
Token Energy Optimization (Semantic Cost Proxy)
in GPT-2 using Counterfactual Semantic Budgets:

MetabolicGPT-2
Abhijit Nayak

Charlotte, North Carolina, USA
Email: nabhijit787@gmail.com

Raj Bhowmik
Dublin, California, USA

Email: bhowmick.raj10@gmail.com

Abstract—Large language models (LLMs) are increasingly
deployed in settings where generation quality must be bal-
anced against strict resource or verbosity constraints. Existing
approaches to constrained text generation typically operate at
decoding time, or optimize coarse proxies such as output length,
with limited visibility into the semantic importance of individual
tokens. In this work, we present MetabolicGPT-2, a GPT-2–based
language model that learns an explicit token-level semantic cost
proxy and generates under user-specified semantic budgets. Each
token is assigned a non-negative cost that combines a corpus-
driven synthetic prior with a counterfactual semantic cost (CSC)
computed from a sentence encoder by measuring embedding
change when a token is removed. We cast budget control
as constrained optimization: minimize language modeling loss
subject to an expected total proxy-cost constraint. We implement
this by augmenting GPT-2 with a cost head, learnable token-cost
parameters, a Lagrangian dual variable, and an online affine
calibration layer that aligns proxy costs to CSC at the sequence
level. Experiments on WikiText-2 illustrate that learned costs
correlate with semantic importance and that budget settings
shift the model toward lower-cost continuations while largely
preserving fluency. Throughout, the term “energy” refers to this
semantic proxy cost rather than direct hardware joules.

Index Terms—large language models, constrained text gener-
ation, energy modeling, semantic budgets, counterfactual expla-
nations, GPT-2

I. INTRODUCTION

The success of large language models (LLMs) has led to
widespread deployment in interactive assistants, code genera-
tion, clinical NLP, and other settings where both quality and
cost matter. Cost can be measured in many ways: latency,
wall-clock runtime, energy per token, or even the cognitive
effort required to consume a response. Recent work has begun
to measure the energy footprint of LLM inference and to
benchmark models by energy efficiency in realistic serving
settings [9], [10], [11], [13]. At the same time, constrained
decoding methods such as MUCOCO and COLD decoding
show that generation can be steered to satisfy various linguistic
or logical constraints without retraining the base model [1],
[2].

Most of these approaches treat the language model as a
black box: constraints are enforced either through decoding
heuristics or by post-hoc filtering. In contrast, this paper ex-
plores an orthogonal direction: can we train an autoregressive
language model that internally models a token-level notion

of “energy” or “cost”, and then use this energy to enforce
semantic budgets during generation?

We introduce MetabolicGPT-2, a GPT-2 style transformer
augmented with:

• a corpus-dependent metabolic tokenizer that assigns each
vocabulary token a synthetic cost based on frequency,
character length, and heuristic penalties for boilerplate
tokens,

• a K-dimensional cost head and learnable token–cost
parameters that define a non-negative proxy cost cθ(xt)
for each token,

• a counterfactual semantic cost (CSC) labeler that es-
timates semantic importance by removing tokens and
measuring the change in a sentence-encoder embedding,

• a Lagrangian budget term with dual variable λ that
encourages the expected total cost to match a user-defined
budget, and

• an online affine calibration layer that aligns proxy costs
with CSC at the sequence level.

Qualitatively, MetabolicGPT-2 behaves like a language
model with a “metabolism”: each token consumes a portion
of a budget, and the model is encouraged to allocate costs
to semantically important tokens while respecting a global
constraint. We train on WikiText-2 [6] and evaluate budget
tracking using mean absolute error (MAE), mean absolute
percentage error (MAPE), and hit rates within relative toler-
ance bands. Our current prototype learns a meaningful and
interpretable token–cost structure, assigning low energy to
frequent function words and higher energy to semantically
rich or rare content words. It uses this learned notion of cost
to modulate its generations in response to different budget
settings.

II. RESEARCH OBJECTIVE

We consider an autoregressive language model pθ over
token sequences x = (x1, . . . , xT ) from a vocabulary V , with
parameters θ and standard factorization

pθ(x) =

T∏
t=1

pθ(xt | x<t). (1)



Our goal is to equip this model with a token-level cost function
cθ : V → R≥0 and to enforce an expected total budget
constraint of the form

Ex∼D
[
Cproxy(x; θ)

]
≤ B, (2)

where

Cproxy(x; θ) =

T∑
t=1

cθ(xt) (3)

denotes total proxy cost and B ∈ RK is a vector of target
budgets for K cost dimensions.

Concretely, our objectives are:
1) Define a synthetic energy model over the vocabulary

that provides a structured prior on token costs based
on corpus statistics and simple heuristics.

2) Learn a token-level semantic cost signal by supervising
the cost head with CSC labels derived from a sentence
encoder.

3) Formulate and implement a Lagrangian training ob-
jective that trades off language modeling loss against
deviations from a prescribed expected budget.

4) Calibrate the learned proxy cost to CSC via online affine
regression so that user budgets can be expressed in
semantically meaningful units.

5) Evaluate how well the trained model generates mean-
ingful text under budget constraints.

III. RELATED WORK

A. Constrained Text Generation

Controlled and constrained text generation has been widely
studied. MUCOCO [1] casts controlled generation as contin-
uous optimization in the space of hidden states, supporting
multiple attribute constraints without retraining the base LM.
COLD decoding [2] formulates constrained generation as
sampling from an energy-based model over relaxed token
sequences, optimized via Langevin dynamics. Subsequent sur-
veys and code repositories catalogue a range of constrained
decoding strategies [3].

These methods express constraints at the level of sequence-
level attributes (e.g., sentiment, toxicity, topicality), and typ-
ically leave the internal representation of the LM untouched.
Our work instead introduces a dedicated token cost head and
treats budget control as a first-class training objective, closer
in spirit to constrained optimization in structured prediction.

B. Counterfactual Token Importance

Counterfactual explanations provide local feature impor-
tance scores by searching for small changes that flip a model
prediction. In text, token-level importance can be estimated
through gradient-based methods, attention-based scores, or ex-
plicit counterfactual edits. TIGTEC [4] uses token-importance
signals to guide counterfactual text edits, and follow-up work
investigates counterfactual feature importance for interpretabil-
ity [5]. These methods typically operate on a task-specific
classifier, not on a generative model.

Our CSC labeler borrows the counterfactual idea but applies
it to a sentence encoder: each token’s importance is measured
by the change in embedding when that token is deleted. We
then train a generative model to produce internal cost estimates
that approximate CSC while also satisfying budget constraints.

C. Energy and Efficiency in LLMs

A complementary line of work benchmarks and reduces
the energy cost of LLM inference, reporting energy per token
across models and hardware [9], [10], [11], [12], and improv-
ing efficiency via caching and reuse (e.g., StoreLLM [13]).
These efforts are system-level, whereas we learn a token cost
in semantic space to enforce budgets; a key future direction is
aligning semantic budgets with measured hardware energy.

IV. METHODOLOGY

A. Notation and Problem Formulation

Let x = (x1, . . . , xT ) be a sequence of tokens from
vocabulary V , and let pθ(xt | x<t) denote the next-token
distribution. We introduce a non-negative proxy cost function
cθ(xt) ≥ 0 and define

Cproxy(x; θ) =

T∑
t=1

cθ(xt), (4)

as well as a true semantic cost

CCSC(x) =

T∑
t=1

cCSC(xt), (5)

where cCSC(xt) is obtained from the CSC labeler described
below.

The unconstrained language modeling loss is

LLM(θ) = Ex∼D

[
−

T∑
t=1

log pθ(xt | x<t)

]
. (6)

We seek to minimize LLM while enforcing the expected budget
constraint in (2).

We apply a Lagrangian relaxation with non-negative dual
variable λ ∈ RK

≥0:

L(θ, λ) = LLM(θ) + λ⊤(E[Cproxy(x; θ)]−B
)
. (7)

In practice, we add additional regularization terms and a CSC
supervision loss, but this is the core structure.

B. Metabolic Tokenizer: Synthetic Energy Model

The metabolic tokenizer wraps a GPT-2 tokenizer and builds
a simple synthetic energy model over the vocabulary:

1) It collects token counts from the training corpus to
estimate a frequency distribution f(v) over v ∈ V .

2) It decodes each token to text and computes its character
length ℓ(v).

3) It defines a base cost

c̃(v) = α · 1

f(v) + ϵ
+ β · ℓ(v), (8)

for hyperparameters α, β > 0 and a small ϵ.



4) Costs are normalized so that the mean cost across the
vocabulary is approximately 1, and a minimum cost floor
cmin (e.g., 0.3) is enforced to avoid almost free tokens.

5) Tokens whose decoded forms resemble section headings
or metadata (e.g., “Summary”, “Biography”) receive an
additional penalty to discourage pathological generation
that exploits cheap boilerplate.

This yields a synthetic cost table csyn(v) that acts as a
structured prior: frequent and short tokens are relatively cheap,
and rare or long tokens are relatively expensive. The learned
cost head can then refine this prior using CSC supervision.

C. Counterfactual Semantic Cost (CSC)

We define CSC using a sentence encoder (”sentence-
transformers/all-MiniLM-L6-v2”) f(·) (e.g., a transformer
trained for semantic similarity). For a text x = (x1, . . . , xT )
and token pieces, pieces[t] corresponding to xt:

1) Compute the embedding of the full text:

efull = f(x). (9)

2) Form a counterfactual text x−t by removing the token
at position t and concatenating the remaining pieces.

3) Compute the embedding of the counterfactual:

ecf = f(x−t). (10)

4) Define the CSC for token t as the cosine distance
between embeddings:

cCSC(xt) = 1− ⟨efull, ecf⟩. (11)

Tokens whose removal barely changes the encoding have small
CSC; tokens critical to the meaning have larger CSC. The CSC
labeler computes these scores for subsets of tokens and stores
them alongside tokenized text in a cached dataset.

D. MetabolicGPT-2 Architecture

MetabolicGPT-2 extends a GPT-2–small backbone with
several components:

• A K-dimensional cost head gϕ that maps per-time-step
hidden states ht to non-negative cost vectors:

zt = gϕ(ht), chead
t = Softplus(zt) ∈ RK

≥0. (12)

The Softplus nonlinearity ensures non-negativity and
smooth gradients.

• Learnable token cost parameters wv ∈ RK for each
vocabulary token v, converted to costs via Softplus:

ctoken(v) = Softplus(wv). (13)

• A vocabulary-level cost map Cvocab(v) that mixes token-
specific and embedding-based signals:

Cvocab(v) = max
(
cmin, αmix c

token(v)+(1−αmix) c
head(ev)

)
,

(14)
where ev is the token embedding and αmix ∈ [0, 1].

• A budget conditioning pathway: a budget vector B ∈
RK in CSC space is normalized and projected into the

model’s hidden dimension and added to hidden states as
an additive bias:

B̃ = log

(
1 +

B

scale

)
, u = WbudB̃, (15)

h′
t = ht + u, (16)

where scale is approximately the median CSC budget and
Wbud is a learned projection matrix.

• A dual variable vector λ ∈ RK
≥0 stored as a parameter

buffer and updated via projected stochastic gradient steps.
• Calibration parameters (a, b) used to map proxy costs into

CSC space,

CCSC(x) ≈ a+ b · Cproxy(x; θ), (17)

estimated with online ridge regression, as described next.

E. CSC Supervision and Online Calibration
CSC supervision encourages token-level proxy costs to

match CSC where labels are available. Let M denote indices
of tokens with finite CSC labels. We define a mean-squared
error loss:

LCSC(θ) = E

[
1

|M|
∑
t∈M

(
cθ(xt)− cCSC(xt)

)2]
. (18)

To align sequence-level totals, we fit an affine mapping from
total proxy cost to total CSC:

CCSC(x) ≈ a+ b · Cproxy(x; θ). (19)

An online affine module maintains running sums
Sx =

∑
i Cproxy(x

(i)), Sy =
∑

i CCSC(x
(i)),

Sxx =
∑

i Cproxy(x
(i))2, Sxy =

∑
i Cproxy(x

(i))CCSC(x
(i)),

and the count n. Given a ridge parameter γ, it computes

x̄ = Sx/n, ȳ = Sy/n, (20)

b =
Sxy − nx̄ȳ

(Sxx − nx̄2) + γ
, a = ȳ − bx̄. (21)

These parameters are periodically updated and stored for use
in both training diagnostics and inference.

F. Lagrangian Training and Dual Updates
The full training objective combines language modeling,

CSC supervision, the Lagrangian term, and regularizers:

Ltotal(θ, λ) = LLM(θ) + βCSCLCSC(θ)

+ λ⊤(Ĉproxy −B) + βconstr∥Ĉproxy −B∥22
+ Lentropy + Lrepetition + Lvocab-aux,

(22)

where Ĉproxy denotes the batch-average proxy cost vector, βCSC
and βconstr are hyperparameters, and the final three terms are
regularizers discussed below.

Model parameters θ are updated by gradient descent
(AdamW), while the dual variable λ is updated by projected
gradient ascent:

λ← Π[0,λmax]

(
λ+ µ(Ĉproxy −B)

)
, (23)

where µ is a dual learning rate, Π projects onto the box
[0, λmax]

K , and λmax is a preset upper bound.



G. Regularization and Anti-Degeneracy

To prevent degenerate solutions such as repeating a single
cheap token, we employ:

• Entropy regularization:

Lentropy = −αentE

[
1

T

T∑
t=1

H
(
pθ(· | x<t)

)]
, (24)

which penalizes low entropy (overly peaked) predictive
distributions.

• Repetition penalty that discourages low token diver-
sity within a sequence, for example by penalizing 1 −
|unique(x)|/T .

• Vocab-aux loss that encourages the vocabulary-level cost
map Cvocab(v) to correlate with empirical mean CSC per
token, estimated from training data.

• Gradient clipping on the overall gradient norm to stabi-
lize training under the Lagrangian dynamics.

V. EXPERIMENTAL SETUP

We evaluate MetabolicGPT-2 on the WikiText-2 language
modeling benchmark [6]. This dataset consists of around two
million words of Wikipedia text and is widely used to study
language modeling and regularization [7], [8].

A. Data and Preprocessing

We use the standard training (23767 texts) and validation
(2461 texts) splits of WikiText-2, tokenize text with a GPT-
2 tokenizer, and cap sequence length at 256 tokens (exclud-
ing the final label token). For runs with CSC enabled, the
CSC labeler (CSC statistics computed over 20000 samples)
processes a subset of sequences per epoch to compute token-
level costs, which are then cached. The cached dataset yields
tensors of input IDs, labels, and CSC labels (with missing
entries represented as NaN).

B. Model and Training Hyperparameters

The base model is GPT-2–small (approximately 124M pa-
rameters), extended with:

• a K-dimensional cost head (K = 3), user input budgets:
[100.0, 150.0, 200.0] when transformed into CSC space:
[5.24, 7.48, 9.73]

• learnable token cost parameters initialized so that
Softplus outputs are around 0.05,

• a budget projection layer and dual variable.
We train GPT-2 with AdamW for model parameters, using

a base learning rate on the order of 8 × 10−6 and a higher
effective learning rate for cost-related parameters (scaled by
a multiplier). The dual variable is updated via SGD with a
small learning rate µ = 0.15 for 15 epochs. Other values
that we used during training were lambda_max = 100.0,
grad_clip_norm = 1.0, repetition_penalty = 0.5,
entropy_reg = 0.025, vocab_aux_weight = 0.5,
weight_decay = 0.01, gen_budgets (in CSC space)
= [1.1, 1.38, 1.65], and gen_prompts = “The future of
artificial intelligence”.

Budgets are specified in CSC space. CSC statistics (mean,
variance, and quantiles of total CSC per sequence) are
estimated from the training cache and used to define low,
medium, and high budget targets. The median CSC budget
(0.52) serves as the normalization scale in the budget encoder.
A simple curriculum schedule (curriculum learning) starts
with looser budgets and gradually tightens toward the target
budgets over epochs. Unless stated otherwise, CSC labels use
sentence-transformers/all-MiniLM-L6-v2.
We additionally ran a sensitivity check with
all-mpnet-base-v2 and observed similar qualitative
token-importance trends; we will expand this ablation with
full budget-tracking metrics in an extended version.

C. Metrics

For a set of target budgets {Bj} we compute, over generated
sequences:

• MAE: mean absolute error between achieved and target
total costs.

• MAPE: mean absolute percentage error.
• Hit@δ: fraction of sequences whose achieved cost lies

within ±δ% of the target, for δ ∈ {10, 20, 50}.
• Some other metrics that we monitored were: training loss

(average total loss on the training batches), validation
loss (total loss on the held-out set), aux (sum of auxiliary
losses such as CSC and vocab-aux terms), err (average
budget error per batch), lambda (current value of the
dual variable λ), shape (shape parameter controlling the
budget distribution), target budget (requested total cost
in CSC space), achieved budget (realised total proxy
cost), calib a and calib b (intercept and slope of the
affine calibration from proxy cost to CSC cost).

We compute these metrics both in proxy cost and, when
CSC is available at inference time, in CSC space as well.
Additional diagnostics include reliability curves (achieved vs.
target cost), distributions of token costs, and evolution of the
dual variable over training epochs.

VI. RESULTS AND DISCUSSION

A. Token Cost Structure

The learned token costs exhibit intuitive structure when
combined with the synthetic prior. Common function words
and punctuation tend to receive low costs, while rare content
words, numbers, and named entities are more expensive. Boil-
erplate tokens that resemble section headings are penalized
both by the synthetic model and, in many cases, by CSC
supervision, reducing the risk that the model “burns” budget
on metadata rather than substantive content.

CSC supervision and the vocab-aux loss encourage tokens
that frequently carry high semantic importance (as measured
by the CSC labeler) to be expensive in the proxy cost map.
This yields a rough semantic ordering over the vocabulary,
which is qualitatively consistent with human judgments.



B. Budget Tracking Performance
Budget tracking remains challenging: across

low/medium/high targets, achieved CSC often collapses
to a narrow band (e.g., near 8 units) even when budgets differ
by nearly 2×, yielding moderate MAE/MAPE and unstable
Hit@20%. Hit@50% may remain high due to the wide
tolerance, while Hit@10%/Hit@20% reveal the collapse.

This behavior suggests that, despite the Lagrangian term and
dual updates, the model finds a comfortable operating point
in cost space and resists moving far from it when the budget
changes. Several factors may contribute:

• Budget signals enter the model as a relatively small
additive bias on hidden states, competing with strong
pretrained weights.

• The dual variable may adapt too slowly or saturate at its
clipping bound, preventing strong gradients from pushing
costs toward the target.

• CSC supervision, calibration, and budget constraints to-
gether create a multi-objective trade-off where improv-
ing budget tracking can harm language modeling or
proxy/CSC alignment.

C. Qualitative Generation Behavior
Qualitatively, changing the requested budget influences both

length and lexical choice. Lower budgets tend to yield shorter,
more telegraphic responses with fewer high-cost content
words, while higher budgets allow for richer vocabulary and
more elaboration. However, the mapping between budget and
perceived verbosity is noisy, reflecting the incomplete budget
calibration.

Inspection of token-level costs in generated text reveals that
the model assigns higher costs to semantically central words
(e.g., key nouns and verbs) and lower costs to syntactic glue.
This aligns with the CSC design and suggests that the token-
level energy model is meaningful, even if aggregate budget
control remains imperfect.

To illustrate cross-domain behavior beyond WikiText-2, we
include qualitative prompts drawn from multiple corpora (e.g.,
WikiText-2 validation plus out-of-domain snippets); this is
complementary to the quantitative evaluation on WikiText-2.
These observations support the overall design: both the prior
and the CSC-based supervision are important to anchor the
cost model, and the Lagrangian machinery must be tuned
aggressively enough to influence training. Some generation
examples (staying within the target CSC budgets) using the
trained MetabolicGPT-2 LLM are:

• Example 1 (target CSC budget 1.47, achieved CSC
budget 0.51).
Prompt: “The future of artificial intelligence.”
Generation: “The future of artificial intelligence rests in
the area of machines that write and know words, where
present data also consist. Both humans and AI enthusiasts
debate between theoretical differences as to which pieces
of paper support building these out for researchers such
as itself; through very natural decision theory systems
one.”

• Example 2 (target CSC budget 1.62, achieved CSC
budget 0.87).
Prompt: “The Sinclair Scientific Programmable was in-
troduced in 1975.”
Generation: “The Sinclair Scientific Programmable was
introduced in 1975. It offered hobbyists and students a
low-cost way to experiment with programmable calcula-
tions, despite its limited memory and unconventional key
layout.”

• Example 3 (target CSC budget 1.55, achieved CSC
budget 0.68).
Prompt: “Tropical Storm was the tenth tropical storm of
the 2008 Atlantic hurricane season.”
Generation: “Tropical Storm was the tenth tropical storm
of the 2008 Atlantic hurricane season. Although it never
reached hurricane strength, the system produced heavy
rainfall and localized flooding along portions of the Gulf
Coast before dissipating inland.”

D. Metrics and Figures

We selected epoch 13 (out of 15) as the best balanced
checkpoint in terms of language coherence and budget control.
At this epoch, we obtained the best values for all our metrics
as follows:

• Curriculum Budgets (curriculum learning) in CSC space
were {5.01, 7.16, 9.31}

• Training Loss = 0.4717, Auxiliary Loss = 0.0013,
Average Budget Error = 0.387

• Dual Variable λ = 2.084, and Shape parameter = 0.93
• Validation Loss is 0.3651 with Affine Calibration param-

eters a = −7.297 and b = 1.000
• Average Budget MAE across the 3 curriculum budgets is

1.556

TABLE I
BUDGET CONTROL METRICS FOR THE BEST BALANCED CHECKPOINT

(EPOCH 13). MAE AND MAPE ARE COMPUTED BETWEEN TARGET AND
ACHIEVED TOTAL COSTS; HIT@δ REPORTS THE FRACTION OF SEQUENCES

WITHIN ±δ% OF THE TARGET.

Budget MAE MAPE (%) Hit@10% Hit@20% Hit@50% Ach. Tar.

5.01 1.78 35.4 0.0 0.0 100.0 6.2 5.01
7.16 0.37 5.2 100.0 100.0 100.0 6.79 7.16
9.31 2.52 27.1 0.0 0.0 100.0 7.4 9.31

Average MAE 1.556

Table I summarizes the budget-control metrics for this
checkpoint. The model matches the medium budget (7.16)
very closely, while it under-spends the high budget and
over-shoots the low budget.

Figs. 1 and 2 summarize the learned token-cost distribution.
Fig. 1 shows a histogram over the full vocabulary (size
50,257) with mean and median costs marked, while Fig. 2
compares the 100 cheapest and 100 most expensive tokens
using box plots. The separation between these groups



Fig. 1. Token-cost distribution over the full vocabulary (size 50,257). The
histogram shows the frequency of learned token costs, with vertical lines
indicating the mean and median.

Fig. 2. Cost distribution for the 100 cheapest and 100 most expensive tokens.

indicates that the cost model has learned a meaningful
ordering of tokens.

VII. CONCLUSION AND FUTURE WORK

We presented MetabolicGPT-2, a GPT-2–based language
model equipped with a token-level energy model and trained to
respect semantic budgets. The approach combines a synthetic
vocabulary-level prior, counterfactual semantic costs from a
sentence encoder, a Lagrangian budget term with dual updates,
and online affine calibration. Experiments on WikiText-2 show
that the model learns a meaningful ordering of tokens by cost
and that generations respond to budget changes, but also reveal
a tendency to undershoot budgets and collapse to a narrow
achieved cost range.

This work suggests several directions for future research:
• Stronger and more localized budget conditioning (e.g.,

per layer or per head) to increase the influence of budgets
on hidden states.

• Alternative constrained optimization schemes, such as
primal-dual methods with adaptive step sizes or aug-
mented Lagrangians tailored to sequence models.

• Richer semantic cost definitions, including task-aware en-
coders or multi-dimensional costs that combine semantics
with estimated hardware energy per token.

• Scaling the approach to modern decoder-only architec-
tures and integrating it with system-level energy measure-
ments to close the loop between semantic and physical
budgets.

A key future direction is to connect our semantic proxy costs
to measured hardware energy. We plan to log GPU power dur-
ing decoding (e.g., via NVML) and convert power–time traces
into per-request Joules, along with latency and tokens gener-
ated. Using these measurements, we will learn a lightweight
calibration from total predicted semantic cost to Joules and
explore enforcing physical energy budgets directly (in addition
to semantic budgets). This will clarify the trade-offs between
budget satisfaction, fluency, and real energy savings across
GPUs and decoding settings. We view MetabolicGPT-2 as a
research prototype and provide implementation details (cost
computation, calibration, and metrics) to facilitate reproducible
follow-up studies on semantic budgeting and energy-aware
decoding.

REFERENCES

[1] S. Kumar, E. Malmi, A. Severyn, and Y. Tsvetkov, “Controlled text
generation as continuous optimization with multiple constraints,” in
Advances in Neural Information Processing Systems (NeurIPS 2021),
vol. 34, 2021.

[2] L. Qin, S. Welleck, D. Khashabi, and Y. Choi, “COLD decoding:
Energy-based constrained text generation with Langevin dynamics,” in
Advances in Neural Information Processing Systems (NeurIPS 2022),
vol. 35, 2022.

[3] S. Liu et al., “Awesome LLM constrained decoding,” GitHub repository,
2025.

[4] M. Bhan, A. Vernier, and F. Bonchi, “TIGTEC: Token importance guided
text counterfactuals,” in Proc. NLP Conf., 2023.

[5] M. Bhan, G. Chaslot, and F. Bonchi, “Enhancing textual counterfactual
explanation intelligibility with counterfactual feature importance,” in
Proc. TrustNLP, 2023.

[6] S. Merity, C. Xiong, J. Bradbury, and R. Socher, “Pointer sentinel
mixture models,” arXiv preprint arXiv:1609.07843, 2016.

[7] S. Merity, N. S. Keskar, and R. Socher, “Regularizing and optimizing
LSTM language models,” arXiv preprint arXiv:1708.02182, 2017.

[8] Z. Yang, Z. Dai, R. Salakhutdinov, and W. W. Cohen, “Breaking the
softmax bottleneck: A high-rank RNN language model,” arXiv preprint
arXiv:1711.03953, 2017.

[9] S. Poddar et al., “Insights from benchmarking inference energy in large
language models,” in Proc. NAACL, 2025.

[10] P. Wilhelm, M. Boehm, and B. co-authors, “Advocating energy-per-token
in LLM inference,” in Proc. EuroMLSys, 2025.

[11] J. Hodak et al., “The ML.ENERGY benchmark: Toward automated
evaluation of energy use in ML systems,” arXiv preprint, 2025.

[12] M. Shah et al., “Benchmarking the energy costs of large language model
inference,” Tech. Rep., 2023.

[13] D. Wang, H. Lyu, and Y. co-authors, “StoreLLM: Energy-efficient large
language model inference with activation storage and reuse,” in Proc.
ACM Syst. Conf., 2025.

[14] “ChatGPT ,” chatgpt.com. https://www.chatgpt.com


