diversity and
connectivity through coordinated AP transmission [3].While
CF-mMIMO demonstrates remarkable advantages in terms
of spatial diversity and uniform Quality of Service (QoS), its
overall performance heavily depends on the accuracy of
Channel State Information (CSI) acquisition. In particular,
under the Frequency Division Duplexing (FDD) operation
mode, the downlink CSI must be estimated at the User

Equipment (UE) and fed back through the uplink channel,
resulting in significant feedback overhead [4]. A promising
direction to alleviate this issue is the use of Al-enhanced CSI
feedback, which leverages Deep Learning (DL) and data-
driven learning mechanisms to model the spatial and
temporal structures of the channel, thereby enabling
compression, prediction, and variable-rate feedback
optimization in an adaptive manner.

This survey paper analyzes such Al-based CSI feedback
technologies in the context of CF-mMIMO system
requirements, providing a comprehensive overview of recent
advancements—particularly focusing on Variable-Rate and
Variable-Length learning-based feedback schemes that have
gained significant traction in recent years.

II. BACKGROUND AND MOTIVATION

A. Evolution from mMIMO to Cell-Free Architectures

Cell-Free Massive MIMO extends the concept of
distributed MIMO by deploying a large number of APs
across a wide area, all connected to a Central Processing Unit
(CPU) that coordinates their operations.

In this structure, each user is simultaneously served by
multiple nearby APs, and their transmission signals are
coherently managed by the CPU. As a result, performance
disparities caused by cell boundaries are -effectively
eliminated.

Previous studies have demonstrated that CF-mMIMO can
improve the average per-user throughput by more than an
order of magnitude compared to small-cell networks, while
maintaining robust service quality even under highly
correlated shadowing conditions. These findings confirm that
CF-mMIMO is a fundamental technology for realizing ultra-
dense 6G wireless networks. This gain is largely attributed to
the architectural shift from cell-centric to user-centric design,
where spatially sparse APs cooperate to jointly serve all
users across overlapping coverage zones. Additionally, the
scalability and flexibility of CF-mMIMO are enhanced by
clustering mechanisms and multi-CPU coordination schemes

[5].
B. The Importance and Limitations of CSI Feedback

The theoretical gains of Massive MIMO rely on the
assumption of perfect CSI. However, in practical systems,
CSI must be periodically estimated and fed back, which
imposes a heavy overhead in high-dimensional antenna and
wideband environments.



In FDD systems, since channel reciprocity does not hold
between downlink and uplink, the UE must estimate the
downlink CSI and transmit it to the network via the uplink
control channel. Conventional approaches such as codebook-
based quantization or compressive sensing have been
proposed to mitigate this burden by encoding the channel
into a limited number of bits.

However, these methods assume fixed codebooks and
static bit rates, making them poorly adaptive to
environmental dynamics or varying channel complexity.
Similar limitations have been identified in adaptive
streaming and vehicular communication systems, where deep
reinforcement learning (DRL)-based algorithms have been
proposed to dynamically adjust bitrate and content delivery
according to real-time channel states [5]. Consequently,
under fast-varying or frequency-selective channels,
substantial performance degradation becomes inevitable.

C. The Need for Al-Based CSI Feedback

To overcome these limitations, Al-based methods have
recently gained significant attention. For instance, deep
reinforcement learning approaches such as the Deep
Deterministic Policy Gradient (DDPG) framework have
shown that communication parameters can be optimized
adaptively in dynamic wireless environments [6]. DL models
can autonomously learn the spatial and frequency-domain
correlations of CSI matrices, enabling more efficient
compression and reconstruction than traditional analytical
techniques. Moreover, within neural architectures,
parameters such as bit rate, quantization precision, and
feedback length can be dynamically adjusted in response to
channel conditions, thereby eliminating the inefficiencies of
fixed feedback schemes.

III.  AI-BASED CSI FEEDBACK TECHNIQUES

Recent research on Al-based CSI feedback has focused
on overcoming the limitations of fixed, codebook-based
approaches by introducing learning-driven, adaptive
frameworks. These studies can be broadly classified into five
directions: /) deep convolutional compression, which
employs autoencoders to efficiently encode high-
dimensional CSI; 2) end-to-end optimization, integrating
feedback and precoding into a unified learning process; 3)
implicit feedback, directly inferring precoders without
explicit CSI reconstruction, 4) predictive feedback,
leveraging temporal models such as Transformers and meta-
learning to anticipate future CSI; and 5) variable-rate and
variable-length  feedback, dynamically adjusting bit
allocation based on channel complexity. Together, these
methods demonstrate how Al can significantly reduce
feedback overhead while maintaining reconstruction
accuracy, thereby enhancing scalability and adaptability in
Cell-Free Massive MIMO systems.

A. Deep Convolutional Compression

[7] proposed a framework called Distributed Deep
Convolutional Compression (DeepCMC). This model
employs a convolutional autoencoder to compress the spatial
structure of the CSI and optimizes the rate—distortion balance
in the reconstruction stage through end-to-end learning. By
removing fully connected layers, the model achieves
flexibility with respect to input size, and by incorporating
arithmetic entropy coding, it further enhances bit efficiency.
In its distributed extension, multiple users independently
encode their local CSI, while the base station performs joint

decoding by exploiting the spatial correlations among
neighboring users. This cooperative strategy results in
approximately 30% reduction in feedback bits and
significant Normalized Mean Square FError (NMSE)
improvement compared to conventional methods. Such a
distributed compression and joint reconstruction structure
aligns well with the cooperative multi-user nature of CF-
mMIMO systems.

B. End-to-End Learning for Feedback and Precoding

[8] proposed an end-to-end optimization framework that
integrates channel estimation, quantization, feedback, and
precoding into a unified learning process. Unlike
conventional methods where CSI compression and precoding
optimization are performed separately, the proposed network
jointly optimizes both stages by directly maximizing the
sum-rate during training. This approach achieves 10-15%
higher throughput under the same feedback bit budget
compared to traditional techniques. In CF-mMIMO, such
end-to-end learning allows multiple APs to share learned
latent features, enabling the central CPU to efficiently
perform collaborative beamforming and resource allocation.

C. Implicit CSI Feedback

[9] proposed a DL-based implicit CSI feedback
framework that replaces conventional codebook-based
explicit feedback with a neural mapping between uplink and
downlink channels. Instead of transmitting the downlink
channel matrix or its quantized representation, the proposed
model learns to directly infer the precoding matrix indicator
(PMI) from the uplink channel features, thereby bypassing
explicit CSI transmission. By exploiting spatial and
frequency correlations across subcarriers, the network
achieves 25-40% feedback overhead reduction compared to
3GPP Type-I/Il codebook methods, while maintaining
comparable or higher sum-rate performance. The study
further demonstrates that this implicit mapping generalizes
across antenna configurations and user mobility scenarios,
highlighting the robustness of data-driven inference over
handcrafted quantization. For CF-mMIMO, where each
distributed AP possesses localized CSI, such implicit
feedback allows APs to directly generate user-specific
precoders with minimal coordination latency, offering a
highly efficient and scalable approach to cooperative
beamforming.

D. Predictive CSI Feedback

To alleviate the performance degradation caused by rapid
channel variations, [10] developed a Transformer-based
channel prediction framework that leverages the self-
attention mechanism to capture long-term temporal
dependencies. Unlike recurrent networks (Recurrent Neural
Network, RNN or Long Short-Term Memory, LSTM),
which are limited by sequential processing, the Transformer
can model global time correlations in parallel, achieving
more than 20% NMSE improvement in high-mobility
scenarios. The study demonstrates that accurate temporal
prediction can effectively extend the channel coherence time,
thereby enabling longer feedback intervals without
compromising reliability in densely deployed CF-mMIMO
systems.

[11] introduced a Meta-Learning and Deep Denoising
framework for CSI prediction, addressing the challenge of
limited training data in realistic deployments.



By combining Model-Agnostic Meta-Learning (MAML)
with denoising autoencoders, the model rapidly adapts to
new propagation environments using only a few fine-tuning
samples. This approach is particularly well suited for CF-
mMIMO networks, where heterogeneous AP placements and
diverse channel statistics make global retraining impractical.
Together, these predictive feedback methods enable time-
adaptive CSI acquisition, significantly reducing the feedback
frequency and computational burden in large-scale
distributed systems.

E. Variable-Rate and Variable-Length CSI Feedback

To overcome the inefficiency of fixed-rate feedback
encoders, [12] proposed the Learning Variable-Rate Codes
for CSI Feedback framework, which dynamically adjusts
feedback bit allocation according to channel complexity. The
method employs a rate-adaptive quantizer trained to
minimize distortion under a variable feedback budget,
allowing each sample to use a different number of bits
depending on its reconstruction difficulty. This adaptive
encoding strategy achieves over 30% average bit reduction
while maintaining the same NMSE as fixed-rate baselines.
By integrating reinforcement-guided bit selection and latent-
space regularization, the model provides smooth rate—
distortion trade-offs that are essential for dynamic feedback
scheduling.

Building on this idea, [13] introduced a machine
learning—based variable-length feedback mechanism that
combines Principal Component Analysis (PCA) with bit-
allocation optimization. The scheme assigns quantization bits
based on the variance of principal components, allowing for
per-user or per-link adaptation within the total feedback
budget. Experimental results show up to 40% bit savings and
over 1 dB NMSE improvement, demonstrating the
effectiveness of data-driven bit allocation in high-
dimensional MIMO environments. In CF-mMIMO networks,
such variable-rate and variable-length feedback can be
extended to the fronthaul and backhaul domains, where the
central CPU dynamically redistributes feedback resources
among APs according to instantaneous channel conditions
and cooperation levels. This adaptability makes Al-based
rate control a crucial component for scalable and efficient
cell-free network operation.

IV. CONCLUSION

This survey summarized the recent progress of Al-based
CSI feedback techniques for Cell-Free Massive MIMO
systems, emphasizing how data-driven learning overcomes
the inefficiencies of traditional fixed codebook approaches.
Deep convolutional compression enables compact CSI
representation, end-to-end learning jointly optimizes
feedback and precoding, and implicit feedback removes
explicit CSI transmission through uplink—downlink neural
mapping. Moreover, predictive feedback using Transformers
and meta-learning effectively handles channel variation and
mobility, while variable-rate and variable-length encoding
dynamically allocate feedback bits according to channel
complexity. Overall, these advancements demonstrate that
integrating Al into CSI feedback design can greatly improve
spectral efficiency, scalability, and adaptability in CF-
mMIMO networks. The combination of distributed
cooperation and intelligent feedback establishes CF-mMIMO
as a key enabler for 6G network intelligence. Future research
will likely focus on federated and reinforcement learning—

based feedback adaptation and the development of
lightweight neural architectures suitable for large-scale,
edge-deployed CF-mMIMO systems.
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