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Abstract—This paper proposes a hybrid sensor-fusion frame-
work for resilient mmWave beamforming between UAVs. Due to
the strong directionality of mmWave signals, beam alignment is
easily degraded by UAV mobility, wind-induced jitter, and GNSS
inaccuracy, especially in urban environments. To address this, we
combine a high-accuracy Camera/LiDAR perception method for
short-range tracking with a GNSS-based approach that is more
stable at longer distances, switching between them based on a
distance threshold. A link budget analysis highlights the necessity
of precise alignment when using directional antennas. Using a co-
simulation environment integrating MATLAB/Simulink and Un-
real Engine, we show that the proposed hybrid method stabilizes
link performance across varying distances and improves average
spectral efficiency by 8.5% compared to the Camera/LiDAR-only
method. The results demonstrate that hybrid sensing is effective
for robust, high-throughput inter-UAV mmWave communication.

Index Terms—inter-UAV, mmWave, beamforming, sensor fu-
sion, machine learning

I. INTRODUCTION

Unmanned Aerial Vehicles (UAVs), or drones, are increas-
ingly vital across applications such as logistics, infrastructure
inspection, and public safety. For example, they can rapidly
establish temporary communication coverage by forming relay
links during disasters or large-scale events where existing
networks are overloaded. Drone swarms—multiple UAVs op-
erating cooperatively—are expected to further advance these
capabilities by enabling complex, coordinated tasks beyond
what a single UAV can achieve. However, such swarm-based
operations fundamentally rely on reliable, high-bandwidth,
and autonomous inter-UAV communication. Establishing and
maintaining these links in dynamic, cluttered urban environ-
ments remains a significant technical challenge.

Inter-UAV communication is a core enabling technology
for advanced UAV missions. These include deploying aerial
platforms to provide wireless connectivity in targeted areas [1],
extending and reinforcing existing terrestrial networks [2], and
supporting post-disaster surveillance and assessment [3]. How-
ever, these applications demand high-precision beam tracking,
which poses significant challenges for autonomous UAV sys-
tems. Unlike conventional terrestrial links, UAV communica-
tions face two major vulnerabilities. (i) Dynamic topology and
instability: UAVs move rapidly in three-dimensional space,
causing continuous changes in link geometry, while wind-
induced jitter can introduce high-frequency disturbances that

degrade beam alignment. (ii) Lack of reliable positioning:
Conventional beam steering depends heavily on GNSS co-
ordinates, yet in urban or disaster environments, GNSS ac-
curacy is often compromised by NLOS blockage, multipath
from surrounding structures, or intentional interference. In
this work, we define resilient inter-UAV communication as a
system capable of autonomously maintaining high-gain beam
directivity by leveraging alternative sensing modalities, even
in GNSS-denied or highly dynamic conditions.

Millimeter-wave (mmWave) wireless communication has
emerged as a key enabler of high-capacity networks in 5G
and beyond [4]. Operating in the 10-100 GHz range, mmWave
systems provide substantially wider bandwidths than conven-
tional sub-6 GHz bands, supporting ultra-high data rates and
low-latency transmission for applications such as augmented
reality, high-definition video streaming, and massive IoT [5].
Despite these advantages, mmWave links face significant
challenges, including severe path loss, limited diffraction and
penetration, and high sensitivity to blockage from buildings,
vehicles, and human bodies [6]. To mitigate these issues,
various approaches have been explored: directional beam-
forming and massive MIMO to overcome high path loss,
advanced channel estimation and beam alignment techniques
to maintain link reliability in dynamic environments [7], and
the use of intelligent reflecting surfaces (IRS) and reconfig-
urable metasurfaces to enhance coverage and robustness [8].
These advancements are accelerating the adoption of mmWave
technology across diverse scenarios, including UAV-based and
digital-twin-enabled networks [9]. Moreover, recent outdoor
experiments have demonstrated the practical feasibility of
integrating mmWave communication into UAV platforms, con-
firming its promise for high-capacity aerial networks [10].

This paper proposes an inter-UAV communication system
capable of achieving high data rates through the use of
mmWave links. As discussed earlier, mmWave signals ex-
perience severe attenuation and strong directionality, making
directional beamforming indispensable. However, this require-
ment demands precise and continuous alignment between the
transmitter and receiver—a challenging task given the high
mobility and instability of UAVs. To address this problem,
we develop a machine-learning-supported, sensor-fusion-based
beamforming algorithm designed to maintain accurate align-
ment under dynamic flight conditions.



TABLE I
NUMERICAL PARAMETERS FOR LINK BUDGET DESIGN.
Paramater Value
Center Frequency fo [GHz] from 2 to 60

Bandwidth B 0.5% against fo

Transmit Power [dBm] 10
Antenna Types Patch-typed Aperture or Omni
Patch-typed Antenna Size [cm] 10 x 10
Thermal noise [K] 300
Noise Figure [dB] 10

II. LINK BUDGET DESIGN

Similarly to our study in [9], we aim to design an aerial
network that can transfer a data rate of around 0.5 Gbps,
facilitating applications such as transferring point cloud data
facilitating digital twin construction. Therefore, a simple link
budget analysis is conducted as follows.

This study conducts a basic analysis of the propagation
characteristics between two UAVs while varying the operating
frequency. The system configuration used for the link budget
evaluation is shown in Fig. 1, where both UAVs are equipped
with aperture antennas directed toward each other. For sim-
plicity, only the direct Line-of-Sight (LOS) path is considered,
acknowledging that additional effects such as ground-reflected
multipath would further degrade link performance [11]. Under
this assumption, the propagation loss between the transmitter
and receiver is modeled using the free-space path loss formu-
lation [12].

aperture antenna (with/without)”

Fig. 1. System model for link budget design.

Figure 1 and Table I summarize the scenarios and system
parameters assumed in the numerical analysis. For general
analysis, we consider candidate frequencies fy ranging from
2 GHz up to 60 GHz, not taking into account regulation
issues. For a fair comparison, the bandwidth is scaled against
the center frequency with a factor of 0.005 (0.5%) such that
the bandwidth of a 2 GHz system is 10MHz. We assume
that a UAV can be equipped a patch-typed aperture antenna
for achieving high directivity, knowing that the size of the
square antenna is fixed at [ = 10 [cm] on each side for a
fair comparison. Therefore, the antenna gain G in dB can be
calculated as follows [13].

4rel®
Here e denotes the antenna’s efficiency, A = % is the

wavelength and ¢ = 3 x 10° represents the light speed
measured in [m/s]. In this study, we evaluated the throughput
between the two UAVs by varying their separating distances
and the selected center frequencies. The antenna efficiency
used in the calculation is ¢ = 0.5 [14].

The propagation loss L. between the two UAVs is as-
sumed to follow Friis’ theorem of free space path loss, and
can be computed as follows,

4
Liee|dB] = 201log d + 201log fo + 201og % )

where d represents the distance between the two UAVs. The
received power F; at the UE is calculated by

R[dBm] =P+ G; + G, — Liree — Ladd7 3)

where P;[dBm)] denotes the transmit power from the UAV
antenna, G, and G, respectively represents the antenna gains
at the UAVs’ transmitter (Tx) and receiver (Rx) antennas,
computed based on (1). Also, L,iq[dB] denotes excessive
loss due to atmospheric absorption as modeled in [15]. From
the obtained received power F,[dBm], the received power
in W is converted as o2[W] = 1073, based on which
the communication throughput C' in [bps] is calculated using
Shannon’s theorem as follows.

2

C = B X min (10g2 (1 + ZZ) 71"max> . 4
Here B [Hz] is the system bandwidth, '}, in [bps/Hz] is the
maximum value of frequency utilization efficiency determined
by the maximum modulation method, and it is assumed that
a constellation size of up to 1024 Quadrature and Amplitude
Modulation (QAM) is used, i.e. I'iax = 10 in this paper.
02[W] denotes the power of the noise at the receiver. The
noise at the receiver is mainly due to thermal noise, and a
noise figure of NF = 10 is assumed in this paper. In addition,
thermal noise can be calculated at room temperature of T =

300K as follows,

02[W] = kg BT x NF, 5)

where kp denotes the Boltzmann constant.

The numerical results are presented in Fig. 2, where the x-
axis represents the separation distance between the two UAVs,
the y-axis indicates the operating frequency, and the color map
shows the achievable throughput. The target performance level
is an achievable rate of 500 Mbps. Figs. 2(a) and 2(b) illustrate
the case in which only one UAV is equipped with a patch-type
directional antenna while the other uses an omnidirectional
antenna, whereas Figs. 2(c) and 2(d) correspond to the scenario
where both UAVs employ directional antennas. Additionally,
Figs. 2(a) and 2(c) show the idealized performance assum-
ing fixed UAV positions with no beam misalignment, while
Figs. 2(b) and 2(d) depict the practical case in which UAV
locations fluctuate due to environmental disturbances [10],
resulting in beam misalignment and an estimated 10 dB gain
loss per directional antenna [16], [17].

We first consider the scenario in which only one UAV is
equipped with a directional antenna. As shown in Fig. 2(a), the
target throughput of 500 Mbps can be achieved only at higher
frequencies (e.g., above 10 GHz) due to the increased available
bandwidth. The communication range reaches approximately
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Fig. 2. UAV-UAV link budget design.
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350 m when operating near 50 GHz, although this range
decreases at even higher frequencies because of atmospheric
absorption [18]. However, this represents an optimistic case,
as real UAVs experience continuous positional fluctuations
caused by wind and other disturbances [10]. Consequently,
Fig. 2(b) presents the more pessimistic scenario in which beam
misalignment introduces additional gain loss. Under these
practical conditions, the maximum communication distance is
drastically reduced to around 100 m.

To address the limitations of the single-directional-antenna
case, we next consider the scenario where both UAVs are
equipped with directional antennas. Figs. 2(c) and 2(d) re-
spectively show the idealized performance with fixed UAV
positions and the practical performance when positional fluc-
tuations cause beam misalignment. Although this configuration
requires a more complex beam-matching procedure, Fig. 2(d)
demonstrates that the achievable communication range can be
extended to approximately 1,400 m even under practical con-
ditions when both transceivers employ directional antennas.

III. MACHINE LEARNING BASED SENSOR FUSION METHOD
FACILITATING BEAM ALIGNMENT

Owing to the aforementioned discussion, this section
presents our proposed machine learning based sensor fusion
method facilitating beam alignment to reduce performance
degradation of mmWave communication links. Our primary
proposed method is an autonomous, low-latency, and high-
accuracy detection and beamforming system that fuses camera
and LiDAR sensing. However, its performance is inherently
constrained by the camera’s detection capability, which de-
grades when the target UAV is too distant or when image
resolution is insufficient. As a result, our earlier work [19]
focused only on short-range scenarios within the camera’s
effective detection range. To overcome this limitation, we
introduce a hybrid approach that supplements the short-range
Camera/LiDAR method with GNSS-based tracking for long-
range operation. As discussed previously, GNSS suffers from
a low update rate, which can produce large tracking errors
at close range—often exceeding the half-power beamwidth
(HPBW) of a narrow, high-gain beam, particularly for fast-
moving UAVs. In contrast, the Camera/LiDAR method pro-
vides highly accurate angular estimation at short distances.
At longer distances, however, the Camera/LiDAR approach
reaches its detection limit, whereas the angular error of the
GNSS method decreases with range, making it more likely to
remain within the beam’s HPBW and thereby producing more
reliable beam alignment.

Figure 3 illustrates the proposed hybrid beamforming frame-
work. The two UAVs first estimate their relative distance using
GNSS. It is assumed that location information is shared via
a dedicated, low-rate control channel (e.g., Sub-6 GHz). This
channel is assumed to operate independently of the directional
mmWave link, enabling the reliable exchange of coordinate in-
formation. Although GNSS measurements can exhibit substan-
tial positioning errors [20], this is not critical here because the
distance is used solely for determining which sensing method
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Fig. 3. Diagram of hybrid system model.

to activate. When the inter-UAV distance exceeds a predefined
threshold, the system relies on the GNSS-based method, as the
corresponding angular error remains within the antenna’s half-
power beamwidth (HPBW). Once the distance falls below the
threshold, however, GNSS-induced angular errors become too
large for accurate narrow-beam tracking, prompting a switch
to the high-accuracy Camera/LiDAR method. The position
obtained from the selected sensing modality is then used to
compute the antenna weights for beamforming.

The optimal switching threshold could, in principle, be
dynamic, given that the HPBW varies with antenna gain. How-
ever, the threshold must also consider the physical detection
limits of the camera. For practicality, a fixed threshold based
on the camera’s maximum effective range is often appropriate,
regardless of the antenna configuration.

Conventional handover mechanisms are predominantly re-
active, initiating only after certain trigger conditions are met
during the Time-to-Trigger (TTT) period [21]. To enhance
Quality of Service (QoS), proactive handover methods lever-
aging historical data through machine learning have been pro-
posed [22]. Unlike SNR-based reactive switching—which may
occur only after noticeable link degradation—distance-based
switching addresses the root cause of beam misalignment,
enabling more robust and timely decision-making.

IV. SIMULATION SETUP
A. Simulation Environment

To evaluate the proposed method, we developed a high-
fidelity co-simulation environment that integrates MAT-
LAB/Simulink with Unreal Engine (UE), as illustrated in
Figure 4. In this environment, a detailed 3D model of Shin-
juku, Tokyo, is rendered in UE to produce realistic camera
and LiDAR sensor data. These sensor outputs are passed to
MATLAB/Simulink, which executes the proposed perception
and beamforming algorithms and performs ray-tracing—based
mmWave propagation analysis. This co-simulation framework
enables precise and comprehensive performance evaluation
under complex and realistic urban conditions.

B. Scenarios and Parameters

This section describes the flight scenario as well as the
parameters used for the communication module, perception
module, and baseline methods. The simulation scenario in-
cludes a Non-Line-of-Sight (NLOS) segment and features
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Fig. 4. Simulation Environment.

linear flight trajectories at multiple distances. The 2D relative
path and 3D trajectory are shown in Figure 5 and Figure 6,
respectively. While the number of data points and the trans-
mitter’s stationary (hovering) condition remain constant, the
inter-UAV distance varies, reaching up to approximately 30
m. To evaluate close-range tracking difficulty, the receiver
follows straight-line segments at both short and medium
distances. Even when moving at the same linear velocity, the
angular rate becomes significantly higher at short distances,
making accurate tracking especially challenging for the GNSS-
based method. By incorporating a range of distances, this
scenario effectively highlights the advantages of the proposed
hybrid approach. The switching threshold is chosen based on
findings from our previous work [23]. The Tx UAV hovers
at 70 m while the Rx UAV flies between 69 m and 73 m.
Although body blockage could occur when the Rx UAV is at
a higher altitude, this study utilizes a simplified airframe model
without self-shadowing to focus on validating the perception-
based beam steering logic. Accounting for detailed airframe
shadowing remains for future work.

In this section, we assume a millimeter-wave system oper-
ating at 60 GHz with a 16 x 16 Uniform Rectangular Array
(URA) antenna. For simplicity, the number of reflections in the
simulation is set to zero, meaning that multipath propagation
is not considered. This assumption is reasonable because the
camera-based detection range is relatively short, where the
direct path dominates. Although the channel typically follows
a two-ray model, the influence of scatterers diminishes as UAV
altitude increases. At 60 GHz, the high attenuation further re-
duces the contribution of reflected components, making ground
reflections negligible at short distances. The simulation uses
a ray-tracing-based propagation model incorporating urban
building geometries, but with reflections disabled. As a result,
the channel is modeled as either a line-of-sight (LOS) link or a
complete blockage by buildings, and no multipath components
or delay spread are present in this evaluation.

For the perception module, we trained a tiny-yolov4-coco
model using a custom dataset of 2,730 manually labeled
images collected from multiple flight scenarios. The model
was trained for up to 40 epochs using the Adam optimizer,
with a mini-batch size of 4, an initial learning rate of 1073,
and an L2 regularization factor of 5 x 10~%. All training data
were manually annotated to ensure accurate UAV detection



Fig. 5. Image from Ego UAV. The solid arrows indicates the LOS case, and
the dashed arrows indicates the NLOS case.
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Fig. 6. 3D Trajectory.

across diverse environments. The proposed framework em-
ploys 1280 x 720 RGB input to generate a 2D bounding box,
which defines a 3D viewing frustum. This frustum filters the
LiDAR point cloud to identify the target’s 3D centroid through
clustering. Finally, the relative azimuth (¢) and elevation (#)
angles are computed from this centroid for precise beam
steering.

The parameters used for the baseline methods are described
as follows. For the GNSS-based baseline, we employed the
built-in GPS model in MATLAB, assuming a relatively ac-
curate receiver with horizontal and vertical positioning errors
of 0.24 m and 0.45 m, respectively, and an update rate of 10
Hz. The beam-sweeping baseline adopts a hierarchical search
strategy for initial link acquisition and recovery. The procedure
consists of two stages: a coarse search using 12 beams with
30° spacing to cover a 90° x 60° sector, followed by a fine
search using 16 beams with 10° spacing. During tracking, a
more efficient local search using 9 beams with 10° spacing is
applied. The threshold for declaring link loss is set to an SNR
of 5 dB.

C. Processing Latency Model

To model the latency characteristics of each method, we
incorporated processing delays into our 60 Hz simulation (16.7
ms per time step). The latency of the proposed Camera/LiDAR
approach is based on empirical measurements: the perception
stage (YOLO detection: 32.75 ms; clustering: 6.53 ms) and the
beam control stage (0.02 ms) yield a total end-to-end delay of
approximately 40 ms, corresponding to a 3-step latency. For
the baseline methods, the codebook-based approach—whose
timing is derived from the IEEE 802.11ad standard and related
studies [24]—is modeled with a 106 ms latency (7-step delay)

Camera/LiDAR | Cdmera/LiDAR

>€

Fig. 7. Hybrid approach depending on the distance.

for initial link acquisition and a 16.7 ms latency (1-step delay)
during tracking. The GNSS-based method is constrained by its
10 Hz update rate, resulting in a maximum latency of 100 ms,
equivalent to a 6-step delay.

D. Communication Link Performance

First, following the findings in [23], the switching threshold
for the hybrid approach is set to 19 m, based on preliminary
experimental results. Figure 7 shows the system’s switching
behavior as a function of inter-UAV distance. Beyond 19
m, the red curve representing the Camera/LiDAR method
becomes unstable due to a significant drop in detection
accuracy at longer ranges. In this region, the GNSS-based
method—despite its intrinsic errors—maintains relatively con-
sistent throughput, demonstrating higher stability. Within 19
m, however, the GNSS method frequently fails to keep the
target within the antenna’s half-power beamwidth because
its low update rate leads to substantial angular tracking er-
rors at close range. This results in pronounced throughput
degradation and fluctuations. In contrast, the Camera/LiDAR
method, although showing some initial ambiguity during link
establishment, achieves a throughput close to the Ideal case
after approximately 2.5 s. The Beam Sweep method exhibits
an oscillatory throughput pattern, primarily because it can
steer only to discrete angular directions. With the narrow
beamwidth used in this scenario, even small pointing errors
become significant, amplifying the observed fluctuations.

Second, examining the CDF results in Figure 8, we observe
that in the low-to-mid performance region, the Camera/LiDAR
method shows a high cumulative probability, whereas the
Hybrid method exhibits the lowest. This outcome aligns
with the previous analysis: the camera’s detection accuracy
deteriorates substantially beyond 19 m, resulting in frequent
throughput degradation. In the high-performance region, how-
ever, the Camera/LiDAR and Hybrid methods perform nearly
identically. There is even a brief mid-range interval where the
Camera/LiDAR method slightly outperforms the Hybrid ap-
proach. This occurs when the camera successfully detects the
target at distances beyond 19 m, momentarily yielding higher
throughput than the GNSS-based component of the Hybrid
method. Although the GNSS method exhibits a distribution
similar to the Hybrid approach, the Hybrid CDF curve is
shifted further to the right because it benefits from the high-



TABLE II
COMPARISON OF RESULTS FOR EACH METHOD.

Method Avg. Spectral Efficiency
Hybrid 10.71 bits/s/Hz
Camera/LiDAR 9.87 bits/s/Hz
GNSS-based 9.75 bits/s/Hz
Beam Sweep 9.45 bits/s/Hz
Ideal 12.71 bits/s/Hz
Omni 5.00 bits/s/Hz
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Fig. 8. CDF of Spectral Efficiency with hybrid approach.

accuracy Camera/LiDAR detection at short ranges. Overall,
across a scenario spanning both short and long distances, the
Camera/LiDAR method shows highly variable performance,
making it unsuitable as a stable communication link. In
contrast, the Hybrid method mitigates the limitations of both
sensing modalities and delivers consistently high performance.
As summarized in Table II, the Hybrid method achieves an
average spectral efficiency that is 8.5% higher than that of the
Camera/LiDAR-only method.

V. CONCLUSION

This paper presented a hybrid machine learning—supported
sensor fusion system that enables resilient and high-throughput
mmWave beamforming for inter-UAV communication. Start-
ing from a link budget analysis, we demonstrated the necessity
of directional antennas on both UAVs and highlighted the
severe limitations caused by beam misalignment under realistic
UAV mobility. To address this challenge, we developed a
hybrid perception-and-tracking framework that combines the
high-accuracy, low-latency Camera/LiDAR method at short
range with a GNSS-based approach that is more stable at
longer ranges. By dynamically switching between the two
methods based on a distance threshold, the proposed system
overcomes the weaknesses inherent to each individual method.
Through high-fidelity co-simulation using MATLAB/Simulink
and Unreal Engine with realistic urban models, the hybrid
approach achieved stable performance across a wider range of
distances and yielded an 8.5% improvement in average spectral
efficiency compared to the Camera/LiDAR-only approach.
These results demonstrate that hybrid sensing is a promising
solution toward robust, autonomous, and high-data-rate inter-
UAV mmWave links, enabling future applications such as
distributed sensing, digital-twin data transfer, and aerial mesh
networking. Future work will extend this framework to multi-

UAV scenarios, dynamic threshold optimization, and real-
world flight experiments.
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