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Abstract—The rapid growth of image data in communication,
storage, and multimedia applications has created an urgent
demand for efficient and adaptive compression techniques. While
conventional codecs rely on handcrafted transforms and fixed sta-
tistical models, deep learning–based image compression (DLIC)
has emerged as a powerful alternative by jointly optimizing
feature extraction, quantization, and entropy modeling in an
end-to-end manner. This survey presents a structured overview
of recent advances in DLIC, covering major architectural
paradigms such as autoencoder-based models, hyperprior and
autoregressive entropy models, attention- and transformer-based
designs, as well as variable-rate and slimmable frameworks for
adaptive bitrate and complexity control. Key challenges related to
entropy modeling, computational efficiency, perception–distortion
trade-offs, and practical deployment are discussed, along with
a comparative analysis of representative methods and a brief
review of standardization efforts and real-world deployment
considerations. Finally, open research directions are outlined to
guide the development of scalable and deployment-ready learned
image compression systems.

Index Terms—Learned image compression, autoencoder, en-
tropy model, hyperprior, autoregressive context, mixture likeli-
hood, perceptual quality, variable-rate, slimmable networks.

I. INTRODUCTION

Image compression is a fundamental component of modern
multimedia systems, enabling efficient storage, transmission,
and retrieval of visual data across diverse applications. With
the exponential growth of image-centric content on digital
platforms and resource-constrained networks, the demand for
advanced compression techniques has never been greater
[1]. Compression techniques are broadly classified into two
categories: lossy and lossless [2] [3]. Lossy compression
achieves high compression ratios by discarding perceptually
less significant information, which may slightly degrade visual
quality [4]. Lossless compression, on the other hand, pre-
serves the original image data perfectly but typically achieves
lower compression efficiency [5]. Both approaches aim to
minimize the number of bits required to represent an image
while maintaining acceptable quality, thereby reducing storage
requirements and improving transmission efficiency [6] [7].

Traditional codecs such as JPEG [8], JPEG2000 [9], and
BPG [10] have been widely used for decades. These methods
rely on handcrafted linear transforms (e.g., Discrete Cosine
Transform and Discrete Wavelet Transform) followed by quan-
tization and entropy coding to eliminate spatial redundancy.

However, their fixed transform designs and manually tuned
components often fail to fully exploit the complex spatial
structures and semantic correlations present in natural images,
especially under diverse visual conditions and application
requirements.

The advent of deep learning (DL) has brought a paradigm
shift to image compression by replacing traditional hand-
engineered pipelines with end-to-end trainable models [11]–
[16]. DLIC leverages powerful architectures such as convo-
lutional neural networks, recurrent neural networks (RNNs),
and transformers to jointly optimize the trade-off between
bitrate and visual quality. These models learn nonlinear feature
representations directly from data, exploit long-range spatial
dependencies, and preserve perceptual details more effectively
than conventional codecs, particularly at low bitrates.

Recent advancements in DLIC have evolved along sev-
eral key directions. Autoencoder-based frameworks [11] [12]
[17] learn compact latent representations that are quantized
and entropy-coded. Advanced entropy models [14]–[16] [18]
leverage hyperpriors, Gaussian mixtures, or autoregressive
priors to improve probability estimation and compression ef-
ficiency. Additionally, attention mechanisms and transformer-
based architectures [19] have enhanced contextual modeling
by capturing long-range spatial relationships, further boosting
compression performance.

Despite these advances, several challenges remain before
DLIC can achieve widespread deployment. Deep models often
entail high computational costs, limiting their use in real-
time or resource-constrained environments. Moreover, adapt-
ing a single model to support multiple bitrates and diverse
hardware platforms remains a nontrivial problem. Emerging
solutions, including slimmable networks, modulation-based
architectures, and progressive compression strategies, aim to
overcome these limitations by enabling adaptive complexity,
dynamic bitrate control, and hardware-aware deployment.

This survey aims to provide a comprehensive overview of
the current state of DLIC. We trace the evolution from tra-
ditional codecs to neural compression frameworks, categorize
existing methods based on their architectural principles and
entropy modeling strategies, and examine emerging trends
such as variable-rate coding, transformer-based compression,
and perceptual optimization. Furthermore, we discuss bench-
mark results, analyze current limitations, and highlight open



research challenges, offering future directions for advancing
compression efficiency, scalability, and real-world applicabil-
ity.

II. ARCHITECTURAL TAXONOMY

Deep learning–based image compression (DLIC) has
evolved through successive architectural innovations that
progressively replace handcrafted components with learned
representations, enhance entropy modeling, and improve
rate–distortion (R–D) efficiency. To reduce redundancy and
improve clarity, this section organizes existing approaches
into eight complementary categories, each introduced once
and referenced consistently throughout the paper: (1) plain
autoencoders, (2) hyperprior models, (3) autoregressive and
hierarchical priors, (4) perceptual and generative decoders,
(5) variable-rate compression, (6) slimmable and switchable
networks, (7) attention-based designs, and (8) hybrid architec-
tures.

A. Plain Autoencoders (AE/CAE)

Early DLIC systems are based on compressive autoencoders
(CAEs) consisting of an encoder, quantizer, and decoder
trained end-to-end under a rate–distortion objective. Theis et
al. [12] introduced one of the first fully trainable frameworks
by approximating quantization with additive uniform noise.
Ballé et al. [11] further improved performance by incor-
porating generalized divisive normalization (GDN/IGDN) to
decorrelate latent features. While these models demonstrated
the feasibility of learned compression, their fixed bottleneck
design limited adaptability across operating bitrates.

B. Hyperprior Models

Hyperprior models enhance entropy estimation by transmit-
ting auxiliary side information that conditions the latent dis-
tribution. The scale hyperprior introduced by Ballé et al. [14]
predicts spatially adaptive variance parameters, significantly
reducing redundancy without altering the reconstruction path.
Hyperpriors remain a cornerstone of modern DLIC systems
due to their favorable trade-off between compression efficiency
and decoding parallelism.

C. Autoregressive and Hierarchical Priors

To further exploit spatial dependencies, autoregressive con-
text models are often combined with hyperpriors. Minnen et
al. [15] fused hierarchical priors with causal context to achieve
state-of-the-art R–D performance. However, the sequential na-
ture of autoregressive decoding introduces latency and limited
parallelism, motivating later efforts toward parallel entropy
models.

D. Perceptual and Generative Decoders

Beyond pixel-wise fidelity, perceptual compression inte-
grates feature-level losses and adversarial training to enhance
visual realism. Agustsson et al. [20] proposed selective gener-
ative compression, where GAN-based decoders synthesize per-
ceptually plausible details at ultra-low bitrates. While effective
for human perception, such approaches often trade PSNR for

realism and require careful balancing of fidelity and perceptual
quality.

E. Variable-Rate Deep Image Compression

Variable-rate compression enables a single model to operate
at multiple rate–distortion points. Conditional autoencoders
[21] and modulated architectures [17] adjust latent scaling or
network activations based on a target rate parameter. These
approaches eliminate the need for multiple bitrate-specific
models, improving practicality while preserving compression
efficiency.

F. Slimmable and Switchable Designs

Slimmable designs address hardware heterogeneity by al-
lowing dynamic adjustment of network width using shared
parameters and switchable normalization [22]. In compression,
SlimCAE [23] demonstrates that width scaling can jointly con-
trol computational complexity and bitrate, enabling efficient
deployment across edge devices without retraining. Unlike
variable-rate models, which primarily target bitrate adaptabil-
ity, slimmable models emphasize resource-aware inference.

G. Transformers and Attention

Attention-based architectures capture long-range spatial de-
pendencies that convolutional models often miss. Transformer-
based designs [24] tokenize latent features and model global
relationships, yielding strong compression performance for
structured imagery such as remote sensing data. The primary
drawback remains increased computational cost.

H. Hybrid Architectures

Hybrid approaches integrate multiple principles to meet
specialized requirements:

• Lossy + residual coding for near-lossless reconstruction
[25];

• Frequency-decoupled coding using wavelet priors [26];
• Lossless coding guided by lossy priors [3].

These designs demonstrate how learned compression can be
tailored to domain-specific constraints.

III. METHODS AND EFFICIENCY ENHANCEMENTS

Modern DLIC systems employ a unified learning-based
pipeline consisting of encoding, quantization, entropy coding,
and decoding. Advanced entropy models—including hyper-
priors and hierarchical priors—significantly improve proba-
bility estimation and rate efficiency [14], [15]. To reduce
computational overhead, lightweight architectures (e.g., depth-
wise convolutions, neural architecture search, and knowledge
distillation) are increasingly adopted for edge and mobile
deployment.

Recent work emphasizes scalability and latency reduc-
tion, including slimmable inference, progressive bitstreams,
and parallel entropy decoding. These techniques mitigate
the practical limitations of autoregressive models and enable
real-time operation in bandwidth- and compute-constrained
environments. Table I presents a comparative overview of



TABLE I
COMPARATIVE SUMMARY OF REPRESENTATIVE DLIC METHODS

Ref. Core Architecture Entropy Model Variable Rate Key Advantage Complexity
[11] CAE + GDN Factorized Gaussian No End-to-end optimization Low
[14] CAE + Hyperprior Scale Hyperprior No Improved RD efficiency Medium
[15] CAE Hyperprior + AR No State-of-the-art RD High (slow decode)
[16] CAE + Attention GMM + Context No Better spatial modeling High
[21] Conditional AE Hyperprior Yes Single-model multi-rate Medium
[23] Slimmable CAE Hyperprior Yes Hardware adaptability Medium–Low
[20] GAN-based Decoder Learned Prior No Perceptual realism High
[24] Tokenized Encoder Attention-based Partial Long-range modeling Very High

representative DLIC approaches, detailing their core archi-
tectures, entropy modeling techniques (e.g., hyperpriors and
autoregression), support for variable-rate operation, and typical
performance–complexity trade-offs.

IV. TRAINING OBJECTIVES AND LOSSES

DLIC optimization is fundamentally guided by the
rate–distortion trade-off:

L = R+ λD, (1)

where bitrate R is estimated via learned entropy models
and distortion D measures reconstruction quality. Traditional
distortion metrics include MSE and PSNR, while perceptually
aligned metrics such as MS-SSIM and LPIPS better reflect
human visual perception.

For perceptual applications, adversarial and feature-based
losses are incorporated to enhance realism [20], [27]. Re-
cent research further explores task-aware objectives, jointly
optimizing compression and downstream vision tasks (e.g.,
detection or segmentation) to preserve task-relevant semantics
[28]. Such hybrid objectives improve utility in real-world
intelligent systems.

V. STANDARDIZATION EFFORTS

To bridge the gap between research and deployment, several
standardization initiatives have emerged. JPEG AI aims to
define interoperable standards for end-to-end neural image
compression, including neural encoders, decoders, and entropy
models. Similarly, MPEG Neural Network-based Represen-
tation (MPEG-NNR) investigates standardized neural repre-
sentations for immersive and intelligent media. These efforts
highlight growing interest in portability, decoder complexity
constraints, and hardware compatibility, signaling a transition
of DLIC toward real-world adoption.

VI. PRACTICAL DEPLOYMENT AND CASE STUDIES

In practical deployments, DLIC systems must balance com-
pression efficiency with inference latency, memory footprint,
and hardware constraints. Slimmable and variable-rate de-
signs enable adaptive operation on heterogeneous platforms,
including mobile devices and satellites. In remote sensing and
satellite imaging, learned compression has demonstrated supe-
rior semantic preservation at low bitrates, making it suitable
for bandwidth-limited downlinks. These studies emphasize
that future DLIC research must jointly consider algorithmic
performance and system-level constraints.

VII. OPEN CHALLENGES AND FUTURE DIRECTIONS

Despite remarkable progress, deep learning-based image
compression (DLIC) still faces several critical challenges that
must be addressed to enable its practical deployment and
widespread adoption. One of the most fundamental issues is
the perception–distortion trade-off. Conventional metrics such
as PSNR and MS-SSIM effectively capture pixel-level fidelity
but often fail to reflect human perceptual quality. Conversely,
perceptual metrics like LPIPS or VGG-based losses enhance
realism but may compromise objective accuracy. Future re-
search must therefore focus on hybrid optimization strategies
that jointly balance these conflicting objectives to achieve
high-fidelity and perceptually pleasing reconstructions.

Another major challenge concerns computational efficiency
and deployability. Current DLIC models are often too complex
for deployment in resource-constrained environments such as
edge devices, IoT platforms, or real-time video streaming sys-
tems. This limitation calls for lightweight model design tech-
niques—such as pruning, quantization, knowledge distillation,
and hardware-aware neural architecture search (NAS)—to
significantly reduce inference cost without sacrificing com-
pression performance. Additionally, most existing approaches
are optimized for fixed bitrates, which limits their adaptability
under dynamic network conditions. Future solutions should in-
corporate variable-rate and scalable compression mechanisms,
such as conditional coding, modulation networks, or progres-
sive multi-layer bitstreams, to deliver flexible and bandwidth-
aware performance.

Beyond efficiency, entropy modeling and decoding speed re-
main pressing concerns. Although autoregressive and context-
based entropy models achieve state-of-the-art performance,
their sequential decoding introduces significant latency. Ex-
ploring parallelizable entropy modeling techniques, grouped
decoding strategies, and transformer-based context modeling
could dramatically accelerate inference and make DLIC more
suitable for latency-sensitive applications. Finally, emerging
demands in edge intelligence necessitate task-aware and se-
mantic compression, where compression is jointly optimized
with downstream tasks such as object detection or semantic
segmentation to retain task-relevant features while minimizing
data transmission.

Addressing these challenges will pave the way for the
next generation of DLIC systems—solutions that are not only
efficient, perceptually optimized, and scalable but also task-



aware, privacy-preserving, and ready for deployment in diverse
real-world multimedia applications.

VIII. CONCLUSION

This survey has presented a comprehensive overview of
deep learning-based image compression, covering architectural
evolution, entropy modeling, scalable designs, and training ob-
jectives. Beyond algorithmic performance, emerging trends in
standardization and deployment reveal a growing emphasis on
practicality, interoperability, and system-level efficiency. Con-
tinued advances in lightweight architectures, adaptive bitrate
control, and standardized neural codecs will be essential for
transitioning DLIC from laboratory benchmarks to widespread
real-world adoption.
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