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Abstract— Massive MIMO has become a cornerstone of 
modern wireless communication, yet its performance in 
traditional cell-centric architectures remains constrained by 
inter-cell interference and feedback overhead. To address these 
limitations, Cell-Free Massive MIMO (CF-mMIMO) 
eliminates cell boundaries by allowing a large number of 
distributed access points (APs) to cooperatively serve users. 
However, the system’s efficiency still depends critically on 
accurate and efficient Channel State Information (CSI) 
acquisition—particularly in Frequency Division Duplexing 
(FDD) systems where feedback overhead is substantial. 
   This paper presents a comprehensive survey of recent 
advancements in AI-enhanced CSI feedback techniques 
tailored for CF-mMIMO systems. Specifically, we review five 
key research directions: 1) deep convolutional compression, 2) 
end-to-end learning for feedback and precoding, 3) implicit 
feedback, 4) predictive feedback using Transformers and 
meta-learning, and 5) variable-rate and variable-length 
adaptive encoding. By leveraging deep learning, these 
approaches achieve significant reductions in feedback 
overhead while maintaining reconstruction accuracy and 
temporal adaptability. Furthermore, they open promising 
opportunities for dynamic feedback scheduling and distributed 
cooperation in CF-mMIMO networks, offering a scalable path 
toward the realization of AI-native 6G wireless systems. 
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I. INTRODUCTION 

Massive MIMO technology has established itself as a 
core component of 5G and 6G networks, maximizing spatial 
multiplexing gains through large antenna arrays. However, in 
traditional cell-bound architectures, inter-cell interference 
and load imbalance continue to impose fundamental 
performance limitations. 

To overcome these challenges, Cell-Free Massive MIMO 
(CF-mMIMO) has emerged, in which a large number of 
distributed Access Points (APs) cooperatively and 
simultaneously serve all users without predefined cell 
boundaries [1][2]. Unlike conventional architectures, CF-
mMIMO adopts a user-centric topology wherein each user is 
dynamically surrounded by multiple APs. This mitigates 
cell-edge degradation and enhances macro-diversity and 
connectivity through coordinated AP transmission [3].While 
CF-mMIMO demonstrates remarkable advantages in terms 
of spatial diversity and uniform Quality of Service (QoS), its 
overall performance heavily depends on the accuracy of 
Channel State Information (CSI) acquisition. In particular, 
under the Frequency Division Duplexing (FDD) operation 
mode, the downlink CSI must be estimated at the User 

Equipment (UE) and fed back through the uplink channel, 
resulting in significant feedback overhead [4]. A promising 
direction to alleviate this issue is the use of AI-enhanced CSI 
feedback, which leverages Deep Learning (DL) and data-
driven learning mechanisms to model the spatial and 
temporal structures of the channel, thereby enabling 
compression, prediction, and variable-rate feedback 
optimization in an adaptive manner. 

This survey paper analyzes such AI-based CSI feedback 
technologies in the context of CF-mMIMO system 
requirements, providing a comprehensive overview of recent 
advancements—particularly focusing on Variable-Rate and 
Variable-Length learning-based feedback schemes that have 
gained significant traction in recent years. 

II. BACKGROUND AND MOTIVATION 

A. Evolution from mMIMO to Cell-Free Architectures 

Cell-Free Massive MIMO extends the concept of 
distributed MIMO by deploying a large number of APs 
across a wide area, all connected to a Central Processing Unit 
(CPU) that coordinates their operations. 

In this structure, each user is simultaneously served by 
multiple nearby APs, and their transmission signals are 
coherently managed by the CPU. As a result, performance 
disparities caused by cell boundaries are effectively 
eliminated. 

Previous studies have demonstrated that CF-mMIMO can 
improve the average per-user throughput by more than an 
order of magnitude compared to small-cell networks, while 
maintaining robust service quality even under highly 
correlated shadowing conditions. These findings confirm that 
CF-mMIMO is a fundamental technology for realizing ultra-
dense 6G wireless networks. This gain is largely attributed to 
the architectural shift from cell-centric to user-centric design, 
where spatially sparse APs cooperate to jointly serve all 
users across overlapping coverage zones. Additionally, the 
scalability and flexibility of CF-mMIMO are enhanced by 
clustering mechanisms and multi-CPU coordination schemes 
[5]. 

B. The Importance and Limitations of CSI Feedback 

The theoretical gains of Massive MIMO rely on the 
assumption of perfect CSI. However, in practical systems, 
CSI must be periodically estimated and fed back, which 
imposes a heavy overhead in high-dimensional antenna and 
wideband environments. 



In FDD systems, since channel reciprocity does not hold 
between downlink and uplink, the UE must estimate the 
downlink CSI and transmit it to the network via the uplink 
control channel. Conventional approaches such as codebook-
based quantization or compressive sensing have been 
proposed to mitigate this burden by encoding the channel 
into a limited number of bits. 

However, these methods assume fixed codebooks and 
static bit rates, making them poorly adaptive to 
environmental dynamics or varying channel complexity. 
Similar limitations have been identified in adaptive 
streaming and vehicular communication systems, where deep 
reinforcement learning (DRL)-based algorithms have been 
proposed to dynamically adjust bitrate and content delivery 
according to real-time channel states [5]. Consequently, 
under fast-varying or frequency-selective channels, 
substantial performance degradation becomes inevitable. 

C. The Need for AI-Based CSI Feedback 

To overcome these limitations, AI-based methods have 
recently gained significant attention. For instance, deep 
reinforcement learning approaches such as the Deep 
Deterministic Policy Gradient (DDPG) framework have 
shown that communication parameters can be optimized 
adaptively in dynamic wireless environments [6]. DL models 
can autonomously learn the spatial and frequency-domain 
correlations of CSI matrices, enabling more efficient 
compression and reconstruction than traditional analytical 
techniques. Moreover, within neural architectures, 
parameters such as bit rate, quantization precision, and 
feedback length can be dynamically adjusted in response to 
channel conditions, thereby eliminating the inefficiencies of 
fixed feedback schemes. 

III. AI-BASED CSI FEEDBACK TECHNIQUES 

Recent research on AI-based CSI feedback has focused 
on overcoming the limitations of fixed, codebook-based 
approaches by introducing learning-driven, adaptive 
frameworks. These studies can be broadly classified into five 
directions: 1) deep convolutional compression, which 
employs autoencoders to efficiently encode high-
dimensional CSI; 2) end-to-end optimization, integrating 
feedback and precoding into a unified learning process; 3) 
implicit feedback, directly inferring precoders without 
explicit CSI reconstruction; 4) predictive feedback, 
leveraging temporal models such as Transformers and meta-
learning to anticipate future CSI; and 5) variable-rate and 
variable-length feedback, dynamically adjusting bit 
allocation based on channel complexity. Together, these 
methods demonstrate how AI can significantly reduce 
feedback overhead while maintaining reconstruction 
accuracy, thereby enhancing scalability and adaptability in 
Cell-Free Massive MIMO systems. 

A. Deep Convolutional Compression 

[7] proposed a framework called Distributed Deep 
Convolutional Compression (DeepCMC). This model 
employs a convolutional autoencoder to compress the spatial 
structure of the CSI and optimizes the rate–distortion balance 
in the reconstruction stage through end-to-end learning. By 
removing fully connected layers, the model achieves 
flexibility with respect to input size, and by incorporating 
arithmetic entropy coding, it further enhances bit efficiency. 
In its distributed extension, multiple users independently 
encode their local CSI, while the base station performs joint 

decoding by exploiting the spatial correlations among 
neighboring users. This cooperative strategy results in 
approximately 30% reduction in feedback bits and 
significant Normalized Mean Square Error (NMSE) 
improvement compared to conventional methods. Such a 
distributed compression and joint reconstruction structure 
aligns well with the cooperative multi-user nature of CF-
mMIMO systems. 

B. End-to-End Learning for Feedback and Precoding 

[8] proposed an end-to-end optimization framework that 
integrates channel estimation, quantization, feedback, and 
precoding into a unified learning process. Unlike 
conventional methods where CSI compression and precoding 
optimization are performed separately, the proposed network 
jointly optimizes both stages by directly maximizing the 
sum-rate during training. This approach achieves 10–15% 
higher throughput under the same feedback bit budget 
compared to traditional techniques. In CF-mMIMO, such 
end-to-end learning allows multiple APs to share learned 
latent features, enabling the central CPU to efficiently 
perform collaborative beamforming and resource allocation. 

C. Implicit CSI Feedback 

[9] proposed a DL–based implicit CSI feedback 
framework that replaces conventional codebook-based 
explicit feedback with a neural mapping between uplink and 
downlink channels. Instead of transmitting the downlink 
channel matrix or its quantized representation, the proposed 
model learns to directly infer the precoding matrix indicator 
(PMI) from the uplink channel features, thereby bypassing 
explicit CSI transmission. By exploiting spatial and 
frequency correlations across subcarriers, the network 
achieves 25–40% feedback overhead reduction compared to 
3GPP Type-I/II codebook methods, while maintaining 
comparable or higher sum-rate performance. The study 
further demonstrates that this implicit mapping generalizes 
across antenna configurations and user mobility scenarios, 
highlighting the robustness of data-driven inference over 
handcrafted quantization. For CF-mMIMO, where each 
distributed AP possesses localized CSI, such implicit 
feedback allows APs to directly generate user-specific 
precoders with minimal coordination latency, offering a 
highly efficient and scalable approach to cooperative 
beamforming. 

D. Predictive CSI Feedback 

To alleviate the performance degradation caused by rapid 
channel variations, [10] developed a Transformer-based 
channel prediction framework that leverages the self-
attention mechanism to capture long-term temporal 
dependencies. Unlike recurrent networks (Recurrent Neural 
Network, RNN or Long Short-Term Memory, LSTM), 
which are limited by sequential processing, the Transformer 
can model global time correlations in parallel, achieving 
more than 20% NMSE improvement in high-mobility 
scenarios. The study demonstrates that accurate temporal 
prediction can effectively extend the channel coherence time, 
thereby enabling longer feedback intervals without 
compromising reliability in densely deployed CF-mMIMO 
systems. 

[11] introduced a Meta-Learning and Deep Denoising 
framework for CSI prediction, addressing the challenge of 
limited training data in realistic deployments. 



By combining Model-Agnostic Meta-Learning (MAML) 
with denoising autoencoders, the model rapidly adapts to 
new propagation environments using only a few fine-tuning 
samples. This approach is particularly well suited for CF-
mMIMO networks, where heterogeneous AP placements and 
diverse channel statistics make global retraining impractical. 
Together, these predictive feedback methods enable time-
adaptive CSI acquisition, significantly reducing the feedback 
frequency and computational burden in large-scale 
distributed systems. 

E. Variable-Rate and Variable-Length CSI Feedback 

To overcome the inefficiency of fixed-rate feedback 
encoders, [12] proposed the Learning Variable-Rate Codes 
for CSI Feedback framework, which dynamically adjusts 
feedback bit allocation according to channel complexity. The 
method employs a rate-adaptive quantizer trained to 
minimize distortion under a variable feedback budget, 
allowing each sample to use a different number of bits 
depending on its reconstruction difficulty. This adaptive 
encoding strategy achieves over 30% average bit reduction 
while maintaining the same NMSE as fixed-rate baselines. 
By integrating reinforcement-guided bit selection and latent-
space regularization, the model provides smooth rate–
distortion trade-offs that are essential for dynamic feedback 
scheduling. 

Building on this idea, [13] introduced a machine 
learning–based variable-length feedback mechanism that 
combines Principal Component Analysis (PCA) with bit-
allocation optimization. The scheme assigns quantization bits 
based on the variance of principal components, allowing for 
per-user or per-link adaptation within the total feedback 
budget. Experimental results show up to 40% bit savings and 
over 1 dB NMSE improvement, demonstrating the 
effectiveness of data-driven bit allocation in high-
dimensional MIMO environments. In CF-mMIMO networks, 
such variable-rate and variable-length feedback can be 
extended to the fronthaul and backhaul domains, where the 
central CPU dynamically redistributes feedback resources 
among APs according to instantaneous channel conditions 
and cooperation levels. This adaptability makes AI-based 
rate control a crucial component for scalable and efficient 
cell-free network operation. 

IV. CONCLUSION 

This survey summarized the recent progress of AI-based 
CSI feedback techniques for Cell-Free Massive MIMO 
systems, emphasizing how data-driven learning overcomes 
the inefficiencies of traditional fixed codebook approaches. 
Deep convolutional compression enables compact CSI 
representation, end-to-end learning jointly optimizes 
feedback and precoding, and implicit feedback removes 
explicit CSI transmission through uplink–downlink neural 
mapping. Moreover, predictive feedback using Transformers 
and meta-learning effectively handles channel variation and 
mobility, while variable-rate and variable-length encoding 
dynamically allocate feedback bits according to channel 
complexity. Overall, these advancements demonstrate that 
integrating AI into CSI feedback design can greatly improve 
spectral efficiency, scalability, and adaptability in CF-
mMIMO networks. The combination of distributed 
cooperation and intelligent feedback establishes CF-mMIMO 
as a key enabler for 6G network intelligence. Future research 
will likely focus on federated and reinforcement learning–

based feedback adaptation and the development of 
lightweight neural architectures suitable for large-scale, 
edge-deployed CF-mMIMO systems. 
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