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Abstract—This paper studies the optimal placement of
demand-driven facilities when a finite number of sites must
be selected from a set of candidates. Rather than committing
to a single formulation, a comparative framework is developed
that (i) learns site-level demand signals via ML regression,
(ii) searches combinatorial site subsets using a GA guided by
learned scores, and (iii) guarantees minimum service through a
classical MCLP. The pipeline reflects the core families of location
science: covering-type models for guaranteed access, distance-
minimizing models used as complementary baselines, and scal-
able metaheuristics for large candidate sets. Empirical evaluation
on real spatial data selects a model-of-record by directly compar-
ing outcomes under identical inputs and constraints—reporting
covered population within a service radius, demand-weighted
coverage, and RMSE for learned signals. Results indicate that
ensemble ML predictors (for demand scoring) combined with GA
search produce competitive site sets, while MCLP yields strong
guaranteed coverage under budget limits; the integrated, multi-
model selection process therefore supports robust siting decisions
across policy priorities.

Index Terms—Amplitude alignment, federated learning over-
the-air, magnitude-scaled one-bit quantization, truncated channel
inversion power control

I. INTRODUCTION

Facility location models formalize the siting of a limited
number of facilities to serve spatially distributed demand [1],
[2]. Covering-type formulations such as the set covering
and maximal covering location problems provide transparent
access guarantees, while median- and center-type models min-
imize average and worst-case access distances [3], [4]. This
paper focuses on model selection for demand-driven siting
using a multi-method framework that keeps the deterministic
guarantees of covering models, scales via evolutionary search,
and adapts to local signals through learned demand. The
contribution is a reproducible blueprint that evaluates methods
under identical inputs and constraints and reports policy-facing
metrics to support defensible siting decisions.

II. RELATED WORK

Classical covering models encode minimum-service stan-
dards and budget-limited access. Their interpretability is
strong, but binary coverage is sensitive to the service radius
and ignores diminishing returns with distance. Median and
center families complement coverage by controlling access
burden, yet they do not enforce explicit coverage counts. Scal-
ability concerns have motivated metaheuristics, with genetic
algorithms showing strong performance on large instances.

Decision-aware learning emphasizes alignment between pre-
diction targets and downstream combinatorial objectives. Ac-
cordingly, this paper integrates learned-demand scoring with
evolutionary search and benchmarks against a deterministic
coverage model under the same data and constraints, enabling
objective selection consistent with policy priorities [5]–[8].

III. METHODS

This section first consolidates common mathematical defi-
nitions and metrics used throughout the paper, then explains
each method conceptually with explicit references to those
definitions, and finally specifies a unified protocol for fair
and reproducible comparison. Additions extend modeling fi-
delity (capacity, k-coverage, variable radii), search robustness
(penalty and repair), and evaluation breadth (coverage rate,
access burden, percentiles, equity surrogates) while preserving
the single source of truth for formulas.

A. Common Definitions and Metrics

The great-circle distance between demand node i at (φi, λi)
and candidate site j at (φj , λj) on a sphere of radius r is given
by
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(1)
where φ and λ are latitude and longitude in radians, ∆φij =
φj − φi, and ∆λij = λj − λi.

A smooth distance-decay weight used to construct distance-
aware features from a base quantity P is

W (d) = P e−αd2

, (2)

where α > 0 controls how fast influence diminishes with
distance d.

The learned site score that combines predicted demand and
accessibility is

ScoreML(j) = β1 ŷj + β2 Aj , (3)

where ŷj is the ML prediction at site j, Aj is an accessibility
summary, and β1, β2 ≥ 0 are fixed on validation to set the
demand–access trade-off.



The genetic algorithm evaluates any subset S ⊆ J of
selected sites using

Fitness(S) =
∑
j∈S

ScoreML(j), (4)

which aligns the evolutionary search with the learned site score
in Eq. (3). When using an unconstrained encoding, an oversize
subset can be discouraged by

Fitnessλ(S) =
∑
j∈S

ScoreML(j) − λ max{0, |S| − p}, (5)

where λ > 0 is a penalty weight and p is the facility budget.
The maximal covering location problem chooses up to p

sites to maximize covered demand. A centered-and-aligned
statement is

max
∑
i∈I

wi zi

s.t. zi ≤
∑
j∈J

aij xj , ∀i ∈ I,∑
j∈J

xj ≤ p,

xj , zi ∈ {0, 1}.

(6)

Here I indexes demand nodes with weights wi ≥ 0, J indexes
candidate sites, xj indicates selection of site j, zi indicates
whether demand i is covered, p is the facility budget, and
aij = I

(
dij ≤ rcov

)
is the coverage indicator computed from

Eq. (1) with service radius rcov.
Normalized coverage and its complement are

CovRate(S) =

∑
i∈I wi zi∑
i∈I wi

,

Uncovered(S) =
∑
i∈I

wi (1− zi),
(7)

where zi is the coverage decision from Eq. (6).
The demand-weighted mean access distance and an access

quantile are

d̄(S) =

∑
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,
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{
t :

∑
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}
,

(8)

where dij is the geodesic distance in Eq. (1) and q ∈ (0, 1).
Optional capacity and multi-coverage extensions are∑

i∈I

ui aij yij ≤ capj xj for all j ∈ J,∑
j∈J

yij = 1, yij ≤ aij xj ,
(9)

∑
j∈J

aij xj ≥ k zi for all i ∈ I, (10)

where ui is per-node demand, yij ∈ {0, 1} assigns node i
to site j, capj is site capacity, and k ≥ 1 is the required
redundancy level.

The accuracy metric used for ML model selection is

RMSE =

√√√√ 1

N

N∑
j=1

(
yj − ŷj

)2
, (11)

where yj is the observed target, ŷj is the prediction, and N
is the number of observations.

B. Machine Learning Regression

This method learns a continuous site-level demand proxy
from spatial and contextual features [9], [10]. Proximity is
computed using Eq. (1) and can be transformed by Eq. (2)
to encode diminishing influence. Candidate regressors include
ensemble trees and linear baselines. The predictor of record is
chosen by minimizing held-out error in Eq. (11). Predictions
are converted to siting utility via the site score in Eq. (3).
This paper follows predict-then-optimize principles to align
learning with prescriptive objectives [11], [12].

C. Genetic Algorithm

This method [13] performs evolutionary subset selection
under a facility budget p. A solution is a subset S ⊆ J with
|S| ≤ p. The population is initialized by a mix of random
draws and heuristic seeds. Selection, crossover, mutation, and
elitism are configured so that the best-so-far objective in
Eq. (4) (or the penalized form in Eq. (5)) improves across
generations. Feasibility is enforced by repair (drop lowest-
score sites when |S| > p) or by the penalty weight λ. Stopping
criteria include a generation cap and stagnation tolerance.
Complexity per generation is O(P |J |) for population size P
under precomputed scores. GA is a standard scalable approach
for large location instances where exact search is costly [14].

D. Maximal Covering Location Problem

This method provides a deterministic coverage baseline. It
selects up to p sites to maximize covered demand as defined
by Eq. (6). Coverage indicators aij are derived from geodesic
proximity using Eq. (1). The key policy levers are the budget
p and service radius rcov. Extensions in Eqs. (9)–(10) admit
capacity limits and k-coverage when reliability or redundancy
are required. The formulation is widely used due to trans-
parency and interpretability.

E. Unified Training and Selection Protocol

All spatial layers share a common CRS; distances use
Eq. (1). Feature construction, including Eq. (2), fits strictly
within training folds to avoid leakage. Data is split once
into train and held-out test sets with spatial stratification
where appropriate. Within training, K-fold cross-validation
selects the ML predictor by Eq. (11) and fixes β1, β2 in
Eq. (3). MCLP receives the same candidate set, budget p,
and service radius rcov; when testing extensions, the same k
and capacities are used across methods. MCLP uses the same
solver and optimality gap or time limit across runs. Reported
metrics include coverage rate, uncovered demand, mean access
distance, and RMSE in Eq. (11) as shown in Fig. 1.



Fig. 1: Integrated optimal facility placement illustration.

IV. CONCLUSION

This paper presented a unified framework for siting demand-
driven facilities that compares learned scoring, evolution-
ary search, and deterministic covering under identical inputs
and constraints. The approach preserves coverage guarantees,
scales to large candidate sets, and adapts to local signals
via learned demand. Extensions to capacity and k-coverage
broaden applicability. Future deployments can incorporate
equity-aware objectives, multi-type facilities with capacity, and
decision-aware learning losses tailored to coverage and access
metrics.
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