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Abstract—This paper proposes three algorithms for received
signal strength indicator (RSSI)-only UAV path planning in SAR
for GPS-denied mountainous environments. RSSI is attractive
for early path planning due to low energy cost, implementation
simplicity, and ubiquity, but severe shadowing causes large
fluctuations and unstable localization. To cope with this, we
design: (i) a Greedy method that chooses the initial heading
via the strongest RSSI and proceeds while adjusting using prior
branch comparisons; (ii) a Prudent method that performs an
initial cross-shaped scan and fork-shaped local searches at each
decision point for reliability under heavy shadowing; and (iii) a
deep recurrent Q-network (DRQN)-based method that adaptively
selects between Greedy and Prudent at each step according
to changing shadowing. Simulations show the DRQN approach
balances both strategies, matching Prudent’s high success rate
while maintaining decision-step counts close to Greedy, yielding
strong adaptability and robustness in challenging shadowing
conditions.

Index Terms—Path planning, Search and rescue, UAV, DRQN

I. INTRODUCTION

In disaster or missing-person search scenarios, rapid search
and rescue (SAR) operations are essential for saving lives.
Unmanned aerial vehicles (UAVs) are increasingly adopted in
SAR missions because their easy deployment and airborne
capability enable them to establish a stable Line-of-Sight
(LOS) link with ground targets, ensuring wide-area coverage
and flexible mobility [1], [2]. However, in disaster scenarios,
communication infrastructures are often damaged, or the target
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may be located in regions that require non-terrestrial network
(NTN) connectivity due to the unavailability of terrestrial
networks, making GPS-based localization unreliable or even
infeasible [2], [3], [4]. Similarly, camera-based detection is
advantageous for precise localization once the target’s approx-
imate position has been identified. Still, its performance dete-
riorates in long-range searches or environments such as forests
and mountainous areas, where LOS is restricted [2], [5]. To
address these challenges, wireless signal-based localization
can be leveraged as a supplementary approach to improve
the efficiency of UAV-based SAR missions [2]. In particular,
the received signal strength indicator (RSSI) offers advantages
such as low energy consumption and simplicity, and it can be
easily obtained from most wireless communication devices [2],
making it a practical signal source for guiding UAVs during
the early stages of path planning.

In this study, we focus on search and rescue operations
that rely solely on RSSI measurements in GPS-denied moun-
tainous environments and propose three UAV path planning
algorithms: Greedy, Prudent, and a deep recurrent Q-network
(DRQN)-based algorithm. The Greedy algorithm quickly de-
termines a movement direction, storing and using the most
substantial RSSI value, but it becomes vulnerable to severe
shadowing loss. The Prudent algorithm performs systematic
cross and fork searches to ensure robust localization under
high signal variability, though at the cost of longer trajecto-
ries. The DRQN-based algorithm dynamically selects between



Greedy and Prudent strategies according to environmental
shadowing conditions. By leveraging temporal RSSI patterns
through recurrent learning, the DRQN-based approach im-
proves both success rate and efficiency, providing an effective
solution for UAV path planning in RSSI-only, GPS-denied
search and rescue scenarios.

Several studies have investigated SAR systems that utilize
UAVs and wireless signal measurements, as presented in [2],
[4]-[7]. Studies [2], [4], [5] focus on localization techniques
in environments without GPS or other positional information.
In [2], a Kalman filter is applied to preprocess RSSI data,
and the position is estimated from the gradient of the filtered
RSSI. However, this approach requires a predefined flight path
and prior knowledge of the UAV’s initial heading. In [4],
wireless power transfer (WPT) is used to activate powered-
off devices temporarily, and the positions of nearby nodes are
determined through trilateration. This work does not address
UAV path planning and does not apply to medium- or long-
range SAR missions. In [5], a random forest algorithm is used
to roughly localize the transmitter by allowing the UAV to
move randomly and collect RSSI measurements at multiple
positions. Since the UAV estimates the target’s position only
after collecting signals from various locations rather than
updating it sequentially, this method requires a larger number
of movements. Studies [6] and [7] estimate relative positions
based on RSSI measurements and use GPS data as auxiliary
information to refine the absolute localization results.

In contrast, our study focuses on a GPS-denied environment
and proposes RSSI-only path planning algorithms that directly
guide the UAV toward the target without multilateration or
external sensors.

II. THE PROPOSED UAV PATH PLANNING ALGORITHMS
A. Proposed Method 1: Greedy Algorithm

The Greedy algorithm begins with an initialization phase
in which the UAV performs exploratory movements and mea-
sures RSSI in 8§ directions to establish the initial heading that
maximizes RSSL

The Greedy algorithm continuously moves toward the
strongest RSSI direction from the current position. At each
decision step, the UAV measures signal strength at three
candidate directions: left, center, and right relative to its cur-
rent heading direction. The candidate directions are computed
as O = (0current - 450) mod 360°, Ocenter = Ocurrent, and
Oright = (Bcurrene + 45°) mod 360°, where each candidate
position is one step away from the current location. The
algorithm selects the direction with the highest measured RSSI
value among the three candidates and the current position.
If the current position yields the strongest signal, the UAV
remains stationary, indicating that it has converged to a local
maximum.

B. Proposed Method 2: Prudent Algorithm

The Prudent algorithm is a finite state machine composed
of three sequential states: Wandering, Phase 1 (Cross Search),
and Phase 2 (Fork Search). Unlike the Greedy algorithm, it

measure RSSI strength in multiple directions, allowing stable
navigation even in environments with severe shadowing loss.
The prudent algorithm operates as a finite state machine
composed of three sequential states: Wandering, Phase 1
(Cross Search), and Phase 2 (Fork Search). The Wandering
state is executed only once at the beginning to detect the initial
signal, after which Phase 1 and Phase 2 are repeated alternately
throughout the search process.

In the Wandering state, the UAV traverses a square spiral
pattern with incrementally increasing leg lengths (Lo = 20
m, incremented by 10 m per cycle) until receiving an RSSI
measurement above the detection threshold. Upon detection,
the algorithm transitions to Phase 1.

Phase 1 evaluates RSSI at four orthogonal directions
(0°,90°,180°,270°) from the detection point. It identifies the
pair of adjacent directions (e.g., 0° and 90°) with the highest
summed signal strength. Based on this pair, it selects the
diagonal direction (e.g., 45°) centered between them as the
initial forward direction for Phase 2.

Phase 2 employs a three-way fork pattern: at each step, the
UAV measures RSSI at three positions offset by —90°, 0°,
and +90° relative to the current diagonal forward direction. It
then compares the (left + center) RSSI sum against the (center
+ right) RSSI sum. This comparison determines the next step.
The UAV selects a new diagonal path by shifting 45° left or
right toward the stronger signal.

C. Proposed Method 3: DRQON-based Algorithm

The proposed DRQN model incorporates a confidence es-
timator to balance the advantages and disadvantages of the
Greedy and Prudent algorithms. DRQN is designed to make
decisions by considering both past observation and the current
state.

The SAR problem is formulated as a Markov Decision
Process (MDP) defined by the tuple:

M:(S,A,T,R,’Y) (1)

where S is the state space, A is the action space, 7 is the
transition function, and R : S x A x & — R is the reward
function.

1) State: The state vector s; € R is carefully designed to
represent both the current signal conditions and the historical
movement behavior of the UAV. It includes the normalized
RSSI value at the current step and its temporal difference from
the previous step, allowing the agent to recognize whether the
signal strength is increasing or decreasing. These features help
the network detect short-term signal trends caused by distance
or shadowing effects.

In addition to the signal information, the state vector con-
tains several elements describing the UAV’s recent motion pat-
terns. It includes the path straightness coefficient to represent
how consistent the UAV’s movement direction has been, the
flip count to measure how often the heading direction has been
reversed, and an idle step counter to identify periods when the
UAV is stuck or not making progress.



Furthermore, the state vector includes the distance from
the best RSSI position recorded so far, the last action taken
(Greedy or Prudent), and a phase indicator inherited from the
rule-based Prudent finite state machine (FSM).

Together, these elements enable the DRQN agent to rec-
ognize both instantaneous signal variations and accumulated
search patterns over time, improving its ability to choose
between rapid exploration and cautious adjustment depending
on environmental conditions.

2) Actions: The action space is discrete with two options:

A = {0 : Greedy, 1 : Prudent} )

Action a; = 0 invokes the Greedy algorithm for one
navigation step, while a; = 1 advances the prudent multi-
phase FSM by one state transition.

3) Reward function: The reward function balances explo-
ration efficiency, path quality, and convergence speed:

Tt = Tbase T Tprogress T Tquality T T'terminal 3)

The base reward incorporates a Greedy-first bonus (0.005
when a; = 0), movement penalty cyove = 0.01, NRI penalty
¢, Z; where

and switch penalty coyicen = 0.01 when a; # a;—1.
The progress reward provides dense feedback proportional
to normalized distance reduction:

d(pt—l,pv) B d(ptapv)
|t — pe—1l

Quality penalties include an escalating idle penalty cigje - Nidie
when Ap, < 0, a stagnation bonus (0.05) for selecting prudent
when n;q > 3, and a proximity reward when d; < 1.5derm:

1~5dterm - dt
_— 6
0~5dlerm ) ( )

Terminal rewards provide episodic feedback. Success within
dierm = 30 m yields:

y  Wprog = 0.2 (5

T'progress — Wprog *

Tproximity = 0.05 - (

Tterminal = Tsuccess T Fena Max(0, 1.5 — 0.01¢) @)

where Tgecess = 10.0 and Senq = 1.5. Timeout after Ty =
300 decisions incurs:

Tterminal = T'timeout — min(2.0, O-Oth/Sslep) (8)

where 7gmeowr = —10.0, scaled by remaining distance to
differentiate near-misses from complete failures.

4) Transition  Dynamics:  The transition function
T (st41|8t,a¢) is determined by the environment dynamics
and exhibits stochasticity due to shadowing loss. When an
action a; € {0 : Greedy, 1 : Prudent} is selected:

1) The corresponding basic algorithm (Greedy or Prudent)
executes one navigation step, updating the UAV’s posi-
tion from p; to p41.

2) A new signal strength RSSI;;; is measured at p;;i,
sampled according to the log-distance path loss model

with Gaussian shadowing X, ~ N(0,02), where o €
[4,8,12] dB.

3) The new state s;,y; is computed based on the updated
position, new RSSI measurement, and historical obser-
vation window.

The environment’s stochasticity is governed entirely by the
shadowing term X, .

5) Objective and Episode Termination: The agent’s objec-
tive is to find a policy 7(a¢|s;) that maximizes the expected
discounted return:

Tinax
J(m) = Eq [Z vtrt] ©)
t=0

where 7 is the discount factor, balancing immediate and future
rewards.

An episode terminates when either of the following condi-
tions is met:

e Success: The UAV reaches within 30 m of the target
location.

o Timeout: The maximum number of decisions (300 steps)
is reached.

Terminal rewards are issued only upon episode termination,
as defined in the reward function.

III. DEEP RECURRENT Q—NETWORK FOR PATH PLANNING
A. Deep Recurrent Q-Network Architecture and Training

The DRQN agent employs a recurrent dueling architecture
to process sequential observations and filter shadowing noise.
The network consists of: (1) two fully-connected feature
extraction layers with layer normalization (128 units each),
(2) a single-layer GRU with 256 hidden units to maintain
temporal context, and (3) separate value and advantage streams
for dueling Q-value decomposition. The feature extractor
processes raw state vectors s; € R'!, producing intermediate
representations h} € R'?%, The GRU layer propagates hidden
states across timesteps, enabling the network to recognize
temporal patterns such as local minima or oscillatory behavior:

hORV — GRU(h%, h;_;), hRYV ¢ R?56 (10)

where h;_; is the hidden state vector from the previous
timestep, which carries the network’s memory of past obser-
vations. The dueling streams estimate state value V' (s¢;6) € R
and action advantages A(s;,a;0) € R?, with Q-values com-
puted via advantage centering:

Qlse,a;0) = V(s:0) + (A(st7a; 9)
1 , (11)
S %:A(st,a )

Training utilizes Double DQN with sequential experience
replay, storing complete trajectories (capacity: 100,000). Mini-
batches sample B = 32 episodes, extracting contiguous
subsequences of length L ~ Uniform(4, 16) with reset hidden
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Fig. 1. Simulated results over 10,000 test episodes for o = {4,8,12} dB
comparing the Greedy, Prudent, and DRQN-based algorithms: (a) success rate;
(b) average number of steps

states hy = 0 for truncated backpropagation. Target Q-values
follow:

Yt :T’t+’Y'Q(St+1vargH5}XQ(5t+17a';9)%‘97) (12)

The network is trained by minimizing the Smooth L1 (Huber)
loss, which reduces sensitivity to outliers:

3(Q-y)? iflQ-yl<1

13
|Q —yl— 5 otherwise (13)

L(Q.y) = {
with gradient clipping (max-norm 1.0) and Adam optimizer
(¢ = 5 x 107%). The target network updates via Polyak
averaging:

0~ <+ Teorit + (1 — Tsoft)e_, Teoft = 0.001 (14)

Exploration follows e-Greedy with linear decay from ey =
1.0 to €nin = 0.05 over 300,000 steps, combined with
episode-based curriculum capping for late-phase stability. Af-
ter Nyain = 500 episodes, the learned policy deploys with
e=0:

7 (s¢) = argrgleaj(Q(st,a;H*,ht_l) (15)
maintaining recurrent state h, ; for context-aware strategy
selection.

IV. SIMULATIONS AND RESULTS
A. Simulation Environment

We consider a single-UAV single-target search task in a
forest-like outdoor environment with log-normal shadowing.
We evaluated three shadowing standard deviations, o €
{4,8,12} dB, with 10,000 test episodes for each o. At the
beginning of each episode, the UAV starts from a fixed
geodetic position. The target location is uniformly sampled
from an annulus centered at the start of the UAV, with inner
and outer radii of 100m and 120 m, respectively.

Episode seeds are paired across methods so that initial
conditions, shadowing realizations, and per-step RSSI gen-
eration are identical. We do not use domain randomization
across deviations. Instead, we train a separate recurrent policy
for each o. For a given o, training runs for 5,000 episodes
using recurrent temporal-difference learning with hidden state
carried within episodes, e-Greedy exploration over the two
macro actions, and periodic target-network updates. All other
optimization and replay settings are kept fixed for all deviation
levels.

B. Simulation Results

We evaluated the following two metrics for each shadowing
deviation o. The first metric is the success rate, which is the
fraction of successful episodes among total test episodes. The
second metric is the average number of steps in successful
episodes.

1) Success rate: Fig. 1(a) illustrates the success rate of
each algorithm, evaluated according to the success criterion
described in Section II-C(5).

When o = 4, all three algorithms achieve a success rate
of over 99%, demonstrating stable path-finding performance
under mild shadowing loss. In particular, the DRQN-based
algorithm achieves a 100% success rate, indicating that it
consistently selects the correct path in all episodes by choosing
the Prudent macro action when sudden fluctuations in RSSI
signal strength occur. As the shadowing deviation increases,
all algorithms exhibit a gradual decline in success rate. When
o = 8, the Greedy algorithm achieves 89%, the Prudent algo-
rithm achieves 93%, and the DRQN-based algorithm maintains
a robust performance with 96% success rate. Under severe
shadowing loss with ¢ = 12, the success rate of the Greedy
algorithm decreases to 76%. This degradation occurs because
the Greedy algorithm is highly dependent on its previous
decisions; once it deviates due to severe shadowing loss, it
tends to continue following an incorrect path, resulting in
frequent timeouts. The Prudent algorithm achieves a higher
success rate of 82% compared to Greedy, yet its frequent
use of cross-search and fork-search phases under severe shad-
owing loss increases the total number of decisions beyond
Tmax- In contrast, the DRQN-based algorithm achieves 91%
success rate by dynamically switching between the Greedy
and Prudent strategies, successfully balancing exploration and
exploitation to construct an effective path.

2) Average number of steps: Fig. 1(b) shows the average
number of decision steps for the three proposed algorithms.
The step count increases monotonically with the shadowing
deviation o. For 0 = 4 and 8 dB, the ordering is consistent:
Prudent incurs the largest number of steps, followed by
Greedy, and then the DRQN-based algorithm. This is expected
since Prudent’s conservative cross-/fork-search phases lead to
longer trajectories, whereas Greedy can be faster but still
pays a nontrivial backtracking cost when it commits to a
suboptimal heading. The DRQN-based policy reduces such
detours by selectively switching macros, yielding fewer steps
than Greedy. When ¢ = 12dB, the average step count of



Greedy exceeds that of Prudent. As suggested by Fig. 1(a),
under heavy shadowing loss, Greedy more often deviates
onto incorrect paths and requires a larger recovery effort to
reestablish a correct route, which increases the number of steps
among its successful episodes.

V. CONCLUSION

This study compared three RSSI-based UAV path planning
algorithms for SAR in GPS-denied mountainous environ-
ments. The Greedy algorithm was fast but sensitive to shad-
owing, while the Prudent algorithm was stable but slower. The
DRQN-based method combined both advantages, achieving
high success rates like Prudent with fewer decision steps like
Greedy, showing strong adaptability under severe shadowing.
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