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Abstract—Federated learning (FL) typically suffers from the
uplink exchange of high-dimensional updates, which yields a com-
munication bottleneck. Thus, over-the-air computation enables
FL to evolve into FL over-the-air (FLOA) through simultaneous
aggregation. However, FLOA introduces gradient distortion from
fading and noise, making the amplitude alignment (AA) crucial.
Perfect AA (PAA) via full channel inversion (CI) ensures ideal
aggregation, yet it risks unbounded power and suppresses small-
magnitude gradient entries below the noise floor. To address this,
we propose the magnitude-scaled one-bit analog aggregation with
PAA (MOAA-PAA), coupled with truncated CI to cap power. The
proposed design preserves both signs and the averaged magni-
tude, protects weak gradients, and retains identical alignment.
Then, we analyze the convergence performance and discuss the
energy efficiency of MOAA-PAA. In experiments, the proposed
design shows improved trade-offs over baselines.

Index Terms—Amplitude alignment, federated learning over-
the-air, magnitude-scaled one-bit quantization, truncated channel
inversion power control

I. INTRODUCTION

Federated learning (FL) enables multiple devices to collab-
oratively train the global learning model without sharing raw
data, preserving privacy and reducing traffic [1]–[3]. However,
when many devices participate in wireless settings, repeated
exchanges of high-dimensional updates (i.e., gradients) yield
a severe uplink bottleneck that limits scalability and efficiency
[4]. To address this, over-the-air computation (OAC) has been
integrated into FL, appearing as FL over-the-air (FLOA) [5],
[6]. FLOA exploits waveform superposition to enable simul-
taneous transmissions and high communication efficiency, but
suffers from gradient distortion from fading and noise.

Therefore, power control with amplitude alignment (AA)
has become central to preserving the ideal aggregated gradient.
Perfect AA (PAA) performs identical amplitude scaling-based
full channel inversion (CI); that is, all gradients arrive at the
parameter server (PS) as identical amplitude, which enables
fading-driven error-free aggregation and ideal learning theo-
retically [5]–[8]. However, PAA’s drawback is the unbounded
transmit power under deep fading. This motivates imperfect
AA (IAA), in which devices use different amplitude scaling,
tolerating misalignment to avoid excessive power and improve
robustness [9]–[12].

Nonetheless, in terms of the learning theory, PAA remains
attractive, as it enables an ideal aggregation and preserves the
integrity of the global gradient. Thus, some PAA-based works
apply a truncated CI (TCI), silencing devices in deep fading
to cap transmit power while keeping PAA’s learning benefits
[5], [7]. However, another drawback of PAA arises from its
amplitude scaling structure. Because devices compensate for
their fading differently, small-magnitude gradients may sink
below the noise floor at PS even when an identical amplitude
scaling is used. In contrast, large-magnitude gradients survive,
potentially destabilizing learning. To fix this, some auxiliary
methods are utilized: normalization boosts weak gradients but
can also amplify noise upon denormalization [5], [6]. One-bit
quantization avoids that amplification by fixing magnitudes to
one, but it discards magnitude information [7], [8].

That is, the conventional auxiliary methods address another
drawback of PAA through their unique approaches, but they
face new shortcomings. To navigate these trade-offs, we in-
troduce the magnitude-scaled one-bit (MO) quantization as an
auxiliary approach. Then, we propose MO analog aggregation
with PAA (MOAA-PAA). It avoids both complete information
loss and noise amplification. Unlike prior one-bit schemes that
intentionally discard magnitude to prevent noise amplification,
the proposed design preserves sign information while recover-
ing the averaged magnitude, and it further adopts TCI to avoid
the unbounded transmit power required by strict PAA.

II. SYSTEM MODEL

For the wireless FL, the network consists of a single PS and
K devices. Device k ∈ [K] ≜ K has its local dataset Dk with
D = |Dk|, ∀k. Thus, device k trains the learning model using
Dk and derives the local loss function Fk(·) as follows:

Fk(w) =
1

D

∑
d∈Dk

Fk,d(w), (1)

where w ∈ RS is a parameter vector, and Fk,d(·) is a sample-
wise loss function. Based on all local loss functions, the global
loss function is defined as F(w) =

∑
k∈K Fk(w)/K. The goal

of FL is to find an optimal parameter vector w⋆ as

w⋆ = argmin
w

F(w). (2)



To find w⋆, the FL framework is employed in a distributed
manner. In communication round t ∈ [T ], device k derives the
local gradient vector gt

k ∈ RS as follows:

gt
k =

1

D

∑
d∈Dk

∇Fk,d(w
t), (3)

where ∇Fk,d(·) is the sample-wise gradient vector. Thus, the
PS derives the global gradient vector as gt =

∑
k∈K gt

k/K,
which denotes ∇F(wt). Then, after the PS broadcasts this to
all devices, the parameter vector wt is updated as

wt+1 = wt − λgt, (4)

where λ is the learning rate. This process is iterated until the
maximum round T is reached or convergence is achieved.

III. PROPOSED DESIGN

First, we introduce MO quantization, which preserves both
signs and the averaged magnitude. In round t, device k derives
the magnitude scaling factor utk as

utk = ∥gt
k∥1/S, (5)

and derives the quantized gradient vector qt
k ∈ RS as

qtk,s =

{
+1, gtk,s ≥ 0,

−1, otherwise,
(6)

where s ∈ [S]. Then, for the aggregation in the PS, device k
transmits the channel input vector xt

k, defined as

xt
k = utkq

t
k. (7)

Since all {xt
k}k∈K are transmitted in an analog manner, the

channel output vector yt,a is represented as

yt,a =
∑
k∈K

htkp
t,a
k xt

k + zt, (8)

where a ∈ {Paa, Iaa} is the type of amplitude alignment, and
htk ∼ CN (0, 1) denotes channel coefficient between device k
and PS. For simplicity, we assumed the perfect uplink channel
state information and block fading. In addition, pt,ak ≥ 0 and
zt ∼ CN (0, σ2) denote the transmit power and additive white
Gaussian noise (AWGN) vector, respectively.

In each round t, the transmit power pt,ak should be inverted
to the corresponding channel coefficient htk, and it is subject
to a long-term transmit power constraint as

E[|pt,ak xtk,s|2] ≤ P0. (9)

The full CI is infeasible because some channels encounter deep
fading. Thus, we adopt TCI that control pt,ak as

pt,ak =
1δ(|htk|2)(htk)∗

|htk|2
×

{
bt0, a = Paa,

btk, otherwise,
(10)

where 1δ(|htk|2) is the indicator function in which 1 if |htk|2 ≥
δ, otherwise 0. In addition, bt0 and btk are the amplitude scaling
factors for PAA and IAA, respectively, to satisfy the constraint
(9). Given yt,a, the PS derive vt,a as the estimation of xt =∑

k∈K xt
k/K, and broadcast it to all devices to update

wt+1 = wt − λvt,a. (11)

A. Amplitude Alignment

For PAA implementation, by substituting (7) and (10) into
xtk,s and pt,ak , respectively, the constraint (9) is rewritten as

E
[
1δ(|htk|2)|bt0|2|utk|2

|htk|2

]
= E1(δ)(b

t
0)

2(utk)
2 ≤ P0, (12)

that is,

bt0 ≤

√
P0

(utk)
2E1(δ)

, (13)

where E1(δ) =
∫∞
δ

1
τ e

−τdτ is the exponential integral func-
tion. The higher utk’s devices need their lower transmit power
to achieve PAA with the lower utk’s devices. Thus, according
to {utk}k∈K known in advance before transmission, PS set

bt0 =

√
P0

(utmax)
2E1(δ)

, (14)

where utmax = maxk {utk}. By substituting PAA case’s (10)
into (8), the channel output vector yt,Paa is written as

yt,Paa =
∑
k∈K

1δ(|htk|2)bt0xt
k + zt. (15)

Upon this, the PS extracts the real component and then derives
the estimated xt as

vt,Paa =
yt,Paa
re

Kbt0
=

1

K

∑
k∈Ht

xt
k +

ztre
Kbt0

,

=
1

K

∑
k∈Ht

xt
k + nt,Paa, (16)

where Ht = {k ∈ K : |htk|2 ≥ δ}, and nt,Paa represents the
noise-driven error vector.

To demonstrate the performance of PAA, we also implement
IAA as a comparison power control design by referring to [9].
It doesn’t matter if each device is not aligned with the other
devices; thus, each device sets

btk =

√
P0

(utk)
2E1(δ)

. (17)

Similarly, IAA case’s yt,Iaa and vt,Iaa are derived as

yt,Iaa =
∑
k∈K

1δ(|htk|2)btkxt
k + zt, (18)

vt,Iaa =
yt,Iaa
re

Kbtavg
=

1

Kbtavg

∑
k∈Ht

btkx
t
k +

ztre
Kbtavg

=
1

K

∑
k∈Ht

xt
k +

1

K

∑
k∈K

mt
k + nt,Iaa, (19)

where btavg =
∑

k∈K b
t
k/K derived by the PS based on am-

plitude scaling factors additionally transmitted after the trans-
mission of channel input vectors, and mt

k is the misalignment-
driven error vector, defined as

mt
k = 1δ(|htk|2)

(
btk
btavg

− 1

)
xt
k. (20)



B. Energy Consumption

For OAC, each entry of xt
k is modulated as a single analog

symbol; that is, the total of S analog symbols is transmitted.
Thus, we consider the LTE uplink system where one resource
block (RB) spans two slots, each slot contains ψ0 = 7 symbols
(i.e., 14 symbols per RB) with duration ϕslot = 0.5 ms [12].
The transmission latency R is expressed as

R = 2ϕslot

⌈
S

2ψ0

⌉
. (21)

According to (21), the energy consumption per round of PAA
is expected to be∑

k∈K

E
[
1δ(|htk|2)|utk|2P0R

|htk|2|utmax|2E1(δ)

]
=

P0R

(utmax)
2

∑
k∈K

(utk)
2

= jtKP0R, (22)

where jt = 1
K

∑
k∈K(u

t
k)

2/(utmax)
2. Furthermore, the energy

consumption per round of IAA is expected to be∑
k∈K

E
[
1δ(|htk|2)P0R

|htk|2E1(δ)

]
= KP0R. (23)

Since it is typically jt ≤ 1, the energy consumption per round
of PAA is expected to be lower than that of IAA.

IV. CONVERGENCE ANALYSIS

This section characterizes the effects of MOAA-PAA/IAA
on the FLOA system by analyzing its convergence rate.

A. Standard Assumptions

For facilitating convergence analysis, we made the standard
assumptions regarding the loss function and gradient vector.

Assumption 1. (Loss Function Bound): The global loss func-
tion F(·) is lower bounded by an optimal parameter vector w⋆

for the given w, that is,

F(w) ≥ F(w⋆), ∀w ∈ RS . (24)

Assumption 2. (Smoothness and Lipschitz Continuity): The
global loss function F(·) is L-smooth and the corresponding
∇F(·) is L-Lipschitz continuous, that is,

|F(w′)− F(w)− (w′ −w)⊤∇F(w)|

≤ L

2
∥w′ −w∥22, ∀w′,w ∈ RS , (25)

where L is a non-negative constant.

Assumption 3. (Local Gradient Vector Bound): There exists
a constant G > 0 such that the local gradient vector gk ∈ RS

is bounded by

∥gk∥22 ≤ G2, ∀k. (26)

B. Main Results
Based on the assumptions, we provided the expected conver-

gence rate of the proposed MOAA-PAA/IAA as a closed-form
expression. First, we derived Lemma 1 to describe the upper
bound of the magnitude scaling factor.

Lemma 1. Under Assumption 3, the magnitude scaling factor
utk is bounded by

(utk)
2 ≤ G2/S, ∀t, k, (27)

and then there exist a constant ξ ∈ (0, 1) such that
1

K

∑
k∈K

(utk)
2 ≤ ξG2/S, ∀t. (28)

Proof: See Appendix A.

Next, we derived Lemmas 2-5 to present the compression,
misalignment-driven, and noise-driven errors.

Lemma 2. Upon MO quantization, TCI, and PAA, the com-
pression error vector ctk is defined as

ctk = gt
k − 1δ(|htk|2)xt

k, (29)

and it is bounded by

E∥ctk∥22 ≤ (1− e−δ/S)G2, (30)

under Assumption 3 and Lemma 1.
Proof: See Appendix B.

Lemma 3. Upon MO quantization, TCI, and IAA, the error
vector ot

k by compression and misalignment is defined as

ot
k = ctk −mt

k = gt
k − 1δ(|htk|2)

btk
btavg

xt
k, (31)

and it is bounded by

E∥ot
k∥22 ≤ (1 + ξe−δ)G2, (32)

under Assumption 3 and Lemma 1.
Proof: See Appendix C.

Lemma 4. Based on (14), (16), and Lemma 1, PAA case’s
noise-driven error vector nt,Paa is bounded by

E∥nt,Paa∥22 = E
∥∥∥∥ ztre
Kbt0

∥∥∥∥2
2

=
σ2SE1(δ)(u

t
max)

2

2P0K2

≤ σ2G2E1(δ)

2P0K2
, (33)

which completes the proof.

Lemma 5. Based on (17), (19), Cauchy-Schwarz inequality,
Jensen’s inequality, and Lemma 1, IAA case’s noise-driven
error vector nt,Iaa is bounded by

E∥nt,Iaa∥22 = E
∥∥∥∥ ztre
Kbtavg

∥∥∥∥2
2

=
σ2SE1(δ)

2P0(
∑

k∈K 1/utk)
2

≤ σ2SE1(δ)

2P0K3

∑
k∈K

(utk)
2

≤ ξσ2G2E1(δ)

2P0K2
, (34)



(a) Test accuracy according to round. (b) Energy consumption according to round. (c) Test accuracy versus δ with σ2 = 10−4.

(d) Train loss according to round. (e) Energy consumption versus test accuracy. (f) Test accuracy versus σ2 with δ = 0.5.

Fig. 1: Evaluation of learning performance, energy efficiency, and uncertainty robustness.

which completes the proof.

Lastly, we derived to delineate the convergence rates of the
proposed MOAA-PAA/IAA in Theorems 1-2.

Theorem 1. Based on Lemmas 2, 4, and Assumptions 1-2,
the convergence rate of MOAA-PAA satisfies

1

T

T∑
t=1

∥∇F(wt)∥22 ≤ 2(F(w1)− F(w⋆))

λT
+
σ2G2E1(δ)

2P0K2

+ (1− e−δ/S)G2. (35)

The right-hand side (RHS) upper-bounds the average station-
ary measure by the optimization term decaying with T and λ,
the weighted noise-driven error (WNE) term decreasing with
larger P0 and K, and the weighted compression error (WCE)
term governed by δ and S.

Proof: See Appendix D.

Theorem 2. Based on Lemmas 3, 5, and Assumptions 1-2,
the convergence rate of MOAA-IAA satisfies

1

T

T∑
t=1

∥∇F(wt)∥22 ≤ 2(F(w1)− F(w⋆))

λT
+
ξσ2G2E1(δ)

2P0K2

+ (1 + ξe−δ)G2. (36)

Compared with Theorem 1, the upper-bound in the RHS has
the same optimization term. However, its WNE is smaller than
that of the PAA case, whereas its WCE term is larger.

Proof: See Appendix E.

From Theorems 1 and 2, MOAA-PAA converges faster and
achieves better performance than MOAA-IAA theoretically if
the WNE term is negligibly small, since the PAA case has a
smaller WCE term than the IAA case. Otherwise, MOAA-IAA
may become better than MOAA-PAA.

V. EXPERIMENTAL RESULTS

In this section, we evaluate the learning performance, energy
efficiency, and uncertainty robustness of the proposed MOAA-
PAA. We considered K = 100 devices with the learning rate
λ = 0.5. Moreover, we set T = 300, P0 = 10 mW, σ2 = 10−4

mW, and δ = 0.5. We compared the proposed MOAA-PAA
with the MOAA-IAA, as well as broadband analog aggregation
(BAA) [5] and one-bit broadband digital aggregation (OBDA)
[7], which adopt normalization and unscaled one-bit quantiza-
tion, respectively, as auxiliary methods. As an application, we
considered image classification with the MNIST dataset, which
consists of black-and-white handwritten digits from 0 to 9,
comprising 60, 000 training samples and 10, 000 test samples.
For 100 devices, non-i.i.d. partitioning sorts training samples
by their label, divides into 200 shards, each 300 samples, and
assigns each device two shards [1]. Then, we implemented
the multilayer perceptron with S = 199, 210 as a classifier
[1]. The considered FLOA setup maps to an ICT deployment
in which the PS runs on an edge server, and devices are mobile
equipment or IoT endpoints, potentially connected via an IoT
gateway that performs OAC. Therefore, the proposed MOAA-
PAA is lightweight for resource-limited devices.



Figs. 1(a) and 1(d) plot test accuracy and train loss accord-
ing to round, respectively. BAA and OBDA achieved the best
performance with the fastest convergence and the worst per-
formance with the slowest convergence, respectively. This is
because BAA retains the magnitude information, while OBDA
discards it. Furthermore, MOAA-IAA achieved better perfor-
mance than OBDA, since it retains the averaged magnitude
information. On the other hand, the proposed MOAA-PAA
seeks identical alignment of the simultaneously transmitted
gradients, achieving better performance than MOAA-IAA.

Fig. 1(b) plots the energy consumption according to round.
As observed theoretically, MOAA-PAA consumes less energy
per round than MOAA-IAA. Furthermore, BAA and OBDA
show energy consumption similar to that of MOAA-IAA. As
shown in 1(e), which plots the trade-off between energy con-
sumption and test accuracy, the energy consumption of OBDA
increased dramatically if test accuracy increased, resulting in
the worst trade-off. It also failed to achieve a test accuracy of
0.9. MOAA-IAA achieved 0.9 test accuracy, but still showed
a bad trade-off. In addition, BAA outperformed these. On the
other hand, MOAA-PAA showed the best trade-off, achieving
0.9 test accuracy with reduced energy consumption by 80.5%
and 6.3% compared to MOAA-IAA and BAA, respectively.

In Figs. 1(c) and 1(f), we compared the MOAA-PAA/IAA
with other baselines in terms of the trade-offs between test
accuracy with power cut-off threshold δ or noise power σ2. For
all designs, as the participation rate decreased with increasing
δ or gradient distortion became more severe with increasing
σ2, the test accuracy reduced. Then, we showed the robustness
of the proposed designs by comparing the test accuracy with
different δ or σ2. When σ2 increases from 0.1 to 0.9 or σ2

increases from 10−4 to 1, the test accuracy of MOAA-PAA
decreases only about 0.015 or 0.0004, respectively, and it can
be seen that it is more robust than both BAA and OBDA. On
the other hand, MOAA-IAA showed slightly better robustness
than the PAA case, with a 0.014 or 0.0002 decrease in test
accuracy, respectively. This is because the adverse effect of
the misalignment decreases as the participation rate drops, and
it is theoretically less affected by noise than in the PAA case.
Nevertheless, the difference in test accuracy decrease between
MOAA cases is negligible.

VI. CONCLUSION

We tackled FLOA’s core trade-off between identical align-
ment, learning performance, and energy efficiency; the pro-
posed MOAA-PAA preserves signs and averaged magnitude,
protects weak gradients from noise-floor erasure, and caps
transmit power while retaining PAA’s aggregation benefits.
In both analysis and experiments, we demonstrate a better
energy–accuracy trade-off than the IAA case and other PAA-
based FLOA baselines, and derive closed-form convergence
guarantees under standard smoothness with bounded transmit
power. Extensive evaluations across power cut-off thresholds
and noise levels further corroborate the theoretical insights
and confirm consistent gains in both test accuracy and en-
ergy efficiency. Future work will extend the framework to

partial participation and time-varying channels under non-ideal
wireless conditions, such as imperfect CSI and heterogeneous
devices, and validate generality on more complex datasets.

APPENDIX

A. Proof of Lemma 1
By Assumption 3 and Cauchy-Schwarz inequality,

(utk)
2 = ∥gt

k∥21/S2 ≤ ∥gt
k∥22/S ≤ G2/S, ∀t, k. (37)

Their average is bounded by
∑

k∈K(u
t
k)

2/K ≤ G2/S, that is,
it can be denoted in proportional form as

1

K

∑
k∈K

(utk)
2 =

itG2

S
, (38)

for some coefficient it ∈ (0, 1) in each round t. There exist a
uniform margin 0 < ζ ≤ 1− it such that

1

K

∑
k∈K

(utk)
2 ≤ (1− ζ)

G2

S
, ∀t. (39)

Then, by defining ξ = 1− ζ, we complete the proof.

B. Proof of Lemma 2
Using (29) and E[1δ(|htk|2)] = Pr(|htk|2 ≥ δ) = e−δ ,

∥ctk∥22 = ∥gt
k − 1δ(|htk|2)xt

k∥22
= ∥gt

k∥22 − 21δ(|htk|2)gt
k
⊤
xt
k + 1δ(|htk|2)∥xt

k∥22. (40)

By (5), (6), (7), ℓ1-ℓ2 norm inequality, and Assumption 3,

E∥ctk∥22 = ∥gt
k∥22 − 2e−δgt

k
⊤
xt
k + e−δ∥xt

k∥22
= ∥gt

k∥22 − 2e−δutk∥gt
k∥1 + Se−δ(utk)

2

=

(
1− e−δ∥gt

k∥21
S∥gt

k∥22

)
∥gt

k∥22

≤ (1− e−δ/S)∥gt
k∥22

≤ (1− e−δ/S)G2. (41)

Then, we complete the proof.

C. Proof of Lemma 3
Using (6), (7), (17), Cauchy–Schwarz inequality, Jensen’s

inequality, Lemma 1, and Assumption 3,

E∥ot
k∥22 = E

∥∥∥∥gt
k − 1δ(|htk|2)

btk
btavg

xt
k

∥∥∥∥2
2

= E
∥∥∥∥gt

k − 1δ(|htk|2)Kqt
k∑

k′∈K 1/utk′

∥∥∥∥2
2

≤ ∥gt
k∥22 +

E[1δ(|htk|2)]SK2

(
∑

k′∈K 1/utk′)2

≤ ∥gt
k∥22 +

Se−δ

K

∑
k′∈K

(utk′)2

≤ (1 + ξe−δ)G2. (42)

Then, we complete the proof.



D. Proof of Theorem 1

Based on (16) and (29), the PAA case’s update rule (11) is
represented as

wt+1 = wt − λvt,Paa

= wt − λ

K

∑
k∈Ht

xt
k − λnt,Paa

= wt − λgt + λct − λnt,Paa, (43)

where ct =
∑

k∈K ctk/K. By Assumption 2,

E[F(wt+1)]− F(wt)

≤ E[wt+1 −wt]⊤∇F(wt) +
L

2
E∥wt+1 −wt∥22

= λ(1− λL)E[ct − nt,Paa]⊤∇F(wt)

+
λ2L

2
E∥ct − nt,Paa∥22 − λ

(
1− λL

2

)
∥∇F(wt)∥22

=
λ

2
E∥ct − nt,Paa∥22 −

λ

2

∥∥∇F(wt)
∥∥2
2

=
λ

2
E∥ct∥22 +

λ

2
E∥nt,Paa∥22 −

λ

2

∥∥∇F(wt)
∥∥2
2

≤ λ

2K

∑
k∈K

E∥ctk∥22 +
λ

2
E∥nt,Paa∥22 −

λ

2

∥∥∇F(wt)
∥∥2
2
, (44)

where L = 1/λ for a simpler expression without compromis-
ing generality. Then, according to Assumption 1, Lemmas 2,
and 4, we rearrange the terms and take the average over t on
both sides as follows:

1

T

T∑
t=1

∥∇F(wt)∥22 ≤ 2(F(w1)− F(w⋆))

λT
+
σ2G2E1(δ)

2P0K2

+ (1− e−δ/S)G2, (45)

which completes the proof.

E. Proof of Theorem 2

Based on (19), (29), and (31), the IAA case’s update rule
(11) is represented as

wt+1 = wt − λvt,Iaa

= wt − λ

K

∑
k∈Ht

xt
k − λmt − λnt,Iaa

= wt − λgt + λct − λmt − λnt,Iaa

= wt − λgt + λot − λnt,Iaa, (46)

where mt =
∑

k∈K mt
k/K, and ot =

∑
k∈K ot

k/K. Then,
identical to (44), but by replacing nt,Paa and ct with nt,Iaa

and ot, respectively,

E[F(wt+1)]− F(wt)

≤ λ

2K

∑
k∈K

E∥ot
k∥22 +

λ

2
E∥nt,Iaa∥22 −

λ

2

∥∥∇F(wt)
∥∥2
2
, (47)

where L = 1/λ for a simpler expression without compromis-
ing generality. Then, according to Assumption 1, Lemmas 3,

and 5, we rearrange the terms and take the average over t on
both sides as follows:

1

T

T∑
t=1

∥∇F(wt)∥22 ≤ 2(F(w1)− F(w⋆))

λT
+
ξσ2G2E1(δ)

2P0K2

+ (1 + ξe−δ)G2, (48)

which completes the proof.
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