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Abstract—Recent advances in self-supervised learning (SSL)
on Transformers have significantly improved speaker verification
(SV) by providing domain-general speech representations. How-
ever, existing approaches have underutilized the multi-layered
nature of SSL encoders. To address this limitation, we propose the
layer-aware time-delay neural network (L-TDNN), which directly
performs layer/frame-wise processing on the layer-wise hidden
state outputs from pre-trained models, extracting fixed-size
speaker vectors. L-TDNN comprises a layer-aware convolutional
network, a frame-adaptive layer aggregation, and attentive statis-
tic pooling, explicitly modeling of the recognition and processing
of previously overlooked layer dimension. We evaluated L-TDNN
across multiple speech SSL. Transformers and diverse speech-
speaker corpora against other approaches for leveraging pre-
trained encoders. L-TDNN consistently demonstrated robust veri-
fication performance, achieving the lowest error rates throughout
the experiments. Concurrently, it stood out in terms of model
compactness and exhibited inference efficiency comparable to the
existing systems. These results highlight the advantages derived
from the proposed layer-aware processing approach. Future work
includes exploring joint training with SSL frontends and the
incorporation of score calibration to further enhance verification
state-of-the-art performance.

Index Terms—Speaker recognition, speaker verification, speech
pre-trained model, multi-layer features, layer-aware processing.

I. INTRODUCTION

Speaker verification (SV) authenticates an identity by ex-
tracting speaker-specific features from speech. The field has
advanced significantly due to deep neural network (DNN)
improvements and enlarged data resources. One of the ear-
liest, the x-vector [1] established a foundational DNN-based
architecture upon handcrafted acoustic features (e.g., MFCCs).
It comprises a stack of time-delay neural network (TDNN)
[2] layers, temporal pooling, and utterance-level processing.
The pipeline has been refined with deeper TDNNs [3]-
[6], attention-based pooling strategies [6]-[8], and margin-
based training loss functions [9], [10] for more discriminative
speaker embeddings.

Meanwhile, the rise of self-supervised learning (SSL) trans-
formers [11]-[13] has spurred recent research into using pre-
trained representations for SV. Two main approaches have
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emerged: fine-tuning a pre-trained model into an end-to-
end SV system [14], [15], or using SSL models as feature
extractors for a downstream model [13], [16]-[18]. Notably,
the SUPERB benchmark [16] introduced a weighted sum of
hidden states from all layers to produce downstream features.
[13] and [17] has achieved state-of-the-art SV performance by
combining the SUPERB with a powerful ECAPA-TDNN [6].

However, current methods for exploiting pre-trained models
in SV have limitations. First, some still rely on the final layer’s
output [14], [15], [18], while several recent analyses [13],
[17] have shown that speaker cues are concentrated in lower
layers. Second, most studies adopt the trivial layer aggregation
from SUPERB [16]. This static summation cannot capture
frame-level variability of inter-layer importance, and its scalar
weights are fixed after training, which limits generalization.

To overcome these limitations, we propose a dedicated
backend architecture that fully exploits multi-layer SSL rep-
resentations. Our contributions are summarized as three-fold:
(1) we introduce a layer-aware TDNN (L-TDNN) that operates
directly on stacked hidden states to enrich speaker characteris-
tics; (2) we devise a frame-adaptive attention pooling strategy
for dynamic layer aggregation; and (3) we validated compre-
hensive experiments that the proposed strategy consistently
and efficiently outperforms existing methods for leveraging
speech pre-trained models for SV.

II. RELATED WORK

A. Leveraging Pre-trained Models for Speaker Verification

Starting from Wav2vec [19], SSL Transformers [11]-[13],
[20] have become widely accepted in contemporary speech-
processing research. These models aim to extract task-agnostic
representations by directly processing raw waveforms and gen-
erally comprise convolution layers followed by a Transformer
encoder. Efforts to leverage such pre-trained models for SV
have followed two main routes.

The first approach builds an end-to-end verification system
by fine-tuning the SSL encoder. Both [14] and [15] explored
adapting Wav2vec 2.0 [11] for SV. [14] formed an utterance-
level representation by simply averaging the Transformer out-
puts and trained the network jointly on language and speaker
classification. [15] compared several pooling strategies for
aggregating speaker information from the output sequence and
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Fig. 1: Comparison of the speaker verification pipeline leveraging the multi-layer features from the speech SSL model.

proposed the insertion of a constant class (CLS) token, which
is inspired by BERT [21].

The other approach treats the SSL encoder as a frontend
feature extractor so that an SV downstream model processes
its output. For example, [18] proposed a backend model,
comprising two TDNN layers, statistic pooling, and a maxout
linear layer, on top of Wav2vec 2.0 [11]. Although the proposal
of SUPERB [16] was not exclusive to SV, its idea of combin-
ing hidden states from each layer of the pre-trained model
inspired many subsequent studies. While SUPERB adopted
the z-vector [1] to process a weighted summation of layer-
wise representations, [13] and [17] considered a more powerful
off-the-shelf downstream architecture, ECAPA-TDNN [6], to
achieve strong verification performances.

B. Limitations of Prior Works and Preliminaries

As surveyed above, recent SV studies have shifted to the
SSL paradigm, guaranteeing faster convergence and strong
downstream performance. A diverse array of strategies has
been discussed to exploit the pre-trained encoders, yet these
approaches still face notable limitations.

While end-to-end approaches represent the speaker solely
with the final layer output, the layer-wise probing across
diverse SSL models [13], [17], [22], [23] demonstrated that
speaker cues are prominent at lower layers. Adapting the
pre-trained encoder in an end-to-end manner, therefore, starts
at a disadvantage for speaker discrimination. SUPERB-based
systems mitigate this issue by incorporating multi-layer hidden
states. However, its static and global-constant aggregation
ignores frame-level variability and limits the capability of
layer-wise representation.

These findings lead to motivation for the next step for SV
in leveraging pre-trained models, a backend that can actively
process the entire stack of layer-wise hidden states. Conven-
tional downstream networks, designed for the time-frequency
domain, are not equipped to handle this additional layer

dimension. Therefore, in this study, we introduce a dedicated
backend for SSL encoders, which refines speaker features
across layers and frames, and also dynamic aggregation of
each dimension.

III. SPEAKER EXTRACTION USING SSL TRANSFORMERS

Fig. 1 provides an overview of the processing pipelines
discussed in this section. (a) draws the common architec-
ture of contemporary speech SSL models such as Wav2vec
2.0 [11], HuBERT [12], and WavLM [13]. A convolutional
(CNN) feature extractor first produces a latent representation
Hy € RE*T directly from the raw waveform, then Trans-
former layers {1, ..., L} process the feature. The hidden states
from each layer are stacked, forming the initial input tensor
{Hy;...; Hp} € REXTXL for the SV downstream.

Afterwards, parts (b) and (c) demonstrate how the SUPERB-
based downstream and the proposed L-TDNN deal with the
given tensor, respectively. As (b) illustrates, earlier studies
opted for the conventional time-frequency-based backends
to process the SSL model features; therefore, they adopted
the static weighted summation strategy to integrate the layer
dimension in advance. On the other hand, (c) depicts the
proposed L-TDNN transforming the tensor into a speaker
embedding, where we design the network to process the input
tensor directly. L-TDNN comprises three stages: a convolu-
tional processing network at the layer and frame level, a layer
aggregation layer, and a temporal pooling layer.

A. Layer and Frame-level Processing Network

We extend the architecture from one of the powerful
downstream models, ECAPA-TDNN [6], so that the network
operates on a two-dimensional feature map. SE-Res2Block,
proposed from ECAPA-TDNN, benefits from combining the
Squeeze-and-Excitation (SE) [24] and the Res2Net [25] mod-
ule that processes multi-scale features through the hierarchical
residual connections. Moreover, the dense connection [26] of
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Fig. 2: Details of the layer/frame-level processing network.

each SE-Res2Block enables the shallow layers to contribute
to a stronger foundation of speaker embedding. Fig. 2 depicts
the details of the convolutional network and its feature maps.
C, T, and L denote the hidden size, the number of frames,
and the number of SSL model hidden layers composing the
input tensor {Ho, ..., H}. k, d, and s are arguments for the
convolutional operations, which are the kernel size, dilation,
and scale at the Res2Net module, respectively. During the
expansion, we adjust the hidden size of the convolutional
topology, Cy = 256, to be smaller than the original’s,
keeping the number of parameters in L-TDNN comparable
to SUPERB-style approaches [13], [17].

B. Frame-adaptive Layer Aggregation

The following steps involve aggregating and pooling the
feature map into a single vector representation of the speaker
embedding. To better exploit the rich information across
multiple layers, we explore a more advanced strategy for ag-
gregating layer-wise speaker cues than static weighted summa-
tion. Inspired by one designed for multi-sequence aggregative
processing [27], we devise a layer pooling layer based on SE
[24] combined with multi-head projection [28].

Fig. 3 illustrates the proposed layer-aggregation strategy,
where the entire sequence of operations is shared across
frames, and we achieve the frame-dependent usage of the
layer dimension. Given an output X € R3CoxT*L from the
preceding convolution network, the pooling process comprises
three steps. First, we project the channel dimension with a
learnable matrix W;,, € Rk *3Co.

where © € RCxxTxL

tions. In this study, we set H = 8 and C =

Then, we compute layer-wise weights through the SE op-
eration for each head. We start with taking the maximum and
mean over the latent dimension, Zmax, Tmean € REXT | These
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Fig. 3: Layer aggregation based on the MCA [27] strategy.

statistics pass through the learnable parameters W, RrxE
and W, € REXT ag

a, = Wey - ReLU(Wy, - 2)
U(Z a:),

where 7 = %L, o () denotes the sigmoid activation that maps
latent values within 0-1, and o € RE*T implies the layer
importance at each frame.

At last, we pool the most salient cues over layers by pooling
the maximum after applying the weights.

a = FAS {xmaxa xmean} @

x = mLax(a ©x). 3)

As above, we define the process within a single head, fol-
lowed by head-wise concatenation and projection through the
parameter W, € RE(HXCk) where Cy = 512.

C. Attentive Statistic Pooling

The self-attention mechanism has proven to be successful
in aggregating speaker embeddings from a sequence of frame-
level features [6]-[8]. We adopt the strategy of ECAPA-TDNN
[6], which uses the concept of the weighted mean and standard
deviation for channel-dependent statistics.

Given the input X € R *T the attention mechanism
estimates o € R *T, which implies the importance of each
frame for its channel-wise statistics. Therefore, we compute
the weighted statistics by:

T
/:L:Zac,t'Xct
t

“4)

T

& Dt (Xea)? = (fie)?

t

We concatenate the attention-weighted statistics fi,6 € R,
and the linear transformation W € R2¢1XCe and batch

normalization follow, where C; = 512 and Cg = 192.



TABLE I: Evaluation with direct fine-tuning approaches in diverse training environments

VCTK LibriSpeech VoxCelebl VoxCeleb2
Verification System
EER* EER  minDCF EER* EER  minDCF EER* EER  minDCF EER* EER  minDCF
Input: MFCC
x-vector 16.15  16.22 0.898 8.08 7.99 0.468 12.07  12.08 0.742 7.94 7.97 0.490
ECAPA-TDNN 5.44 5.35 0.585 2.45 1.91 0.117 5.52 5.28 0.486 2.44 2.34 0.154
* BASE models, pre-trained on 960 hrs (LibriSpeech)
Wav2vec 2.0
Temporal mean 6.64 6.64 0.758 3.03 2.54 0.174 7.88 7.83 0.621 4.63 4.71 0.322
[CLS] insertion 9.77 9.46 0.980 3.40 2.79 0.175 3.73 3.69 0.384 2.25 2.27 0.187
L-TDNN (proposed) 3.51 3.58 0.773 1.83 1.16 0.095 2.58 2.38 0.243 2.25 2.19 0.144
HuBERT
Temporal mean 5.56 5.44 0.591 26.12  26.17 0.717 32.81 3373 0.888 3272 31.17 0.713
[CLS] insertion 24.02  24.20 0.997 1221 12.03 0.772 22.84  22.65 0.991 1559 15.48 0.933
L-TDNN 3.78 3.84 0.599 1.38 0.95 0.062 242 2.23 0.211 2.00 1.95 0.135
WavLM
Temporal mean 4.63 4.59 0.451 2729  27.20 0.773 33.01 3393 0.890 30.11  29.53 0.798
[CLS] insertion 2580  25.66 0.995 12.07 11.89 0.794 2099  20.85 0.989 9.89 9.81 0.728
L-TDNN 3.43 3.55 0.555 1.61 1.21 0.081 2.15 1.96 0.218 1.94 1.88 0.121

IV. EXPERIMENT

A. Datasets and Implementation Details

We evaluated our systems on multiple datasets to cover
diverse training scenarios. VCTK CSTR Corpus (VCTK)
[29] provides clean recordings from 108 English speakers.
LibriSpeech [30] contains about 1,000 hours of speech from
2,484 speakers. Finally, the VoxCeleb 1 & 2 datasets [31], [32]
offer speech data within a variety of acoustic environments and
noises by 1,369 and 6,152 speakers, respectively. All audio
was resampled to 16kHz.

Our model was trained with AAM-softmax [10] with scale
30 and margin 0.2. Adam optimizer [33] was adopted with a
one-cycle learning rate (Ir) scheduling [34] with the maximum
Ir = 0.003 using an initial 10% warmup phase. Minibatches
comprise 128 samples, and each is truncated to 3s. We
implemented data augmentation to drop a random span from
the SSL model output, inspired by SpecAugment [35] and
Patchout [36]. On evaluation, we used cosine similarity.

Throughout our experiments, SSL models were kept frozen
while they served as feature extractors, and no score cali-
bration was applied. This setup aims to isolate and validate
the effectiveness of the proposed layer-aware processing on
leveraging pre-trained features. We further discuss the joint
training of the SSL frontend and the speaker backend and
also post-processing techniques in Section V.

B. Evaluation Metrics

We use two general SV evaluation metrics: equal error rate
(EER) and minimum detection cost function (minDCF), with
minDCF parameters set to Cyigs = 1 and Cpa = 1, and
Parget = 0.01. Both work by finding optimal decision threshold
based on the similarity scores of a given evaluation set.

For a more practical evaluation, we introduce an additional
measure, EER*, where the test set is unseen during threshold
setting. As below, EER* evaluates the test set (£) using a

fixed threshold (7) derived from the EER of the validation set
(U). Tt takes the mean of the resulting test set FAR and FRR.

_ FARZ(T) + FRRz(T>
EER* = 5 )

s.t. EERy = FARy(7) = FRRy(7)

C. Baselines and Pre-trained SSL Models

We established two baseline groups that use pre-trained
models. The first was to fine-tune an SSL model and pool
a speaker embedding from the final hidden layer using non-
parameterized ways. Either temporal mean pooling [14] or
a CLS token insertion [15] was adopted. The second group
followed the SUPERB pipeline, which uses a weighted sum
of multi-layer features to produce an input for the down-
stream SV model. We paired this strategy with x-vector [1]
and ECAPA-TDNN [6]. Experiments were conducted using
three representative speech SSL models: Wav2vec 2.0 [11],
HuBERT [12], and WavLM [13].

D. Experimental Results

1) Comparison with End-to-end Fine-tuning Approaches:
Table I compares L-TDNN against two end-to-end fine-tuning
approaches as well as traditional MFCC-based verification
systems. Across all three SSL encoders and every evaluation
corpus, L-TDNN consistently demonstrates superior perfor-
mance, achieving the lowest EER and EER* in all conditions.

In contrast, the fine-tuning baselines show poor generaliza-
tion, exhibiting instability with SSL Transformers other than
Wav2vec 2.0, likely due to differing pre-training objectives.
Notably, the temporal mean pooling [14] often performed
worse than the MFCC-based ECAPA-TDNN, while the CLS
insertion [15] has only proved highly limited model and
dataset combinations. These results reveal the stability of
leveraging multi-layer features from pre-trained models, and
vice versa, the high sensitivity of naive fine-tuning while
relying on the final layer output. L-TDNN’s stable and superior



TABLE II: Comparison with SUPERB-based SV systems

VoxCelebl VoxCeleb2
Verification System
ER* EER  minDCF EER* EER minDCF
* BASE models, pre-trained on 960 hrs (LibriSpeech)
Wav2vec 2.0
x-vector 4.64 4.65 0.468 4.08 3.95 0.351
ECAPA-TDNN 3.24 2.82 0.346 242 2.33 0.157
L-TDNN (proposed)  2.58 2.38 0.243 2.25 2.19 0.144
HuBERT
z-vector 4.00 3.97 0.423 3.66 343 0.305
ECAPA-TDNN 3.18 2.53 0.309 224 2.06 0.149
L-TDNN 2.42 2.23 0.211 2.00 1.95 0.135
WavLM
z-vector 4.01 3.97 0.428 3.73 3.61 0.325
ECAPA-TDNN 2.55 2.15 0.257 2.07 2.05 0.137
L-TDNN 2.15 1.96 0.218 1.94 1.88 0.121
* BASE model, pre-trained on 94K hrst
WavLM+
ECAPA-TDNN 221 1.84 0.217 1.79 1.72 0.094
L-TDNN 1.93 1.62 0.198 1.70 1.63 0.092
* LARGE model, pre-trained on 94K hrst
WavLM
ECAPA-TDNN 2.19 1.78 0.213 1.79 1.72 0.110
L-TDNN 1.85 1.51 0.167 1.54 1.61 0.104

TLibri-Light, GigaSpeech, and VoxPopuli

performance supports its approach, benefiting from diverse
types of speech SSL models.

2) Comparison with SUPERB-based Approaches: Table 11
compares L-TDNN against SUPERB-based baselines paired
with z-vector [1] and ECAPA-TDNN [6] backends, using
various scales of SSL frontends. L-TDNN surpasses the base-
lines across all evaluation metrics, regardless of the scale of a
pre-trained encoder. On average, L-TDNN achieves an EER*
improvement of 45% over the x-vector baseline and 14% over
the stronger ECAPA-TDNN baseline.

Furthermore, L-TDNN demonstrates strong scalability as
the pre-training data and model capacity increase. It maintains
a significant performance margin over the ECAPA-TDNN
with relative EER* improvements of 9% (WavLM base+)
and 15% (WavLM large); 9% and 11% on EER, respectively.
It is encouraging that L-TDNN yields significant gains over
the architecturally similar ECAPA-TDNN. This highlights the
effectiveness of modeling inter-layer information from hidden
states of pre-trained models for the downstream task.

3) Analyses on Model Efficiency: Fig. 4 analyzes the
efficiency of L-TDNN against SUPERB-based systems by
comparing (a) parameter counts and (b) inference latency.
We measured the latency on “Vox-O” trials using a single
NVIDIA RTX A6000 GPU, reporting the median. L-TDNN is
the most parameter-efficient model, being approximately two-
thirds the size of ECAPA-TDNN while delivering the better
performance shown in Table II. Regarding inference speed,
L-TDNN also holds a slight advantage over ECAPA-TDNN.
Although the simpler z-vector backend is faster, it suffers a
significant trade-off in verification performance. These results
demonstrate that L-TDNN offers a competitive advantage of
accuracy, compactness and efficiency in leveraging features
from the pre-trained Transformers.

(a) Parameter Size (b) Inference Speed
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Fig. 4: Comparison of model efficiency across speaker embed-
ding backends and SSL-frontend scales.

V. CONCLUSION
A. Limitations and Future Works

In this study, we froze the SSL model parameters to isolate
our backend’s contribution. A key direction for future work is
to explore joint training of the SSL frontend and the speaker
backend, unleashing more powerful, task-specific represen-
tations. Additionally, we will investigate the integration of
common post-processing techniques, such as score calibration
[13], [37], to further push the model’s verification performance
toward the state-of-the-art in SV benchmarks.

B. Summary

This study introduced L-TDNN, a novel backend architec-
ture designed to effectively leverage the multi-layered nature
of pre-trained speech encoders for speaker verification. L-
TDNN directly addresses the layer dimension, given the stack
of hidden states produced from each layer of an SSL Trans-
former, which is previously overlooked. It is achieved through
a dedicated structure comprising a layer-aware convolutional
network, a frame-adaptive layer aggregation, and attentive
temporal pooling, allowing it to robustly model inter-layer
speaker characteristics.

Through extensive experiments, we demonstrated that L-
TDNN consistently outperforms primary existing approaches
such as end-to-end fine-tuning and SUPERB-based feature
extraction. This strong performance was validated across di-
verse SSL models (Wav2vec 2.0, HuBERT, VoxCeleb 1 &
2). Moreover, we verified that L-TDNN provides these per-
formance gains while also being more parameter-efficient and
computationally faster than comparable backend architectures.
These findings confirm L-TDNN as a robust, generalizable,
and efficient solution, highlighting the benefits of dedicated
layer-aware processing for speaker verification. Future work
will incorporate jointly training of the SSL frontend and the
speaker backend, as well as score calibration techniques, to
further push the system beyond its current capabilities.
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