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Abstract—Cybernetic avatars (CAs) require high-capacity up-
link for multimodal sensory streaming in Private 5G networks,
creating resource allocation challenges. Genetic algorithms (GAs)
effectively optimize resource allocation by exploring solution
spaces, but common implementations use fixed parameters (popu-
lation size, generation count, mutation/crossover rates) regardless
of network complexity. This causes inefficiencies: small scenarios
waste resources on slow exhaustive search, while large deploy-
ments terminate prematurely with suboptimal solutions. This
paper proposes a deep neural network (DNN)-driven adaptive GA
framework where a neural network trained on diverse scenarios
predicts optimal GA parameters based on network state features,
and the GA applies these parameters to optimize resource alloca-
tion. This approach automatically scales algorithm complexity to
match problem requirements across varying network loads. Eval-
uation comparing resource allocation outcomes between DNN-
predicted parameters and representative fixed-parameter base-
lines (minimal, balanced, extensive configurations) demonstrates
that the proposed approach achieves 54% faster convergence
than balanced configurations and 72% faster than extensive
configurations while maintaining comparable throughput and
QoS, demonstrating effective balance between convergence speed
and solution quality.

Index Terms—Deep Neural Network, Genetic Algorithm,
Adaptive Parameter Selection, Resource Allocation, Cybernetic
Avatar, Private 5G Network

I. INTRODUCTION

Cybernetic avatar (CA) technology enables remote hu-
man presence through robotic surrogates, with teleoperators
(TOs) controlling distant machines for applications span-
ning telemedicine, disaster response, and industrial automa-
tion [1], [2]. Japan’s Moonshot R&D programs target seam-
less human-machine integration requiring ultra-reliable low-
latency wireless connections for bidirectional control and
sensory data streams. To support such demanding applications,
Japan has allocated dedicated spectrum through Local 5G
frameworks [3], enabling private network deployments with
controlled interference and guaranteed capacity.

Multi-teleoperator multi-CA deployments present unique
resource allocation challenges. Unlike conventional mobile
broadband where downlink dominates traffic, CA systems gen-
erate asymmetric uplink-heavy patterns as robots continuously
stream multimodal sensory data to remote operators. This
uplink congestion intensifies in scenarios with multiple simul-
taneous CA operations, where resource block (RB) contention
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directly impacts control responsiveness and quality of service
(QoS). Recent work [4] addressed this challenge through
dynamic multi-layer service area adjustment, proposing a
heuristic method that adaptively shifts coverage boundaries to
improve fairness in resource allocation. While this approach
demonstrates effectiveness in balancing QoS across CAs,
heuristic methods rely on predetermined adjustment rules that
may not discover globally optimal boundary configurations,
particularly in complex multi-CA scenarios requiring explo-
ration of large solution spaces.

Genetic algorithms (GAs) offer a promising alternative
for boundary optimization. Extensively applied to wireless
resource allocation [5], [6], GAs employ population-based
search that escapes local optima through crossover and muta-
tion operations, unlike heuristic approaches that perform incre-
mental adjustments [4]. However, GA performance critically
depends on parameter selection: population size, generation
count, crossover/mutation rates, and selection strategies [7],
[8]. Common implementations employ fixed parameters tuned
through trial-and-error, creating fundamental inefficiencies
when network complexity varies. Sparse deployments require
minimal exploration while dense scenarios demand extensive
search, but identical parameters cause wasted computation for
simple cases or premature termination for complex ones. Ma-
chine learning for algorithm configuration [9], [10] addresses
this by learning mappings from problem characteristics to
effective parameters, enabling automated tuning that adapts
to specific instances.

This paper proposes a DNN-driven adaptive GA framework
that addresses this limitation through learned parameter adap-
tation. While parameter tuning via machine learning is an
established concept [9], [10], our work specifically applies this
approach to wireless resource allocation in CA networks, pro-
viding a lightweight deterministic alternative to more complex
reinforcement learning-based radio access network (RAN)
intelligence methods. The main contributions are:

• DNN-driven framework: A two-stage approach where a
deep neural network predicts GA parameters based on
real-time network features, enabling automatic algorithm
complexity adaptation without the training overhead of
online reinforcement learning methods

• Comprehensive evaluation comparing resource allocation
outcomes between DNN-predicted parameters and three
representative fixed-parameter baselines (minimal, bal-



Fig. 1: Multi-tier service area framework with concentric
priority areas.

anced, extensive) across diverse network loads
• Demonstration that the proposed approach achieves faster

convergence while maintaining superior solution quality,
effectively overcoming the inherent speed-quality tradeoff
of fixed configurations

The remainder of this paper proceeds as follows. Sec-
tion II presents the system model and GA-based optimization
framework. Section III describes the proposed DNN-driven
parameter adaptation mechanism. Section IV details the ex-
perimental setup. Section V presents performance evaluation
results. Section VI concludes the paper.

II. SYSTEM MODEL AND GA-BASED OPTIMIZATION

This section describes the multi-tier service area framework
for CA networks and formulates the resource allocation opti-
mization problem addressed by genetic algorithms.

A. Multi-Tier Service Area and Priority-Based Resource
Scheduling Framework

We adopt the multi-tier service area architecture from [4],
which organizes coverage into three concentric areas surround-
ing the base station (BS): High service area (0 ≤ d ≤ PH ·
Rmax), Medium service area (PH ·Rmax < d ≤ PM ·Rmax),
and Low service area (PM · Rmax < d ≤ Rmax). Here,
d represents the distance from BS to CA, PH and PM are
normalized boundary parameters (0 < PH < PM < 1)
determining the radial extent of High and Medium areas
respectively, and Rmax is maximum cell radius, as illustrated
in Fig. 1.

Resource allocation follows priority-based scheduling where
CAs in higher service areas receive preferential access to
network resources. For each CA indexed by k at distance

d(k) from the BS, priority values are assigned based on area
membership determined by boundary parameters:

ω(k)(PH , PM ) =


3, if d(k) ≤ PH ·Rmax

2, if PH ·Rmax < d(k) ≤ PM ·Rmax

1, if PM ·Rmax < d(k) ≤ Rmax

(1)
where throughput requirement T

(k)
req also varies by area (de-

tailed in Section IV). This formulation explicitly shows how
boundary parameters PH and PM control priority assignment
for each CA, thereby determining resource allocation order.

These priority weights determine resource block alloca-
tion order, where CAs with higher ω(k) receive allocation
precedence when resources are constrained. The achieved
throughput for CA k depends on allocated resource blocks
through this priority-based scheduling mechanism:

T
(k)
achieved = min(RB

(k)
allocated · SE

(k) ·RBcap, T
(k)
req ) (2)

where RB
(k)
allocated is determined by the priority scheduler us-

ing weights from Eq. (1), SE(k) represents spectral efficiency,
and RBcap denotes throughput capacity per resource block.

B. GA-Based Boundary Optimization

While the priority-based framework in Eq. (1) assigns
resources based on area membership, the boundary parameters
PH and PM themselves critically determine network perfor-
mance. Static boundary values fail to adapt to varying CA
distributions and channel conditions, leading to suboptimal re-
source allocation. Fixed boundaries may over-prioritize nearby
CAs while starving distant CAs, or conversely waste resources
on low-priority areas. The resource allocation problem there-
fore seeks to determine optimal service area boundaries that
maximize aggregate network throughput. The optimization
objective is formulated as:

maximize FTP (P) =
∑
k∈U

T
(k)
achieved(P) (3)

where P = {PH , PM} represents boundary parameters and U
denotes the set of CAs served by the BS.

The GA approach [5], [6] encodes candidate solutions as
boundary parameter vectors, initializes a population through
uniform random sampling, and iteratively evolves the popu-
lation through selection, crossover, and mutation operations.
Fitness evaluation directly implements the throughput maxi-
mization objective in Eq. (3). Tournament selection chooses
parents, arithmetic crossover creates offspring by blending
boundary parameters, and Gaussian mutation introduces con-
trolled perturbations. The complete optimization workflow is
illustrated in Fig. 2, showing both traditional fixed-parameter
GA and the proposed machine learning (ML)-adaptive ap-
proach.

Key GA parameters include:
• Population size Npop: Number of candidate solutions

maintained
• Maximum generations Gmax: Iteration budget
• Crossover rate pc: Probability of crossover operation



Fig. 2: Flow diagram of GA and GADNN optimization frame-
works.

• Mutation rate pm: Probability of mutation
• Elite count Nelite: Top solutions preserved
• Tournament size Ntour: Selection pool size

III. PROPOSED DNN-DRIVEN ADAPTIVE GA
A. Motivation: Fixed Parameter Limitations

Fixed GA parameters cannot adapt to varying network
complexity, as shown in the left branch of Fig. 2. This creates
an inherent speed-quality tradeoff: minimal configurations
achieve rapid convergence but may terminate prematurely for
complex scenarios; extensive configurations ensure thorough
exploration but waste computation on simple cases. An adap-
tive approach, as illustrated in the right branch of Fig. 2, can
overcome this limitation.

B. ML-Based Parameter Prediction

Our approach employs a deep neural network that predicts
optimal GA parameters based on real-time network features.
The prediction pipeline consists of three stages, as illustrated
in the right branch of Fig. 2.

1) Feature Extraction: Given current network state (CA
positions, channel conditions, resource demands), we extract
a 10-dimensional feature vector:

f = [nCA, µdist, σdist, µSNR, σSNR,

Dtotal, ρutil, pH , pM , pL] (4)

where nCA is CA count, µdist and σdist capture spatial distri-
bution statistics, µSNR and σSNR characterize signal quality,
Dtotal is total resource demand, ρutil is current utilization
ratio, and pH , pM , pL represent proportion of CAs in each
service tier.

Fig. 3: Independent DNN architecture for GA parameter
prediction.

2) Neural Network Architecture: We employ an ensem-
ble of 6 independent deep neural networks (DNNs), where
each network predicts one GA parameter using identical
feedforward architecture [10-64-32-16-1]. This independent
regression approach offers several advantages over multivari-
ate regression: (1) each network specializes in predicting
a single parameter, simplifying the optimization landscape;
(2) networks can be trained asynchronously in parallel, re-
ducing training time; (3) parameter-specific architectures can
be individually tuned if needed. Each network maps 10
input features to 1 output parameter through three hidden
layers with progressive dimension reduction [64�32�16],
employing linear activation (purelin) in the output layer for
regression, as shown in Fig. 3. The networks are trained using
scaled conjugate gradient optimization with mean squared
error (MSE) loss function. During deployment, all 6 networks
execute simultaneously to produce the complete parameter set
{Npop, Gmax, pc, pm, Nelite, Ntour}.

Training data generation employs supervised learning with
labels derived from exhaustive GA parameter exploration
across diverse network conditions (5-50 CAs, varying spatial
distributions, multiple channel realizations). For each of 1,000
network scenarios, we evaluate 100 GA parameter combina-
tions sampled from practical ranges, execute complete opti-
mization workflows, and measure convergence time, through-
put, and QoS achievement. An efficiency score identifies the
best-performing parameter set as the training label (fi,p

∗
i ).

This data-driven approach spanning 100,000 total executions
ensures the DNN learns genuinely optimal parameters rather
than arbitrary selections. The 10-dimensional feature vector



abstracts network state into generalizable representations (net-
work density, spatial heterogeneity, service distribution) that
transcend individual CA placements, enabling generalization
to unseen scenarios.

3) Parameter Prediction and Application: The right branch
of Fig. 2 illustrates the GADNN adaptive workflow. During
deployment, for each optimization instance:

1) Network State: Extract network features f from current
CA distribution, channel conditions, and resource de-
mands

2) ML Prediction: Normalize features to [0,1]
using min-max scaling parameters from training
data, forward propagate through neural network,
and denormalize predicted parameters to obtain
{Npop, Gmax, pc, pm, Nelite, Ntour}

3) Apply constraints (minimum population size, generation
bounds, rate ranges)

4) GA Execution: Execute GA with predicted parame-
ters through standard evolutionary cycle shown in the
flowchart (initialize population, evaluate fitness, check
termination, apply genetic operators, advance to next
generation)

As shown in Fig. 2, following ML prediction, both tradi-
tional GA and GADNN execute identical optimization loops.
The key distinction is in parameter selection: traditional GA
uses fixed parameters for all scenarios, while GADNN dynam-
ically adjusts parameters based on network state. This enables
lightweight configurations for simple networks and extensive
search for complex deployments, achieving the efficiency-
performance balance demonstrated in Section V.

IV. SIMULATION SETUP

A. Network Configuration

System-level simulations are implemented in MATLAB.
Evaluation employs a Local 5G deployment with 50-m cell
radius. The base station operates with 273 RBs (100 MHz
bandwidth, 30 kHz subcarrier spacing). CAs are uniformly
distributed within the coverage area with throughput require-
ments for real-time teleoperation. Key simulation parameters
are summarized in Table I.

B. Comparative Methods

To evaluate the proposed GADNN adaptive approach, we
compare against static allocation and three representative
fixed-parameter GA configurations spanning the speed-quality
spectrum:

• Static: Baseline priority-based resource allocation without
optimization

• GA30: Minimal configuration for rapid convergence with
Npop = 30, Gmax = 20, pc = 0.8, pm = 0.25, Nelite =
3, and Ntour = 3

• GA300: Moderate configuration balancing speed and
quality with Npop = 300, Gmax = 100, pc = 0.8,
pm = 0.3, Nelite = 50, and Ntour = 30

TABLE I: Key Simulation Parameters

Parameter Value
Network Deployment
Coverage area 50 m radius
Carrier frequency 4.85 GHz
Bandwidth 100 MHz (273 RBs)
Subcarrier spacing 30 kHz
Number of CAs 5–50
Throughput requirements H: 25; M: 7; L: 3 Mbit/s
Fixed GA Parameters
GA30 Npop = 30, Gmax = 20
GA300 Npop = 300, Gmax = 100
GA500 Npop = 500, Gmax = 150
Crossover rate 0.75–0.85
Mutation rate 0.10–0.20
ML Parameters
Architecture 6 independent DNNs [10-64-32-16-1]
Output activation Linear (purelin)
Loss function Mean Squared Error (MSE)
Training algorithm Scaled Conjugate Gradient
Training samples Diverse network scenarios
Data split 70/15/15 train/val/test

• GA500: Extensive configuration for exhaustive search
with Npop = 500, Gmax = 150, pc = 0.8, pm = 0.25,
Nelite = 100, and Ntour = 50

• GADNN: Adaptive configuration with DNN-predicted pa-
rameters

These fixed variants demonstrate the inefficiency of non-
adaptive parameter selection across varying network loads.
Performance is assessed through Monte Carlo simulation
across CA counts to ensure statistical reliability.

V. PERFORMANCE EVALUATION

Table II presents representative GADNN parameter pre-
dictions across varying network scales, demonstrating the
framework’s automatic adaptation to problem complexity. The
predicted parameters exhibit several notable patterns: popula-
tion sizes (Npop) remain relatively stable (123–148) across all
scales, suggesting that solution space dimensionality in bound-
ary optimization does not scale dramatically with CA count;
generation budgets (Gmax) show minimal variation (46–
48), indicating consistent convergence requirements; crossover
rates (pc) gradually decrease from 0.75 to 0.71 as network
density increases, favoring more conservative reproduction for
complex scenarios; mutation rates (pm) progressively increase
from 0.12 to 0.14, promoting greater exploration in dense
deployments; elite preservation (Nelite) grows from 14 to 19,
retaining more high-quality solutions as problem complexity
increases; tournament sizes (Ntour) incrementally increase
from 11 to 13, reflecting larger selection pools for denser
networks. These adaptive patterns contrast sharply with fixed-
parameter approaches that maintain identical settings regard-
less of network conditions.

A. Performance vs. Network Load

Performance across varying network loads reveals distinct
characteristics among the optimization approaches. Fig. 4
shows throughput evolution as CA count increases from 5 to



TABLE II: GADNN Predicted Parameters Across Network
Scales

CAs Npop Gmax pc pm Nelite Ntour

5 148 46 0.75 0.12 14 11
10 144 46 0.75 0.12 15 11
20 133 47 0.74 0.12 15 11
30 125 47 0.73 0.13 16 11
40 123 47 0.72 0.13 17 12
50 124 48 0.71 0.14 19 13

Fig. 4: Total throughput comparison across varying CA den-
sities.

50. Static allocation appears to achieve competitive through-
put, but this reflects serving fewer CAs due to QoS fail-
ures rather than genuine performance. Among GA-based ap-
proaches, GA30 exhibits consistently lower throughput across
all network loads due to premature convergence that finds sub-
optimal boundaries, while GA300 and GA500 achieve higher
throughput through more extensive exploration. The proposed
GADNN intelligently adapts between these extremes, matching
GA300 throughput quality while achieving significantly faster
convergence.

Convergence time behavior, illustrated in Fig. 5, demon-
strates the adaptive nature of the proposed approach. The
fixed-parameter baselines show predictable patterns: GA30

maintains sub-20 ms convergence across all loads due to
its minimal configuration, while GA300 and GA500 exhibit
linear growth with CA count reflecting their larger population
sizes and generation budgets. GADNN demonstrates intelligent
adaptation, operating near GA30 speed for small networks
(5-15 CAs) where simple parameter settings suffice, then
transitioning toward GA300 parameters for larger deployments
(30-50 CAs) where more extensive search becomes beneficial.

QoS achievement rates, presented in Fig. 6, highlight the
critical advantage of optimization-based approaches. Static
allocation maintains 100% QoS only up to 20 CAs, then
degrades sharply to 24.8% at 50 CAs as resource contention
intensifies. All GA-based approaches sustain near-perfect QoS
(100% for 5-35 CAs, 90.2% at 50 CAs), with identical
performance across fixed and adaptive configurations. This
demonstrates that GADNN preserves solution quality while

Fig. 5: Convergence time comparison showing GADNN adap-
tive scaling.

Fig. 6: QoS achievement comparison showing GA superiority
over static allocation.

improving convergence efficiency through adaptive parameter
selection, maintaining robustness across varying network den-
sities through constraint enforcement for extreme scenarios.

Resource utilization patterns, shown in Fig. 7, further
demonstrate optimization effectiveness. GA-based approaches
achieve higher utilization (96-98%) compared to static alloca-
tion (83%), indicating more efficient resource usage through
dynamic boundary adaptation. The consistent utilization across
all GA variants confirms that adaptive parameter selection does
not compromise resource efficiency.

B. Overall Performance Summary

Table III presents average metrics across all scenarios.
The fixed-parameter baselines expose a fundamental speed-
quality tradeoff: GA30 achieves fast convergence (14.02 ms)
but reduced throughput (147.51 Mbit/s), GA300 improves
throughput to 151.59 Mbit/s but requires 8.6× longer con-
vergence (120.42 ms), while GA500 yields only marginal
0.21% throughput gain with 63% more convergence time,
demonstrating diminishing returns.

Fig. 8 visualizes this tradeoff relationship. The proposed
GADNN breaks this tradeoff, achieving comparable throughput
to GA300 (150.74 Mbit/s vs 151.59 Mbit/s) while delivering



Fig. 7: Resource utilization comparison across all methods.

TABLE III: Overall Average Performance

Method Avg Throughput Avg QoS Avg Util Avg Time
(Mbit/s) (%) (ms)

Static 164.90 66.31 0.83 0.00
GA30 147.51 98.53 0.96 14.02
GA300 151.59 98.53 0.98 120.42
GA500 151.91 98.53 0.98 196.11
GADNN 150.74 98.53 0.98 55.72

54% and 72% faster convergence than GA300 and GA500

respectively (55.72 ms vs 120.42 ms and 196.11 ms). Com-
pared to GA30, GADNN achieves 2.19% higher throughput
while maintaining identical QoS and resource utilization.
This demonstrates that adaptive parameter selection effec-
tively matches algorithm complexity to problem requirements,
automatically selecting lightweight configurations for simple
scenarios while scaling up for complex deployments.

VI. CONCLUSION

This paper presented a deep neural network-driven adaptive
GA framework for resource allocation in cybernetic avatar
networks. The approach employs a neural network to predict
optimal GA parameters based on real-time network features,
which the GA then applies to optimize resource allocation.
Evaluation across diverse network loads (5-50 CAs) demon-
strated that the proposed approach achieves 54% and 72%
faster convergence than balanced and extensive fixed configu-
rations respectively, while maintaining comparable throughput
(150.74 Mbit/s vs 151.59 Mbit/s) and superior resource uti-
lization. Compared to minimal fixed configurations, GADNN

achieves 2.19% higher throughput, demonstrating that the
DNN-driven framework effectively matches algorithm com-
plexity to problem requirements by automatically adapting
parameters based on network conditions. While effective for
scenarios within the training distribution, the current imple-
mentation assumes offline training and may require periodic
retraining for deployments experiencing novel conditions. The
DNN prediction overhead (approximately 8 ms) remains neg-
ligible compared to GA convergence time (55.72 ms average).

Fig. 8: Time vs performance tradeoff showing GADNN optimal
balance.

Future directions include extending the framework to multi-
objective optimization, incorporating mobility-aware predic-
tion, investigating transfer learning across deployment envi-
ronments, and developing hybrid approaches combining DNN
predictions with online adaptation mechanisms.
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