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Abstract— Large Vision Language Models (LVLMs) offer
strong visual reasoning capabilities but their direct application
to industrial defect inspection remains limited due to domain
complexity, diverse defect modes, and the need for structured
reporting. This paper presents a unified fine-tuning framework
that combines Supervised Fine-Tuning (SFT) with Group
Relative Policy Optimization (GRPO) to adapt open-source
LVLM:s for multimodal defect inspection in Liquefied Natural
Gas (LNG) tank manufacturing. Using a balanced dataset
derived from 188,631 inspection images, the proposed method
enables each LVLM to perform joint defect localization,
attribute prediction, and automatic generation of structured
JSON inspection reports. The GRPO stage incorporates
verifiable reward signals that enforce JSON validity, schema
compliance, bounding box accuracy, and metadata consistency.
Experimental results on four LVLM architectures demonstrate
substantial performance gains, with mean Average Precision at
IoU 0.5 improving from 35-39 percent to 84-89 percent and F1
scores for defect labels increasing from approximately 14
percent to above 84 percent. The best-performing model,
Qwen2.5-VL-7B, achieves 88.77 percent mAP at IoU 0.5 and
over 90 percent F1 in key metadata fields. These findings
indicate that SFT and GRPO provide complementary benefits,
enabling LVLMs to deliver accurate, interpretable, and
computationally efficient inspection for next-generation
manufacturing environments.
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I. INTRODUCTION

Quality assurance is a core determinant of manufacturing
competitiveness. Classical methodologies such as Total
Quality Management, Six Sigma, and Lean Manufacturing
established systematic approaches for reducing variability and
improving process reliability [1]. With the emergence of
Industry 4.0 and Cyber—Physical Systems (CPS),
manufacturers increasingly rely on interconnected sensors,
automation, and data-driven decision-making to enhance
production quality [2]. Yet despite these advances, ensuring
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consistent product quality remains challenging, particularly in
complex or safety-critical production environments.

Defect inspection plays a critical role in quality assurance
by enabling early anomaly detection and reducing scrap,
rework, and downstream failures [3], [4]. Traditional
inspection processes depend heavily on human operators,
whose performance is limited by fatigue, subjectivity, and
inconsistency. Reported misclassification rates can reach 15—
20% even in precision manufacturing, with higher error rates
observed in high-throughput and safety-critical industries
such as oil and gas [5], [6]. These limitations have driven the
adoption of computer-vision-based inspection systems using
Machine Learning (ML) and Deep Learning (DL).
Convolutional Neural Networks (CNNs), including YOLO-
based detectors [7], are now widely deployed in industrial
inspection tasks. However, their effectiveness degrades under
changing defect patterns, variable illumination, or process
drift, and their reliance on large labeled datasets makes
adaptation costly, particularly for small and medium-sized
enterprises (SMEs) [8].

Large Vision—Language Models (LVLMs) offer a
promising alternative by integrating visual perception with
natural-language reasoning. Recent models such as LLaVA-
1.6 [9], Gemma-3 [10], and Qwen2.5-VL [11] enable context-
aware inspection through multimodal reasoning, semantic
interpretation, and natural-language interaction [12]. Their
strong zero-shot and few-shot generalization capabilities
allow adaptation to unseen defect types without extensive
retraining, which is highly attractive for dynamic industrial
environments. Despite these advantages, LVLM applications
in industrial defect inspection remain underexplored, with
most prior studies focusing on natural-image understanding
rather than manufacturing-specific workflows [13], [14].

In this work, we investigate LVLM-based multimodal
defect inspection in Liquefied Natural Gas (LNG) tank
manufacturing, a highly specialized process involving
welding, surface treatment, cable routing, pipe installation,
cutting, and foam spraying. These operations exhibit diverse
and evolving defect categories that challenge conventional
vision-based systems. By leveraging LVLMs, we aim to
enable unified defect localization, semantic interpretation, and
automatic generation of structured inspection reports to
support human operators.



Specifically, this study makes the following contributions:

e  We propose an LVLM-based multimodal inspection
framework capable of defect localization, semantic
reasoning, and automated report generation with
interpretable outputs.

e We optimize fine-tuning and inference using
Supervised Fine-Tuning (SFT) and Group Relative
Policy Optimization (GRPO), enabling efficient
deployment on a single 24GB GPU for on-premises
industrial use while preserving data confidentiality.

Experimental results demonstrate that properly optimized
LVLMs provide a scalable and interpretable alternative to
conventional CNN-based inspection systems, supporting
more adaptive and autonomous quality assurance pipelines for
next-generation manufacturing.

II. RELATED WORKS

A. Classical Defect Detection Approaches

Traditional automated defect detection methods can be
broadly categorized into three groups. Embedding-based
methods [15], [16], [17] extract representations of defect-free
samples using pretrained encoders and detect anomalies via
distance-based similarity measures. Reconstruction-based
methods [18], [19], [20] learn generative models on normal
data and identify defects through reconstruction errors. CLIP-
based methods [21], [22] exploit multimodal alignment
between visual features and textual prompts to enable zero-
shot or weakly supervised anomaly detection.

While these methods achieve strong pixel-level or image-
level anomaly prediction, they lack the capability to produce
semantic explanations, structured metadata, or comprehensive
inspection reports—abilities increasingly required in smart
manufacturing environments.

B. LVLMs for Industrial Defect Detection

Motivated by the strong perceptual and reasoning abilities
of LVLMs, recent works have begun exploring their
applicability to quality inspection. Several studies apply
LVLMs directly, without fine-tuning, to anomaly detection or
visual question answering [23], [24], [25]. For example, Chen
et al. [23] introduces specialized input modules tailored to
question types. However, LVLMs trained primarily for
general-purpose tasks often struggle with industrial defects
unless properly adapted [26].

To improve domain specificity, a number of methods
perform SFT on industrial anomaly datasets [13], [26], [27].
AnomalyGPT [13] uses dual branches to generate anomaly
masks and textual descriptions from synthetic data.
Anomaly-OV [26] introduces a Look Twice Feature Matching
(LTFM) mechanism to emphasize abnormal visual tokens.
Although SFT significantly improves detection quality, SFT-
based models still depend heavily on annotated data, struggle
to generalize to real-world defect diversity, and optimize fixed
training objectives that may not fully align with downstream
reasoning tasks.

C. Reinforcement Learning and GRPO-Based Alignment

To address the limitations of SFT, recent works
incorporate GRPO to align LVLMs using task-specific
rewards and preference-based feedback [28], [29], [30](Li et
al. 2025; Zhao et al. 2025; Zeng et al. 2025; Chao et al. 2025).
LR-IAD [28] introduces focal rewards to mitigate class

imbalance, while AnomalyR1 [29] proposes the Reasoned
Outcome Alignment Metric (ROAM) to jointly optimize
reasoning consistency and prediction accuracy.

However, standard GRPO suffers from degraded reward
signals on hard samples where all candidate responses are
incorrect, leading to unstable optimization and limited
convergence. This motivates the development of more robust
GRPO strategies capable of handling difficult cases and
strengthening reasoning—detection alignment.

D. Research Gap and Contributions

Most existing defect detection studies focus on
homogeneous materials or single-process settings and do not
address the complexity of LNG tank manufacturing, which
involves heterogeneous fabrication processes and highly
diverse defect modes. Furthermore, prior LVLM-based
approaches have not jointly addressed defect localization,
structured metadata extraction, automated inspection-report
generation, nor efficient SFT-GRPO training on a single
24GB GPU.

These gaps motivate our proposed hybrid SFT-GRPO
LVLM framework, which unifies multimodal defect detection
and semantic reporting while enabling practical, on-premises
industrial deployment.

III. MATERIALS AND METHODS

This study proposes a unified SFT-GRPO fine-tuning
framework for adapting open-source LVLMs to multimodal
defect inspection in LNG tank manufacturing. We evaluate
four  representative = LVLMs—LLaVA-1.6-Mistral-7B,
Gemma-3-4B, Qwen2.5-VL-3B, and Qwen2.5-VL-7B—
selected to span multiple architectural families and parameter
scales under realistic on-premises constraints (single 24GB
GPU). The fine-tuned models perform defect localization and
structured inspection-report generation, producing JSON
outputs that include defect labels, bounding boxes, and
contextual metadata (e.g., tank type, location, part, and
quality).

As illustrated in Fig. 1, the proposed pipeline consists of
four stages: data preprocessing, prompt design, SFT-GRPO
fine-tuning, and evaluation.

A. Dataset and Data Preprocessing

We use the open-access AIHub LNG Tank Quality
Inspection Dataset [31], which contains 188,631 high-
resolution images covering major fabrication processes such
as welding, coating, insulation installation, cable routing, pipe
installation, and cutting. Each image includes defect labels,
bounding boxes, and contextual metadata.

To enable memory-efficient fine-tuning on 24GB GPUs,
we construct a balanced subset of 22,500 images across 15
defect classes (1500 samples per class). For each class, 500
images are used for SFT, 500 for GRPO reinforcement
learning, and 500 for testing, ensuring equal category
representation.

All original images (size 1920x1080) are resized to
512x512 pixels, and COCO-format bounding boxes [x, v,
width, height] are converted to corner coordinates [Xmin, Ymin,
Xmax, Ymax] Using standard normalization, as in (1) to (4):



Step 2: Prompt design

System A conversation between User and Assistant. The user asks a question, and the
Assistant solves it. The assistant first thinks about the reasoning process in the
mind (step-by-step logic) and then provides the user with the answer. The
reasoning process and answer are enclosed within <think> </think> and
<answer> </answer> tags, respectively, i.e., <think> reasoning process here

</think><answer> answer here </answer>.

User

[{"label": "<one of: Welding Defect, Weld Blowhole, Good Weld, Crack, Paint
Run, Coating Peeling, Coating Delamination, Scratch, Insulation Damage,
Cable Damage, Good Cable, Poor Binding, Good Binding, Poor Cutting, Good
Cutting>",

"bbox": [x_min, y_min, X_max, y_max],

"tank_type": "<one of: B, C>",

"location": "<one of: Outer wall, Inside, Outside>",

"sub_location": "<one of: Dished end, Body, Floor, Bulkhead, Support,
Platform>",

"part": "<one of: Joint, Coating, Insulation, Base Material, Cable, Cable Tie>",
"quality": "<one of: Good, Defective>"}]

You are an LNG tank quality inspector. Analyze the image and output m
valid JSON in the format:

Output multiple objects if multiple detections exist and return strictly JSON
format above.

Step 3: SFT-GRPO fine- Step 4: Evaluation

tuning
Outputs
<think>...</think>
Open source LVLMs: <answer>[ {'label': 'Weld
— + llava-v1.6-mistral-7b Blowhole’,

'bbox'": [130.0, 0.0, 267.8,
512.0], 'tank_type': 'C,

* Gemma-3-4B
*  Qwen2.5-VL-3B 'location': 'Outside’,
* Qwen2.5-VL-7B 'sub_location': 'Support’,
'part': 'Joint’,
l ‘quality':
'Defective’} } |[</answer>

Supervised Fine-tuning

Step 1: Data preprocessing \

(SFT) Performance
comparison ’
l « mAP@S50
+ F1
|| GRPO Reinforcement l
Learning

Fig. 1. The proposed unified SFT-GRPO fine-tuning framework for adapting open-source LVLMs to multimodal defect inspection in LNG tank

manufacturing.
Xwin = x + 1920 x 512 (1)
Vi =y + 1080 x 512 Q)
Xmax = (X + width) = 1920 x 512 3)
Ymax = (y + helghﬂ + 1080 x 512 (4)

Alongside defect labels and bounding boxes, six
categorical metadata fields are retained to support structured
inspection-report generation: tank type € {B, C}, location €
{Outer wall, Inside, Outside}, sub_location € {Dished end,
Body, Floor, Bulkhead, Support, Platform}, part € {Joint,
Coating, Insulation, Base Material, Cable, Cable Tie}, and
quality € {Good, Defective}. These structured annotations
provide the multimodal supervision required for unified defect
localization, attribute prediction, and JSON-format output
generation in subsequent SFT-GRPO fine-tuning.

B. Prompt Design

Prompt design plays a central role in enabling LVLMs to
perform unified defect localization, attribute prediction, and
structured inspection reporting. As shown in Fig. 1, two
prompt formats are used for the SFT and GRPO stages.

For SFT, we construct the user’s prompt for 7500 training
samples (500 per class). Each sample pairs an image with a
user instruction specifying the required JSON schema and
listing all valid categories for each metadata field (label,
tank type, location, sub location, part, quality). These
schema-constrained prompts guide the LVLM to produce
deterministic, machine-readable outputs.

For GRPO reinforcement learning, we utilize both the
system prompt and the user prompt applied to 7500-image set
for GRPO. The system prompt enforces a two-stage response:
hidden reasoning enclosed in <think>...</think> followed by
the JSON answer in <answer>...</answer>. The user prompt

mirrors the SFT schema to maintain consistent output
structure.

This design ensures consistent JSON formatting, strict
schema adherence, and separation of reasoning from
evaluation, enabling reliable supervision across both training
stages.

C. SFT-GRPO fine-tuning
Fine-tuning proceeds in two stages.

1) Supervised Fine-tuning (SFT): During the first stage,
each LVLM is adapted to the LNG-inspection domain using
7500 annotated training samples (500 per defect class). SFT
trains the model to follow schema-constrained prompts,
recognize defect patterns, and output valid JSON responses.
To support training on a single 24-GB GPU, we adopt
parameter-efficient fine-tuning (PEFT) using lightweight
adapter modules injected into attention layers. This approach
reduces trainable parameters while preserving the expressive
capacity of the pretrained LVLM. All models are initialized
from their Instruct-tuned 16-bit checkpoints to ensure
stability and consistent optimization behavior across
architectures. Training follows a unified configuration
(learning rate, batch size, warm-up, scheduler), summarized
in Table 1. SFT establishes the model’s foundational
abilities—prompt compliance, structured output generation,
defect recognition, and attribute prediction—providing the
base policy for reinforcement learning.

TABLE L PEFT CONFIGURATION PARAMETERS
Parameter Value
Optimizer adamw_8bit
Learning rate 2e-5
Learning rate strategy cosine




Parameter Value
bfl6 True
Warm up ratio 0.03
Epochs 3
LoRA Rank 16
Batch size 2
Gradient accumulation step 4

2) Group Relative Policy Optimization (GRPO)
Reinforcement Learning: The second stage further aligns the
LVLMs with downstream objectives through Group Relative
Policy Optimization (GRPO). GRPO is well-suited for defect
inspection because the task produces verifiable outputs—
JSON format, bounding box geometry, label correctness, and
metadata accuracy—allowing reward functions to provide
precise optimization signals. We use another 7500-sample set
(500 per class) for GRPO training. Each sample contains an
image, a system prompt enforcing the <think>...</think> and
<answer>...</answer> structure, and a user prompt
specifying the required JSON schema. GRPO samples
multiple candidate outputs per prompt and updates the model

based on the advantage of each candidate relative to the group.

To improve unified detection and report generation, we
design a reward suite consistent with Figure 1 and tailored to
the LNG inspection schema. Rewards operate only on the
<answer> slice, ensuring that chain-of-thought remains
hidden while still guiding structured reasoning. The main
reward components are:

e Format-Tag Reward: Ensures the output respects the
strict <think>...</think> and <answer>...</answer>
envelope. Reward = 1 if strictly matched; else 0.

e JSON Validity Reward: Encourages syntactically
correct JSON arrays. Reward = 1 for valid JSON; else
0.

e Schema Compliance Reward: Measures whether each
predicted object satisfies the required fields (label,
bbox, tank type, location, sub_location, part, material,
quality) and allowed category sets.

e Count Consistency Reward: Rewards matching the
number of predictions to the ground truth, normalized
by count difference.

e Detection IoU-F1 Reward: Uses greedy loU-based
matching (threshold 0.5) to compute label-aware F1,
rewarding correct localization while penalizing false
positives and false negatives.

e Attribute Accuracy Reward: Evaluates correctness of
all six metadata fields for loU-matched object pairs.

® Anti-Gibberish Reward: Light hygiene constraint
penalizing extraneous or noisy text beyond the JSON
output.

These rewards collectively shape both format correctness
(JSON wvalidity, tag structure, schema compliance) and
semantic accuracy (bbox localization, label prediction,
metadata  attributes). GRPO fine-tuning substantially

improves JSON correctness, loU-F1 detection performance,
and metadata prediction accuracy over the SFT-only baseline.

D. Performance Evaluation

Model performance is assessed using the test split of 7500
images (500 samples per defect class). Following the unified
output structure shown in Figure 1, evaluation focuses on two
complementary aspects: defect localization and structured
attribute prediction.

For localization, we compute mean Average Precision at
IoU 0.5 (mAP@50), where a prediction is considered correct
if the Intersection-over-Union between the predicted and
ground-truth bounding box is = 0.5. mAP@50 summarizes
per-class Average Precision (AP) and provides a reliable
measure of how well the LVLM identifies and localizes defect
regions.

For structured report generation, we measure F1 score, the
harmonic mean of precision and recall, to evaluate
classification accuracy for all categorical fields within the
JSON output. Specifically, F1 is computed for the predicted
label, tank type, location, sub location, part, and quality
attributes associated with each localized defect. These metrics
jointly capture the core requirements of industrial multimodal
inspection: accurate spatial localization and reliable semantic
interpretation.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

A. Experimental Setup

All experiments were conducted on a workstation with an
AMD Ryzen 9 7950X CPU, NVIDIA RTX 4090 GPU (24GB
VRAM), and 96GB DDR5 RAM. All LVLMs were fine-
tuned using the Unsloth framework [32].

B. SFT-GRPO Fine-tuning Process Evaluation

Table II reports the performance of four LVLMs before
and after applying the proposed SFT-GRPO fine-tuning
framework. Prior to fine-tuning, all models exhibit limited
localization capability on LNG-specific defects, with
mAP@50 values of 35-39%. After SFT-GRPO, localization
accuracy improves dramatically by 47-51 percentage points,
yielding final mAP@50 scores between 84% and 88%.
Among the evaluated models, Qwen2.5-VL-7B achieves the
highest localization accuracy (88.77% mAP@50), indicating
stronger spatial reasoning and more reliable bounding-box
prediction.

Fine-tuning also substantially improves structured
attribute prediction. Defect label F1 increases from
approximately 14% to 84-90%, reflecting effective schema
learning and reward-based alignment. High-level categorical
fields such as tank type, location, and quality consistently
achieve over 90% F1, demonstrating robust semantic
understanding of LNG manufacturing contexts. More fine-
grained attributes, including sub location and part, show
slightly lower absolute performance but still benefit from 30—
40 percentage point gains, confirming the effectiveness of
GRPO-based reward shaping for complex multimodal
reasoning. Overall, Qwen2.5-VL-7B delivers the strongest
performance across both localization and attribute prediction.
Notably, smaller models (Gemma-3-4B and Qwen2.5-VL-
3B) also achieve large performance gains, indicating that the
proposed pipeline remains effective under compact model and
24GB GPU constraints.



TABLE II. PERFORMANCE EVALUATION ON THE TEST SET BEFORE AND AFTER SFT-GRPO FINE-TUNING

Model mAP@50 (%) F1 (%)
(Before > After) (Before > After)
label tank type location sub_location part quality
LLaVA-1.6-Mistral- |  36.52 > 86.75 1423 > 87.10 | 3.59>97.27 | 15.56 > 72.08 | 10.71 > 4587 | 7.27 > 62.11 29.62 > 91.24
Geerlf—3—4B 39.32 > 85.61 13.88 > 8491 | 4.13>97.20 | 1220->70.10 | 9.77>44.73 | 823> 61.02 | 33.23 > 89.62
Qwen2.5-VL-3B 35.07 > 84.68 13.11 > 84.87 | 4.54>97.21 | 18.79 > 73.57 8.04 > 45.21 9.02 > 65.15 30.11 = 89.93
Qwen2.5-VL-7B 39.13 > 88.77 14.56 > 90.19 | 2.47>97.82 | 13.92 > 73.19 8.18 > 48.33 12.9 > 65.84 35.67 > 91.15

These results highlight the complementary roles of the two
training stages: SFT establishes prompt compliance and
structured output generation, while GRPO refines localization
accuracy and semantic consistency through verifiable, task-
aligned rewards.

C. Ablation study

To analyze the contribution of each training strategy and
contextualize performance against conventional detectors, we
conduct an ablation study on Qwen2.5-VL-7B and compare it
with representative YOLO-based and transformer-based
detectors, as summarized in Table III.

TABLE IIl. ABLATIONS ON DIFFERENT TRAINING STRATEGIES OF THE
OPTIMIZED QWEN2.5-VL-7B AND TRADITIONAL DETECTORS .

Model mAP@50 F1 (%)
(%)
label quality
Qwen2.5-VL-7B 85.26 84.16 89.92
(SFT)
Qwen2.5-VL-7B 85.23 84.33 90.01
(GRPO)
Qwen2.5-VL-7B 88.77 90.19 91.15
(SFT+GRPO)
YOLOvI1m 86.53 85.01 87.92
YOLOvVI2m 86.56 85.89 88.89
RT-DETR 86.51 84.45 86.69

For evaluation, we report mAP@50 for defect localization
and F1 scores for the label and quality attributes, which
represent the two most critical elements of industrial
inspection reports: defect category identification and quality
assessment.

When trained with SFT only, Qwen2.5-VL-7B achieves
85.26% mAP@50 and 84.16% F1 (label), indicating that
supervised schema-constrained fine-tuning effectively
establishes prompt compliance, structured output generation,
and baseline defect-recognition capability. Training with
GRPO only yields comparable localization and classification
performance (85.23% mAP@50, 84.33% F1), demonstrating
that verifiable reward signals can guide multimodal reasoning
even without explicit paired supervision. However, both
single-stage strategies underperform in structured attribute
accuracy and overall consistency.

The combined SFT+GRPO strategy consistently
outperforms both individual stages, achieving 88.77%
mAP@50, 90.19% F1 (label), and 91.15% F1 (quality). This
confirms that SFT provides stable grounding and schema

adherence, while GRPO further refines spatial localization
and semantic alignment, making their integration essential for
unified defect detection and structured inspection reporting.

For a fair comparison with traditional detectors,
YOLOv11Im, YOLOv12m, and RT-DETR are each trained in
two separate configurations. In the first setting, models are
trained for object detection, and we report mAP@50 and F1
score for defect labels. In the second setting, the same
architectures are retrained as quality classifiers, and
performance is reported using F1 score for the quality attribute.
This two-stage protocol reflects the fact that conventional
detectors cannot jointly predict detection and semantic
attributes within a single unified model.

Although YOLO-based and RT-DETR models achieve
competitive localization performance (86.51-86.56%
mAP@50), they remain inferior to the SFT+GRPO-
optimized LVLM in both detection accuracy and semantic
attribute prediction. More importantly, traditional detectors
are limited to task-specific outputs and lack the ability to
generate structured, multimodal inspection reports, which are
critical in LNG manufacturing workflows.

V. CONCLUSION

This paper presents a unified LVLM-based multimodal
inspection framework for LNG tank manufacturing, enabling
joint defect localization and structured inspection-report
generation within a single model. By combining parameter-
efficient supervised fine-tuning (SFT) with Group Relative
Policy Optimization (GRPO), the proposed approach
effectively aligns LVLMs with industrial inspection
requirements under practical on-premises constraints.

Experiments on a open-source LNG inspection dataset
from AIHub show that the optimized Qwen2.5-VL-7B
(SFT+GRPO) achieves strong localization and semantic
accuracy, outperforming single-stage training strategies and
traditional detectors such as YOLO and RT-DETR on key
inspection attributes. Beyond detection accuracy, the
proposed framework provides a distinct advantage in semantic
interpretability and structured reporting, which are critical for
complex industrial workflows.

Overall, these results indicate that properly aligned
LVLMs can serve as a practical and scalable foundation for
next-generation industrial inspection, unifying detection and
semantic reporting in complex production environments.
Future work will extend the framework to richer attribute sets,
improve robustness under distribution shifts (e.g., lighting and



process drift), and investigate real-time deployment and
integration with factory inspection workflows.
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