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Abstract—Rate-Splitting Multiple Access (RSMA) has emerged
as a powerful multiple access technique for interference manage-
ment in next-generation wireless networks. In uplink multi-user
single-input multiple-output (SIMO) systems, RSMA enables a
base station to decode multi-user transmissions more flexibly
by splitting messages and partially decoding interference. Op-
timizing such RSMA systems is challenging due to the com-
plex resource allocation and decoding order decisions required,
especially under dynamic channel conditions. Recently, deep
reinforcement learning (DRL) approaches, particularly Proximal
Policy Optimization (PPO), have been applied to efficiently learn
near-optimal policies for uplink RSMA resource allocation. This
paper provides a comprehensive review of PPO-based techniques
for uplink multi-user SIMO-RSMA systems. We outline the
fundamentals of SIMO-RSMA, describe the PPO approach for
solving the sum-rate and fairness optimization problems in
these systems, and survey state-of-the-art PPO-based solutions
from 2022 to 2025. A comparative analysis of recent studies
is presented, and open challenges as well as future research
directions are discussed.

Index Terms—Rate-splitting multiple access, uplink multi-
user SIMO, proximal policy optimization, deep reinforcement
learning, resource allocation.

I. INTRODUCTION AND MOTIVATION

Rate-splitting multiple access (RSMA) is a flexible multi-
antenna transmission strategy that splits user messages into
common and private parts to manage multi-user interference
[1], [2]. Originally developed for downlink multi-antenna sys-
tems, RSMA has demonstrated the ability to bridge and out-
perform conventional space-division multiple access (SDMA)
and non-orthogonal multiple access (NOMA) techniques [1].
The core idea is that by allowing part of the interference
to be decoded and canceled while treating the remaining
interference as noise, RSMA generalizes existing multiple
access schemes and improves network performance [2].

While most early RSMA research focused on downlink
transmissions, the RSMA principle can also be applied to
uplink scenarios. In an uplink multi-user single-input multiple-
output (SIMO) system, multiple single-antenna users transmit
simultaneously to a base station (BS) equipped with multiple
antennas [3]. By employing RSMA reception strategies at
the BS—such as decoding a portion of interfering signals
via successive interference cancellation (SIC) and treating the
rest as noise—the uplink interference can be more effec-
tively managed [4]. This enhanced interference management
translates to higher throughput and robustness. For instance,
uplink RSMA has been shown to achieve significant sum-rate

gains (on the order of 10–80%) over baseline NOMA and
orthogonal access schemes in various conditions [4]. However,
to fully realize these benefits, one must solve a challenging
joint optimization of power allocation, receive beamforming,
and decoding order selection for the RSMA uplink system
[3]. Traditional optimization methods for this problem often
rely on idealized assumptions (e.g., perfect channel state
information) and convex approximations, which may struggle
under practical dynamics and uncertainties [3].

In this context, deep reinforcement learning (DRL) has
emerged as a promising approach to handle complex, dynamic
optimization in wireless networks [5]. DRL enables an agent
to learn good decision policies (e.g., how to allocate power
or adjust decoding order in response to channel changes)
through interactions with the environment, without requiring
an explicit model of the wireless channel or traffic dynamics.
Among DRL algorithms, Proximal Policy Optimization (PPO)
is particularly appealing due to its training stability and ability
to handle continuous action spaces [5]. PPO uses an actor-
critic framework and a clipped surrogate objective to ensure
policy updates do not deviate drastically, which makes it ef-
fective for resource allocation problems. Several recent works
have applied PPO or PPO-based methods to multi-user com-
munication scenarios and demonstrated superior performance
compared to conventional optimization or heuristic schemes
[5], [6], [8], [9]. These successes motivate a deeper review of
how PPO can be leveraged specifically for uplink multi-user
SIMO-RSMA systems.

In this paper, we aim to review and synthesize the state-
of-the-art in applying PPO to uplink multi-user SIMO-RSMA
systems. We provide background on the SIMO-RSMA model
and the PPO algorithm, discuss how PPO is utilized to
learn resource allocation policies in this context, and compare
recent studies (2022–2025) that employ PPO in related RSMA
optimization problems. We also identify key challenges (e.g.,
scalability, hybrid action spaces, sample efficiency) in deploy-
ing PPO for these systems and outline potential directions for
future research.

The remainder of this paper is organized as follows. Sec-
tion II presents the background on uplink SIMO-RSMA sys-
tems and relevant technologies. Section III details the PPO-
based approach in SIMO-RSMA and reviews representative
recent works, with a comparative summary provided in Table I.
Section IV discusses open challenges and future research
directions. Finally, Section V concludes the paper.



II. BACKGROUND AND TECHNOLOGIES

A. Uplink Multi-user SIMO-RSMA Systems

An uplink multi-user SIMO-RSMA system consists of
K single-antenna users simultaneously transmitting to a BS
with M receive antennas. All users share the same time-
frequency resources, resulting in co-channel interference at
the BS. The BS employs RSMA-based reception to manage
this interference. In essence, the BS can decode part of the
combined signals as a common stream that captures a portion
of the interference, while treating the remainder of the interfer-
ence as noise when decoding each user’s private stream. By
performing successive interference cancellation, the BS first
decodes the common stream (which is a function of multiple
users’ signals), subtracts it from the aggregate received signal,
and then decodes the individual private streams of each user
[1], [2]. This process generalizes the uplink decoding: if the
common stream is configured to carry no information, RSMA
reduces to treating all interference as noise (as in orthogonal
multiple access), whereas if the common stream carries all
interfering content, it resembles decoding interference fully (as
in power-domain NOMA). A properly chosen common/private
splitting strategy allows intermediate operation, yielding robust
performance under a variety of channel conditions [2].

To implement uplink RSMA, the system must determine
several aspects: (1) each user’s transmit power allocation (po-
tentially splitting power between common and private portions
of its message), (2) the decoding order of streams at the BS
(which stream to decode first, second, etc.), and (3) the receive
beamforming vectors at the BS for each stream, which lever-
age the M antennas to separate the signals [3]. The overall
objective is often to maximize a network utility (e.g., the sum
of user achievable rates or a fairness metric) subject to power
constraints and decoding feasibility. This is a challenging
non-convex problem because the decisions are interdependent;
for example, the optimal power allocation depends on the
decoding order and vice versa. Conventional approaches have
applied iterative optimization, such as alternating between
optimizing beamformers and power splits, or using techniques
like successive convex approximation to handle the non-
convex rate expressions [3], [4]. While such methods can reach
a locally optimal solution, they require accurate channel state
information and can be computationally intensive, making
them less adaptable to fast-changing environments.

B. Deep Reinforcement Learning and PPO

Deep reinforcement learning offers an alternative by mod-
eling the resource allocation problem as a Markov decision
process (MDP) and learning a control policy through trial-
and-error. In an uplink RSMA context, the DRL agent (located
at the BS or network controller) can observe the state (e.g.,
channel gains of all users, queue lengths, interference levels)
and then take actions (such as setting users’ power levels,
selecting a decoding order, or adjusting beamforming) at each
time slot. A well-designed reward function (for instance, the
sum-rate achieved or a weighted sum-rate reflecting QoS

priorities) guides the agent to improve performance over
time. Notably, DRL does not require explicit models of
the channel or interference; it learns directly from feedback
(reward signals) by interacting with the environment, which
is advantageous under uncertainty or complexity that defies
analytical solutions.

Among DRL algorithms, Proximal Policy Optimization
(PPO) has gained popularity due to its balance of implemen-
tation simplicity and reliable convergence [11], [12]. PPO is
a policy gradient method that uses an actor-critic architecture:
an actor network outputs the policy (probability distribution
over actions, or direct action values in continuous space)
and a critic network estimates the value function (expected
return) to help compute advantage estimates. PPO improves
training stability by limiting how much the policy can change
at each update. It does so by formulating a clipped surrogate
objective that penalizes large deviations from the previous
policy during gradient updates [11], [13]. This mechanism
prevents unstable swings in the policy and has been shown
to yield stable learning in many continuous control problems.
In wireless communications, PPO is well-suited for problems
like power control or beamforming where the action space
can be continuous and high-dimensional [5]. Furthermore,
PPO inherently handles exploration vs. exploitation trade-
offs and can be combined with reward shaping or constraint
handling techniques (e.g., penalty terms) to enforce power or
interference constraints.

Recent studies have started to apply PPO to RSMA-related
optimization tasks. For example, in a downlink RSMA power
allocation problem with unknown channel dynamics, PPO was
used to learn the transmit power policy that maximizes sum-
rate, outperforming baseline algorithms that assumed partial
channel knowledge [5]. In another work, a PPO-based ap-
proach was employed to jointly optimize resource allocation
in a satellite communication system using RSMA, adapting
to time-varying channel conditions in low Earth orbit links
[6]. These applications demonstrate that PPO can successfully
handle the coupling of decisions and uncertainties inherent in
RSMA systems. In the next section, we review in detail how
PPO has been applied specifically to RSMA scenarios, includ-
ing uplink multi-user SIMO contexts and related systems, and
compare key achievements of recent works.

III. PPO APPROACH IN SIMO-RSMA SYSTEM

PPO-based solutions for RSMA systems involve defining
the agent’s observations, actions, and rewards to capture
the RSMA resource allocation problem. Typically, the state
observed by the PPO agent includes channel information for
all users (e.g., channel gains or estimates for each user’s link
to the BS) and possibly other context like the users’ buffer
statuses or interference levels. The action can be a vector
consisting of each user’s power allocation (and potentially
their rate-split ratios if the user transmits a common and
private part) as well as discrete choices like decoding or-
der. In cases where decoding order needs to be optimized,
one approach is to incorporate it into the action space by



enumerating possible orders or to handle it with a separate
mechanism or agent, as the action space would otherwise be
hybrid discrete-continuous. The reward is often chosen as the
sum-rate achieved by all users under the chosen allocation
and decoding strategy, or a utility that reflects fairness (e.g.,
minimum rate among users for max-min fairness). The agent
then learns a policy that maps states to actions to maximize
the expected cumulative reward (long-term performance).

One of the first studies to apply PPO in an RSMA context
was [5], which considered a two-user downlink RSMA system
with an unknown channel model. The PPO agent was used to
determine the optimal power allocation for the common and
private messages to maximize the sum-rate. This work demon-
strated that the learned policy could outperform traditional
solutions that rely on perfect or statistical CSI, especially when
the channel was dynamically varying. Another related work [7]
extended this idea to include covert communication constraints
(where one user’s transmission must remain undetected by a
malicious receiver) in an RSMA network. The PPO algorithm
was utilized to jointly optimize power allocation and rate
control, achieving a balance between spectral efficiency and
covertness.

In uplink settings, deep deterministic policy gradient
(DDPG) algorithms have been explored for RSMA as well. For
example, a DDPG-based approach tackled uplink multi-user
SIMO-RSMA sum-rate maximization by learning the users’
power control and the BS’s decoding order. PPO, being an
on-policy algorithm, offers some different advantages in this
context, such as improved stability in training at the cost
of more sample usage compared to off-policy methods like
DDPG. While specific literature on PPO for uplink RSMA
is still limited, the methods and findings from downlink and
related scenarios can be translated to uplink. The BS in uplink
can serve as the agent that learns how to optimally decode
and allocate power (potentially by sending power control
commands to users or assuming users adjust their power based
on BS’s decisions). The successful application of PPO in
downlink RSMA and other multi-user interference problems
suggests that PPO is a viable approach for the uplink case as
well.

Table I summarizes several representative works from 2021
to 2024 that employed PPO-based algorithms for RSMA or
closely related multi-user communication systems. The table
outlines the scenario, objective, DRL approach, and key results
of each study. As shown, PPO has been used in a variety
of contexts—including terrestrial cellular, satellite commu-
nications, and networks aided by reconfigurable intelligent
surfaces (RIS)—and for objectives ranging from sum-rate
maximization to energy efficiency and fairness. These studies
consistently report that PPO-based solutions can approach or
exceed the performance of conventional optimized schemes,
especially in dynamic environments where classical methods
struggle.

Overall, the reviewed works illustrate that PPO-based DRL
agents can effectively learn resource allocation strategies in
complex multi-user RSMA systems. They can adapt to differ-

ent channel conditions (radio frequency or optical wireless),
network architectures (with or without intelligent surfaces or
relays), and performance goals. A common theme is that by
learning directly from the environment, PPO can exploit the
structure of the interference and channel dynamics that might
be intractable to model in closed-form, thus finding efficient
solutions that static or one-shot optimization methods might
miss.

IV. CHALLENGES AND FUTURE WORKS

Despite the promising results of PPO in RSMA systems,
several challenges remain to be addressed to fully leverage
this approach in practical multi-user uplink scenarios:
Scalability and High-Dimensional Spaces: As the number
of users K or antennas M grows, the state and action spaces
for the PPO agent increase significantly. A large state space
(e.g., full channel gain matrices for many users) can slow
down learning and require extensive training data. Similarly,
a high-dimensional continuous action (like a power level for
each user and possibly each stream) makes the policy network
more complex. Future research could explore dimensionality
reduction techniques or multi-agent formulations (splitting the
optimization across multiple agents) to maintain scalability.
Hierarchical RL is another avenue, where one agent might
set high-level parameters (like decoding order or grouping of
users) and another fine-tunes power allocations.
Hybrid Discrete-Continuous Decisions: Uplink RSMA op-
timization involves discrete choices (decoding order selection,
user scheduling in some cases) alongside continuous ones
(power or beamforming vectors). Standard PPO is designed
for either continuous or discrete action spaces, but not both
simultaneously. While one could discretize continuous actions
or use separate neural network outputs for discrete decisions,
these approaches may not be efficient. There is a need for
advanced methods to handle hybrid action spaces. One poten-
tial direction is to combine PPO with search or combinatorial
algorithms for the discrete part—for example, using PPO to
optimize power for a given decoding order and employing
a secondary search (or another RL agent) to find the best
order. Some recent works integrated convex optimization steps
into the learning loop (as in PPO-SCF [9]) to guarantee
constraint satisfaction, which could be extended to handle
discrete decisions as well.
Sample Efficiency and Training Overhead: PPO, being
an on-policy algorithm, often requires a large number of
interactions with the environment to converge to an optimal
policy. In a simulated environment, this translates to many
channel realizations and evaluations of the reward, which can
be time-consuming. Techniques to improve sample efficiency,
such as experience replay (though not straightforward in
on-policy methods), meta-learning to quickly adapt policies
to new scenarios, or model-based approaches that learn an
approximate environment model for planning, are worth in-
vestigating. Transfer learning could also be valuable: a policy
trained for a certain range of network conditions (user count,



TABLE I
REPRESENTATIVE PPO-BASED STUDIES ON RSMA RESOURCE OPTIMIZATION (2021–2024)

Work (Year) Scenario and Objective Approach and Key Findings

Nguyen et al. [5]
(2021)

Downlink two-user MISO RSMA; max-
imize sum-rate under unknown channel
model

PPO algorithm for power allocation (common vs private stream
power). Achieved ∼10% higher sum-rate than baseline with imperfect
CSIT, demonstrating RSMA gains without explicit channel model.

Huang et al. [6] (2022) Downlink LEO satellite MISO RSMA;
maximize sum-rate (power allocation in
satellite downlink)

Deep RL (PPO-based) resource allocation adapting to fast time-
varying LEO channels. Outperformed static optimization by adjusting
transmit power in real-time, improving throughput in 6G satellite links.

Nguyen et al. [7]
(2023)

Downlink RSMA with covert communi-
cations; joint power allocation and rate
control

PPO-based policy optimizing spectral efficiency while maintaining
covertness. Showed that RSMA with learned policy met covert con-
straints and achieved higher sum-rate than heuristic schemes.

Meng et al. [8] (2024) STAR-RIS assisted RSMA (downlink);
maximize sum-rate for users

PPO-based joint optimization of transmit power and reflecting surface
configuration. Demonstrated fast convergence and notable sum-rate
gain over baseline algorithms (e.g., up to 20% higher sum-rate than
non-RIS or non-PPO schemes).

Zhang et al. [9] (2024) RIS-aided MISO RSMA; maximize se-
crecy energy efficiency (SEE)

Proposed PPO-SCF (PPO with successive convexification) to handle
continuous phase shifts and power allocation under secrecy constraints.
Achieved higher SEE compared to conventional optimization, high-
lighting PPO’s ability to handle physical layer security and efficiency
trade-off.

Guo et al. [10] (2024) VLC (Visible Light) downlink MISO with
RSMA; maximize secrecy energy effi-
ciency

Developed a DS-PPO (Dual Stage PPO) approach to jointly optimize
beamforming and power in an IRS-assisted visible light RSMA sys-
tem. Results showed improved worst-case (min-user) rate and energy
efficiency relative to baseline PPO, thanks to the specialized training
strategy.

mobility, etc.) could be fine-tuned for a new scenario rather
than training from scratch.
Robustness and Generalization: Wireless environments are
highly variable. A PPO agent trained under certain assump-
tions (e.g., a particular distribution of channel conditions or
number of active users) might perform sub-optimally if those
conditions change. Ensuring that the learned policy generalizes
beyond the training scenarios is crucial for real deployment.
This may involve training the agent across a wide variety of
random environments (domain randomization) or incorporat-
ing robustness in the objective (e.g., optimizing worst-case
performance). Another future direction is safe reinforcement
learning, which ensures the agent respects critical constraints
(like not exceeding power limits or causing outage for users)
throughout the learning process, not just at convergence.
Computational and Deployment Challenges: Implementing
a DRL solution like PPO in a live network poses practical
challenges. The inference delay (to run the neural network and
output an action) must be small enough for real-time control
in the uplink (which may have scheduling intervals on the
order of milliseconds). Custom hardware (ASICs or FPGAs)
for neural network acceleration at the BS, or cloud-assisted
control, might be necessary. Additionally, the training will
likely occur offline using a simulator; discrepancies between
the simulated model and reality (model mismatch) can degrade
performance. Developing methods for online fine-tuning or
continual learning can help adapt the policy to actual network
measurements.

In summary, future work should focus on making PPO-
based RSMA solutions more robust, efficient, and scalable.
Integrating domain knowledge (e.g., using known optimal
strategies for simple cases to guide training or initialize the

policy) and combining learning with traditional optimization
(to enforce hard constraints or provide initial feasible so-
lutions) are promising avenues. As the wireless community
moves towards 6G and beyond, where network management
will heavily involve AI techniques, addressing these challenges
will be key to operationalizing DRL approaches like PPO
for multi-user RSMA and other advanced multiple access
schemes.

V. CONCLUSION

This paper reviewed the application of Proximal Policy
Optimization for uplink multi-user SIMO-RSMA systems.
RSMA offers a powerful framework for managing interference
by flexibly splitting and decoding messages, but optimizing its
operation in uplink multi-antenna scenarios is complex. DRL
techniques, and PPO in particular, have shown great potential
in tackling these challenges by learning resource allocation
policies that adapt to changing conditions. We surveyed recent
PPO-based approaches in both uplink and downlink RSMA
contexts, highlighting that PPO agents can achieve significant
gains in sum-rate, energy efficiency, and fairness over tradi-
tional methods. We also discussed several open challenges,
including scalability to larger networks, handling hybrid action
spaces, ensuring sample-efficient and robust learning, and
deploying such solutions in real systems. Addressing these
issues will be crucial for the future integration of learning-
driven optimization in wireless networks. Nonetheless, the
advancements to date indicate that PPO will play an important
role in enabling intelligent, high-performance multiple access
strategies in 6G and beyond.
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