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Abstract—Vision-based navigation offers an infrastructure-free
substitute to GPS and external positioning systems, making it a
worthy contender for robots operating in indoor environments
such as libraries and supermarkets. This work proposes a novel
ego-centric vision waypoint based navigation framework by
formulating intersection understanding as a multi-label concept
learning problem. To ensure a model can be trained with
limited data and still preserve the conceptual understanding,
each intersection is decomposed into its fundamental directional
components: left, right, and forward. Further, we augment the
limited real data with synthetic visual data collected from a safer
digital twin environment which replicates the real-world scenes.
We show that, (i) Model trained using digital twin data alone can
yield an F1-score of 0.6 in real-world predictions, compared to
0.5 from a random classifier. (ii) Introducing limited real-world
training data can bring the model up to near-perfect accuracy
with faster convergence. (iii)The multi-label classification of junc-
tions provides insightful visual explanations ensuring reliability
and generalizability of the conceptual framework.

Index Terms—ego-centric vision, explainability, concept learn-
ing.

I. INTRODUCTION

Autonomous navigation in robotics has witnessed a signif-
icant growth in recent years. Majority of this development
is mainly used in self driving cars. Apart from autonomous
ground vehicles, Unmanned Aerial Vehicles(UAVs) are be-
coming popular due to their wide range of applications.
Among UAVs, research on nano-scale drones is an emerging
topic due to variety of applications which are unattainable
by standard size drones. Egocentric navigation from a first
person perspective is the dominant strategy in the natural
world, whereas the man-made systems tend to rely on ex-
ternal infrastructure such as Global Positioning System(GPS)
satellites and fixed-position anchors, along with a global
coordinate system. Humans naturally navigates in a real-
world environment solely based on egocentric vision and their
knowledge about the surrounding world (i.e. internal world
model). Fascinatingly, a human can navigate in a first-person-
view(FPV) drone by converting his visual perception to a

Fig. 1. Overall concept: (a) Global coordinate based mission plan (existing);
(b) Global coordinate velocity setpoint based mission plan (existing); (c)
Egocentric vision-waypoint based mission plan (proposed); (d) Mission plan
of the drone; (e) Staggered junction—an example of a complex junction
inferred zero-shot; (f) Orthogonal decomposition of junction vision-waypoints
to left–forward–right navigability; (g) Validation of conceptual understanding
of left–forward–right navigability of the proposed model with Grad-CAM.

few directional control an accomplish a high level task as
illustrated in natural language in Fig. 1c. This is because all
the required information is already available in the visual field.
Egocentric vision represents the most intuitive and passive
way of successfully navigating towards the goal only using
the visual feedback. This navigation method does not require
external anchors similar to Global Positioning Systems(GPS)
because it is inherently independent of external infrastructure.
Therefore, navigation can be accomplished without relying
on a globally referenced coordinate or scale system by using
this vision-centric technique. Vision offers an abundance of
navigational clues that can be used to make decisions, such
as identifying and interpreting intersections. We believe that a
robot can also use these visual features to navigate in complex
environments.

Recent research on world models like Video Joint Embed-
ding Predictive Architecture(V-JEPA) [1] which is capable of
high level understanding based planning and action execution
would probably perform well in ego-centric navigation, but at



a higher computational cost. However, we believe that some of
the high level key concepts such as turning left, turning right
and going forward as illustrated in Fig. 1c can be derived to
simplify a specific navigation task at a low computational cost.

Dronet project [2] is one prominent attempt on vision-based
drone navigation, where they predict a collision probability
and a yaw angle to avoid collision. It is an ego-centric, ResNet
based Convolutional Deep Neural Network which takes a
grayscale 200x200 frame [2] as the input. Later, The Parallel
Ultra Low Power(PULP) research group carried out a number
of studies with an emphasis on autonomous navigation for
nano-scale drones. The Crazyflie platform is particularly well-
liked because of its nano-scale [3], lightweight design, open-
source control stack, and expandability with add-on decks. The
AI-deck provides a 320x320 HM01B0 monochrome camera
designed for low-power vision tasks. For navigation in nano-
scale drones, PULP Dronet has been identified as the state
of the art [4]. However, without a high level understanding
about the decision points such as junctions, DroNet formu-
lates the navigational problem as an obstacle avoidance task,
rather than a waypoint based planned navigation task. The
authors specifically pointed out that the model in the original
DroNet research [2] chose a random route at intersections,
which is not enough. PULP DroNet’s steering output fails
in intersection scenarios, as it cannot reason about multiple
possible navigation directions simultaneously, highlighting a
key navigable limitation in the state of the art nano-scale
drones which motivates our work.

Navigating in complex environments such as intersections
is a multi layered task where i. the high level vision-based
waypoints need to be detected, and ii. the navigation decision
is made. The decision can be either based on a pre-planned
mission plan, or as a high-level real time piloting decision,
where the autonomous robot awaits a decision from the pilot
after reaching the decision point. An example mission planning
and navigation scenario is given in Fig. 1d, where the mission
plan of the drone starts from the coordinate A and ends at the
coordinate G.

In contrast to the classical coordinate based mission plan
depicted in Fig. 1a,b, we propose a visual waypoint based
mission plan Fig. 1c. In traditional coordinate based navigation
trajectory is defined by position or velocity points. In contrast,
proposed conceptual framework uses high-level ego centric
vision-based mission plan as described in Fig. 1c. The actions
that the drone should take during an intersection is highlighted
in red color.

In this paper, we focus on the first part of the problem,
which is vision-based waypoint detection(perception-based).
Among the limited previous work on intersection detection
[5]–[7], the reported detection accuracies are promising. How-
ever, previous work cannot facilitate complex junctions such as
staggered junctions shown in Figure 1e. Moreover, the concep-
tual understanding of the left, forward and right navigational
affordances has not been considered, and the models lack
explainability. We argue that the high-level waypoints should
be the intersections, which can be further decomposed based

on the concepts of left, forward and right navigability. This
supports complex junction navigation. The Fig. 1f represents
the orthogonal decomposition of the high-level intersection
classes which can be used for mission planning, Fig. 1c. We
have used Gradient-weighted Class Activation Mapping(Grad-
CAM) heatmap [8] to verify the correct conceptual under-
standing of directions by the model, as depicted in Fig. 1g.

In our research, the key contributions are:
1) Training a vision-based model which conceptually un-

derstands high-level concepts of various intersections
that can be used as navigational waypoints

2) Illustrating multi-label classification, achieved by de-
composing high-level intersection categories outper-
forms conventional multi-class classification in intersec-
tion identification.

3) Verifying the actual conceptual learning using vision-
based Artificial Intelligence(AI) explainable learning
techniques.

4) Evaluating the generalization capability of the proposed
model across unseen real-world data.

5) Collecting and publishing both synthetic and real-world
dataset for intersection-level navigation tasks.

II. RELATED WORK

The researchers approached the intersection identification
task from several perspectives. Giusti et al. [9] classified drone
photographs into three types (turn left, turn right, and go
straight) so that a quadrotor could follow an outdoor hiking
course. Authors have used a deep neural network with 10
layers with three output neurons as a classifier for the task.

Garcia et al. [6] proposed a method which use typical
vision techniques with geometric shape analysis. First, video
frames are captured from the drone’s front camera. Next,
significant lines in the scene are extracted using Hough Line
Transform and Canny edge recognition. After that, these lines
are processed to find right triangles created by the intersection
of the floor and walls, which are used to accurately identify
upcoming intersections. The size of these intersection triangles
is analyzed, particularly the vertical side, which inversely
correlates with the distance to the intersection. Advancing
his previous research to address the limitation of the environ-
mental lighting condition he proposed a Convolutional Neural
Network(CNN) classifier which runs on the base station to
classify intersections and dead-ends [10]. Garcia et al. [7]
further have framed the intersection detection problem as an
object detection task. They have labeled 1,484 photos from
a wide range of corridors, with bounding boxes for different
intersection types, doors, poster boards etc. A You Only Look
Once(YOLO) based object detection model have been used to
successfully detect the intersections.

Padhy et al. [11] also have reported successful likelihood
estimations for class labels such as stop, shift left, shift right,
and move forward, which can be used for autonomous maneu-
vering of the drone in corridor environments. The authors have
used Dense-Net-161 and fed real-time images from a front
facing camera as the input. Mansouri et al. [5] suggested an



approach that uses a monocular camera and CNNs, specifically
utilizing transfer learning with AlexNet, to identify tunnel
junctions in underground mines. The CNN is based on a four-
class classification scheme of left, right, left & right and no
junction. The authors followed a transfer learning approach
since the real-world data was limited.

III. METHODOLOGY

The entire workflow of our suggested method is described
in this section. As mentioned in Subsection III-A and III-B,
we first select real-world environments and build digital
twin supermarket environments. Subsection III-C then goes
into detail into the data collection procedure used in both
real-world and simulated settings. Lastly, Subsection III-D
presents the experimental setups and model training pipeline.
Our implementation, experimental framework, performance
comparison, detailed results, and supplementary materials are
available on GitHub1.

Fig. 2. Experimental design workflow of the proposed methodology. Five
experiments were conducted with different weight initialization and training
procedures. The dataset split used was 78% for training, 19% for validation,
and 3% for testing. (a) Kaiming He initialization; (b) ImageNet initialization;
(c) Digital twin initialization with training on the last two layers; (d) Digital
twin initialization with training on all layers; (e) Digital twin initialization
tested on real data with no real-world training.

A. Real-World Environmental Setup

We used the AI-deck’s monochrome camera to manually
gather grayscale data at 5 frames per second in two supermar-
kets and a library to make sure the model learnt real-world
features and textures. During the data collection process, a
custom tool was created to easily name images into its ap-
propriate class. To provide wide visual variation, we recorded
a variety of supermarket and library aisle settings, such as
different lighting, intersections, walls, and bookshelf layouts.
We determined the middle waypoint for every intersection
and chose a data point that was 1.15 m before mid-waypoint.
This distance guarantees that the drone can see the rack edges
clearly inside its field of vision, allowing it to make the right
left or right judgments without running the risk of colliding.
Nevertheless, this method of gathering data is tedious, entirely
manual, and may damage the drone while it is in use.

1https://github.com/yeko31/ego-intersect

B. Digital Twin Environmental Setup

The digital twin environment offers complete control over
parameters, repeated experimentation, and secure, collision-
free data collection advantages that are not achievable in
real-world configurations. It is possible to accurately change
the robot’s altitude, intersection distance, camera height, and
field of view. We focused on aisle structures that resemble
supermarkets and libraries because of their neat 90° layouts
and practical applicability. The AI-deck’s grayscale camera
and 87° field of view were matched to the virtual Crazyflie
camera in Webots simulation platform, resulting in realistic
pictures. To train our navigation model, we produced a variety
of data pertaining to lighting, texturing, rack configurations,
and shadows using these parameterized digital twins.

Webots controllers were designed to automate the egocentric
data collection pipeline which is time and resource consuming
if done by manually. Data points are defined as 1.15 m before
the middle waypoint of any intersection. The drone follows
a predefined set of waypoints which were hard-coded into
folders corresponding to each intersection class inside the
simulated environment. At each data point, the drone performs
a slight lateral wiggle to capture different views of the racks.
In some waypoints, the drone performs yaw rotations to secure
the egocentric view of the camera. All together there are 22
waypoints covering 7 different intersection types including
forward pathways and bends. We only selected the simulated
environments which has aisle widths of 1 m and 1.3 m
to preserve the views of the racks before reaching to an
intersection point.

C. Data Collection

In both synthetic and real-world environments, the data was
gathered at two altitude levels. Scenes were first classified with
seven high-level classifications such as left bends, left inter-
sections, right bends, right intersections, t intersections, four-
way intersections and straight class before being broken down
into a single three-bit directional format that indicated whether
left, right, and forward pathways were available. Contrast and
blur augmentations, as well as the creation of artificial bends
to boost samples, were used to rectify the imbalance in left
and right intersections found in real-world data. In the end,
3929 training images, 100 real test images, and 2560 synthetic
images were collected for the studies as described in Table I.
For the real-world dataset, images for each high-level class
were collected and prepared in approximately equal quantities
to maintain class balance.

D. Model Training

For intersection detection, we tested both MobileNetV2
and ResNet50. ResNet50 was chosen for its robust image-
classification capabilities [12], while MobileNetV2 was picked
for its lightweight architecture appropriate for nano-scale
drones. We only present the ResNet50 results in this paper
due to space constraints. We modified MobileNetV2 and
ResNet50 to take into account the requirements of the task
and the characteristics of the dataset. The final fully connected



TABLE I
DATASET CONFIGURATION USED IN MULTI-CLASS AND MULTI-LABEL

EXPERIMENTS

Data Type Number of Samples
Multi-class – Train (Real) 3929
Multi-label – Train (Synthetic) 2560
Multi-label – Test (Real) 100
Multi-label – Train (Real) 3929

TABLE II
K-FOLD PERFORMANCE COMPARISON ACROSS EXPERIMENTS A–D

Kaiming He (a) ImageNet (b) Digital Twin (Last 2) (c) Digital Twin (All) (d)
Fold Best Val Acc Epochs Best Val Acc Epochs Best Val Acc Epochs Best Val Acc Epochs

1 0.9898 10 1.0 6 0.9949 10 1.0 15
2 0.9707 7 1.0 4 0.9962 11 0.9987 16
3 0.9975 13 1.0 4 0.9822 8 0.9796 8
4 0.9835 11 1.0 6 0.9924 11 0.9707 8
5 0.9567 7 1.0 5 0.9924 12 0.9949 12

layers of the original models, which had been pre-trained on
ImageNet, were swapped out for three classification heads,
which matched the number of output classes in our dataset.
We applied values of 0.2 color jitter for brightness and contrast
as augmentation. All grayscale images were duplicated across
three channels to ensure compatibility with the pretrained
architectures, as both networks were initially intended for
three-channel RGB inputs.

We first framed the task as a multi-class classification
problem, assigning each image to one of seven intersec-
tion types: straight, left bend, left intersection, right bend,
right intersection, four-way, and T-junction. We followed this
method initially because most of the related work addressed
this challenge as a multi class problem. We first trained all
network parameters using the synthetic data collected from
Webots environments in Section III-C. To train with real-world
data, the weights and biases of the models were initialized
using synthetic pretrained weights using the synthetic data.
Training as a multi class classification included total data of
3929. Criterion was chosen as CrossEntropyLoss and Adam
as an optimizer with a learning rate of 0.001. We froze all the
layers except for the final two layers and continued training.

Multi class classification method has certain issues. For ex-
ample, left intersection and left bend has shared concept which
are captured as unrelated in this setting. Therefore, learning
two different feature sets in this case, will not lead to the
correct interpretation of the above intersection types because of
the similarities. Another drawback is that the difficulty of cat-
egorizing a heterogeneous decision point into a single class as
shown in Fig. 1e. Therefore, to solve the navigation problem,
a multi label image classifier was developed which shows the
possible pathways the drone can take. As summarized in the
Fig. 1f, multi-hot binary label classification was used where
each image could simultaneously include multiple directional
indicators (left, forward, right). In this setting, we can still
generalize to more complicated heterogeneous scenarios due to
same concepts being shared. We believe that the use of multi-
label targets can further extend to previously unseen and more
complex environments by decomposing navigation decisions
into orthogonal yet related concepts.

TABLE III
GRAD-CAM VISUALIZATION RESULTS FOR DIFFERENT INTERSECTION

TYPES IN THE MULTI-CLASS CONFIGURATION (TWO SAMPLES FROM
DIFFERENT LOCATIONS PER CLASS). PROPOSED IMPROVED VERSION IS

GIVEN IN TABLE IV

Four-Way Straight Left Bend Left Inter Right Bend Right Inter T

We have listed the main phases of our multi label class
experiments in Fig. 2 that are done for both ResNet50 and
MobileNetV2 architectures. Data distribution is explained un-
der the Section III-C. The intention of using five fold cross
validation is to observe the overfitting issue. As shown in
Fig. 2, weight initialization was done in three main ways which
are digital-twin, ImageNet and random. There are three stages
in the experimental design framework. The first stage is the
weight initialization phase. In digital twin approach, we train
all layers from the scratch using the synthetic data collected
from Webots simulation as describe in the Section III-B.
The second stage is the real-world training phase. In this
stage, some models were fully trained, others were partially
trained, and a few were not trained at all under the real-
world five-fold cross-validation setting. We set the criterion
for BCEwithLogitsLoss and set the optimizer as Adam. Next,
Grad-CAM was used to observe the significant areas of the
input image which were used to predict the outcome. We
used the model which achieved the highest validation accuracy
across the folds for this. This allows the model to confirm
that the model ignores background noise and instead pays
attention to semantically significant areas like stock shelves,
aisle borders, or intersection cues. Testing is the final stage
where we use different metrics to observe the genralizability.
All the configurations are available in the supplementary
materials in Github.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

In Table III, we observe ResNet50 repeatedly misses salient
visual cues to classify into different intersection types. For
example, in T-junction scenarios, the network mostly concen-
trates on the top and bottom portions of the image instead
of the structural junction features. Similar to this, attention is
skewed toward right-edge features in left-bend circumstances,
but the opposite behavior is seen in right-bend images. Further,
in Table III, the areas highlighted are not uniform across
different images belong to the same intersection. Hence, as
discussed in Section III-D, we shifted the classification task
from multi class to multi label.

In multi label configuration, we report the best validation
accuracies in each fold and maximum number of epochs until
early stopping in the Table II. Here, outcomes of Kaiming
He initiation, training from scratch requires more epochs and
exhibits slight instability in between folds. ImageNet weight



TABLE IV
GRAD-CAM VISUALIZATION RESULTS FOR THE MULTI-LABEL CONFIGURATION ACCORDING TO FIG. 2.

Fig. 3. (a) Successful left–forward–right mutually exclusive (orthogonal) con-
ceptual understanding learned by the digital twin (2-layers) model, illustrated
using Grad-CAM heatmaps across different junctions. Predicted probabilities
are shown below each example. (b) Comparison of the five experiments across
Hamming loss, precision, recall, and F1 score on the test data.

initialization demonstrated stronger and faster convergence
compared to Kaiming He and Digital Twin initialization
methods. ImageNet-initialized models regularly achieve per-

fect validation accuracy (1.0) in very few epochs across all
folds. Digital twin last two configuration remains very high in
most folds. A good trade-off between speed and accuracy is
achieved by fine-tuning only the classifier (final layers), which
maintains pretrained knowledge and adapts effectively.

Grad-CAM was utilized to confirm if the model recognized
relevant concepts instead of random features. We observe that
the Grad-CAM experimental configurations produce distinct
activation patterns across configurations (a), (b), (c), and (d)
in Fig. 2, as evident from the visualizations presented in Ta-
ble IV. Grad-CAM heatmaps produced in relation to the most
prominent label, that is, the class with the highest projected
probability is presented in the tables. To demonstrate spatial
consistency and variance, samples from diverse scenes are
displayed for each label. Grad-CAM maps under configuration
Kaiming He looks weaker feature localization. It’s possible
that early layers didn’t develop strong spatial hierarchies,
which made the heatmaps less interpretable. Compact and
consistent activation zones are seen in configuration ImageNet,
indicating more stable representations compared to configura-
tion Kaimimg He. Explainability findings show that transfer
learning increases both accuracy and visual interpretability.
However, it is visible that in the Table IV, configuration
ImageNet is unable to correctly identify the left visual cues.



Digital twin-based fine-tuning produces activation maps more
closely aligned with the pertinent scene elements as illustrated
in the final two columns of Table IV. The digital twin last two
configuration performed better than the other configurations in
all four experiments, resulting in Grad-CAM heatmaps that
were sharper and more domain-focused. This configuration
shows enhanced interpretability and task awareness since the
attention regions corresponding to the left, right, and forward
labels are well aligned with the key spatial locations.

We chose the top-performing model in explainability, the
digital twin configuration trained on the last two layers, to
look into this behavior in more detail. We examined several
kinds of intersections and bends, as shown in Fig. 3a, and
created heatmaps that matched their labels. The left, right, and
forward heatmaps were then overlapped to generate composite
visualizations. The predicted probabilities of the correspond-
ing labels are shown by the color bar beneath each image.
Interestingly, in both the T-junction and four-way intersection
scenarios, the T-intersection mostly activates the left and right
regions, whereas the four-way situation also displays activation
(red regions) in the central area. In the same manner, the
overlapped heatmaps for left and right bends only show the
pertinent edge regions, illustrating the model’s capacity to
direct attention based on directional context.

Fig. 3b shows the comparison results on the test data. With
the lowest Hamming Loss (0.08) and the highest F1 Score
(0.92) of any configuration, the ImageNet weight initialization
approach showed the best generalization performance. Our
synthetic-to-real configuration shows that digital twin data can
reasonably generalize to real-world images with a F1-score of
0.6 compared to a random classifier which is resulting 0.5.
The performance can be further improved by incorporating
real-world data, highlighting the importance of developing a
digital twin when real datasets are limited.

V. CONCLUSION AND FUTURE WORK

In this paper, we introduced an egocentric visual waypoint
navigation that leverages vision-based intersection identifi-
cation. Initially, we trained a model that can utilize high-
level intersection types as navigation waypoints. Further, we
reframed the task as multi-label classification by dividing
high-level intersecting classes into directional labels, which
enhances performance over multi-class approaches and more
successfully captures shared features. Third, we used Grad-
CAM to ensure that the network pays attention to semantically
relevant features surrounding intersections and bends, ensuring
that the model’s conclusions are based on meaningful visual
concepts rather than just numerical artifacts. The pretrained
digital twin model which is trained on last two layers maintains
consistently high accuracy across the training, validation,
and testing datasets, while also exhibiting meaningful and
interpretable feature localization when evaluated using Grad-
CAM.

In future work, we plan to extend our work to the visual
waypoint based navigation task. Further, we aim to develop
an automated pipeline to transform real-world video into 3D

simulation environments and improve the digital twin for safer,
more effective validation. Finally, we plan to expand our study
to challenging intersection types including Y-intersections, and
improve the generalization across different spatial locations.
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