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Abstract— Large Vision Language Models (LVLMs) offer 

strong visual reasoning capabilities but their direct application 

to industrial defect inspection remains limited due to domain 

complexity, diverse defect modes, and the need for structured 

reporting. This paper presents a unified fine-tuning framework 

that combines Supervised Fine-Tuning (SFT) with Group 

Relative Policy Optimization (GRPO) to adapt open-source 

LVLMs for multimodal defect inspection in Liquefied Natural 

Gas (LNG) tank manufacturing. Using a balanced dataset 

derived from 188,631 inspection images, the proposed method 

enables each LVLM to perform joint defect localization, 

attribute prediction, and automatic generation of structured 

JSON inspection reports. The GRPO stage incorporates 

verifiable reward signals that enforce JSON validity, schema 

compliance, bounding box accuracy, and metadata consistency. 

Experimental results on four LVLM architectures demonstrate 

substantial performance gains, with mean Average Precision at 

IoU 0.5 improving from 35–39 percent to 84–89 percent and F1 

scores for defect labels increasing from approximately 14 

percent to above 84 percent. The best-performing model, 

Qwen2.5-VL-7B, achieves 88.77 percent mAP at IoU 0.5 and 

over 90 percent F1 in key metadata fields. These findings 

indicate that SFT and GRPO provide complementary benefits, 

enabling LVLMs to deliver accurate, interpretable, and 

computationally efficient inspection for next-generation 

manufacturing environments. 

Keywords— Large Vision Language Models, defect 

inspection, reinforcement learning, supervised fine-tuning, GRPO 

I. INTRODUCTION 

Quality assurance is a core determinant of manufacturing 
competitiveness. Classical methodologies such as Total 
Quality Management, Six Sigma, and Lean Manufacturing 
established systematic approaches for reducing variability and 
improving process reliability [1]. With the emergence of 
Industry 4.0 and Cyber–Physical Systems (CPS), 
manufacturers increasingly rely on interconnected sensors, 
automation, and data-driven decision-making to enhance 
production quality [2]. Yet despite these advances, ensuring 

consistent product quality remains challenging, particularly in 
complex or safety-critical production environments. 

Defect inspection plays a critical role in quality assurance 
by enabling early anomaly detection and reducing scrap, 
rework, and downstream failures [3], [4]. Traditional 
inspection processes depend heavily on human operators, 
whose performance is limited by fatigue, subjectivity, and 
inconsistency. Reported misclassification rates can reach 15–
20% even in precision manufacturing, with higher error rates 
observed in high-throughput and safety-critical industries 
such as oil and gas [5], [6]. These limitations have driven the 
adoption of computer-vision-based inspection systems using 
Machine Learning (ML) and Deep Learning (DL). 
Convolutional Neural Networks (CNNs), including YOLO-
based detectors [7], are now widely deployed in industrial 
inspection tasks. However, their effectiveness degrades under 
changing defect patterns, variable illumination, or process 
drift, and their reliance on large labeled datasets makes 
adaptation costly, particularly for small and medium-sized 
enterprises (SMEs) [8]. 

Large Vision–Language Models (LVLMs) offer a 
promising alternative by integrating visual perception with 
natural-language reasoning. Recent models such as LLaVA-
1.6 [9], Gemma-3 [10], and Qwen2.5-VL [11] enable context-
aware inspection through multimodal reasoning, semantic 
interpretation, and natural-language interaction [12]. Their 
strong zero-shot and few-shot generalization capabilities 
allow adaptation to unseen defect types without extensive 
retraining, which is highly attractive for dynamic industrial 
environments. Despite these advantages, LVLM applications 
in industrial defect inspection remain underexplored, with 
most prior studies focusing on natural-image understanding 
rather than manufacturing-specific workflows [13], [14]. 

In this work, we investigate LVLM-based multimodal 
defect inspection in Liquefied Natural Gas (LNG) tank 
manufacturing, a highly specialized process involving 
welding, surface treatment, cable routing, pipe installation, 
cutting, and foam spraying. These operations exhibit diverse 
and evolving defect categories that challenge conventional 
vision-based systems. By leveraging LVLMs, we aim to 
enable unified defect localization, semantic interpretation, and 
automatic generation of structured inspection reports to 
support human operators. 
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Specifically, this study makes the following contributions: 

• We propose an LVLM-based multimodal inspection 
framework capable of defect localization, semantic 
reasoning, and automated report generation with 
interpretable outputs. 

• We optimize fine-tuning and inference using 
Supervised Fine-Tuning (SFT) and Group Relative 
Policy Optimization (GRPO), enabling efficient 
deployment on a single 24GB GPU for on-premises 
industrial use while preserving data confidentiality. 

Experimental results demonstrate that properly optimized 
LVLMs provide a scalable and interpretable alternative to 
conventional CNN-based inspection systems, supporting 
more adaptive and autonomous quality assurance pipelines for 
next-generation manufacturing. 

II. RELATED WORKS 

A. Classical Defect Detection Approaches 

Traditional automated defect detection methods can be 
broadly categorized into three groups. Embedding-based 
methods [15], [16], [17] extract representations of defect-free 
samples using pretrained encoders and detect anomalies via 
distance-based similarity measures. Reconstruction-based 
methods [18], [19], [20] learn generative models on normal 
data and identify defects through reconstruction errors. CLIP-
based methods [21], [22] exploit multimodal alignment 
between visual features and textual prompts to enable zero-
shot or weakly supervised anomaly detection. 

While these methods achieve strong pixel-level or image-
level anomaly prediction, they lack the capability to produce 
semantic explanations, structured metadata, or comprehensive 
inspection reports—abilities increasingly required in smart 
manufacturing environments. 

B. LVLMs for Industrial Defect Detection 

Motivated by the strong perceptual and reasoning abilities 
of LVLMs, recent works have begun exploring their 
applicability to quality inspection. Several studies apply 
LVLMs directly, without fine-tuning, to anomaly detection or 
visual question answering [23], [24], [25]. For example, Chen 
et al. [23] introduces specialized input modules tailored to 
question types. However, LVLMs trained primarily for 
general-purpose tasks often struggle with industrial defects 
unless properly adapted [26]. 

To improve domain specificity, a number of methods 
perform SFT on industrial anomaly datasets [13], [26], [27]. 
AnomalyGPT [13] uses dual branches to generate anomaly 
masks and textual descriptions from synthetic data. 
Anomaly-OV [26] introduces a Look Twice Feature Matching 
(LTFM) mechanism to emphasize abnormal visual tokens. 
Although SFT significantly improves detection quality, SFT-
based models still depend heavily on annotated data, struggle 
to generalize to real-world defect diversity, and optimize fixed 
training objectives that may not fully align with downstream 
reasoning tasks. 

C. Reinforcement Learning and GRPO-Based Alignment 

To address the limitations of SFT, recent works 
incorporate GRPO to align LVLMs using task-specific 
rewards and preference-based feedback [28], [29], [30](Li et 
al. 2025; Zhao et al. 2025; Zeng et al. 2025; Chao et al. 2025). 
LR-IAD [28] introduces focal rewards to mitigate class 

imbalance, while AnomalyR1 [29] proposes the Reasoned 
Outcome Alignment Metric (ROAM) to jointly optimize 
reasoning consistency and prediction accuracy. 

However, standard GRPO suffers from degraded reward 
signals on hard samples where all candidate responses are 
incorrect, leading to unstable optimization and limited 
convergence. This motivates the development of more robust 
GRPO strategies capable of handling difficult cases and 
strengthening reasoning–detection alignment. 

D. Research Gap and Contributions 

Most existing defect detection studies focus on 
homogeneous materials or single-process settings and do not 
address the complexity of LNG tank manufacturing, which 
involves heterogeneous fabrication processes and highly 
diverse defect modes. Furthermore, prior LVLM-based 
approaches have not jointly addressed defect localization, 
structured metadata extraction, automated inspection-report 
generation, nor efficient SFT–GRPO training on a single 
24GB GPU. 

These gaps motivate our proposed hybrid SFT–GRPO 
LVLM framework, which unifies multimodal defect detection 
and semantic reporting while enabling practical, on-premises 
industrial deployment. 

III. MATERIALS AND METHODS 

This study proposes a unified SFT–GRPO fine-tuning 
framework for adapting open-source LVLMs to multimodal 
defect inspection in LNG tank manufacturing. We evaluate 
four representative LVLMs—LLaVA-1.6-Mistral-7B, 
Gemma-3-4B, Qwen2.5-VL-3B, and Qwen2.5-VL-7B—
selected to span multiple architectural families and parameter 
scales under realistic on-premises constraints (single 24GB 
GPU). The fine-tuned models perform defect localization and 
structured inspection-report generation, producing JSON 
outputs that include defect labels, bounding boxes, and 
contextual metadata (e.g., tank type, location, part, and 
quality). 

As illustrated in Fig. 1, the proposed pipeline consists of 
four stages: data preprocessing, prompt design, SFT–GRPO 
fine-tuning, and evaluation. 

A. Dataset and Data Preprocessing 

We use the open-access AIHub LNG Tank Quality 
Inspection Dataset [31], which contains 188,631 high-
resolution images covering major fabrication processes such 
as welding, coating, insulation installation, cable routing, pipe 
installation, and cutting. Each image includes defect labels, 
bounding boxes, and contextual metadata. 

To enable memory-efficient fine-tuning on 24GB GPUs, 
we construct a balanced subset of 22,500 images across 15 
defect classes (1500 samples per class). For each class, 500 
images are used for SFT, 500 for GRPO reinforcement 
learning, and 500 for testing, ensuring equal category 
representation. 

All original images (size 1920×1080) are resized to 
512×512 pixels, and COCO-format bounding boxes [x, y, 
width, height] are converted to corner coordinates [xmin, ymin, 
xmax, ymax] using standard normalization, as in (1) to (4): 



 xmin = x ÷ 1920 × 512 (1) 

 ymin = y ÷ 1080 × 512 (2) 

 xmax = (x + width) ÷ 1920 × 512 (3) 

 ymax = (y + height) ÷ 1080 × 512 (4) 

Alongside defect labels and bounding boxes, six 
categorical metadata fields are retained to support structured 

inspection-report generation: tank_type ∈ {B, C}, location ∈ 

{Outer wall, Inside, Outside}, sub_location ∈ {Dished end, 

Body, Floor, Bulkhead, Support, Platform}, part ∈ {Joint, 
Coating, Insulation, Base Material, Cable, Cable Tie}, and 

quality ∈ {Good, Defective}. These structured annotations 
provide the multimodal supervision required for unified defect 
localization, attribute prediction, and JSON-format output 
generation in subsequent SFT–GRPO fine-tuning. 

B. Prompt Design 

Prompt design plays a central role in enabling LVLMs to 
perform unified defect localization, attribute prediction, and 
structured inspection reporting. As shown in Fig. 1, two 
prompt formats are used for the SFT and GRPO stages. 

For SFT, we construct the user’s prompt for 7500 training 
samples (500 per class). Each sample pairs an image with a 
user instruction specifying the required JSON schema and 
listing all valid categories for each metadata field (label, 
tank_type, location, sub_location, part, quality). These 
schema-constrained prompts guide the LVLM to produce 
deterministic, machine-readable outputs. 

For GRPO reinforcement learning, we utilize both the 
system prompt and the user prompt applied to 7500-image set 
for GRPO. The system prompt enforces a two-stage response: 
hidden reasoning enclosed in <think>...</think> followed by 
the JSON answer in <answer>...</answer>. The user prompt 

mirrors the SFT schema to maintain consistent output 
structure. 

This design ensures consistent JSON formatting, strict 
schema adherence, and separation of reasoning from 
evaluation, enabling reliable supervision across both training 
stages. 

C. SFT–GRPO fine-tuning 

Fine-tuning proceeds in two stages. 

1) Supervised Fine-tuning (SFT): During the first stage, 

each LVLM is adapted to the LNG-inspection domain using 

7500 annotated training samples (500 per defect class). SFT 

trains the model to follow schema-constrained prompts, 

recognize defect patterns, and output valid JSON responses. 

To support training on a single 24-GB GPU, we adopt 

parameter-efficient fine-tuning (PEFT) using lightweight 

adapter modules injected into attention layers. This approach 

reduces trainable parameters while preserving the expressive 

capacity of the pretrained LVLM. All models are initialized 

from their Instruct-tuned 16-bit checkpoints to ensure 

stability and consistent optimization behavior across 

architectures. Training follows a unified configuration 

(learning rate, batch size, warm-up, scheduler), summarized 

in Table 1. SFT establishes the model’s foundational 

abilities—prompt compliance, structured output generation, 

defect recognition, and attribute prediction—providing the 

base policy for reinforcement learning. 

TABLE I.  PEFT CONFIGURATION PARAMETERS 

Parameter Value 

Optimizer adamw_8bit 

Learning rate 2e-5 

Learning rate strategy cosine 

 

Fig. 1. The proposed unified SFT–GRPO fine-tuning framework for adapting open-source LVLMs to multimodal defect inspection in LNG tank 
manufacturing. 



Parameter Value 

bf16 True 

Warm up ratio 0.03 

Epochs 3 

LoRA Rank 16 

Batch size 2 

Gradient accumulation step 4 

 

2) Group Relative Policy Optimization (GRPO) 

Reinforcement Learning: The second stage further aligns the 

LVLMs with downstream objectives through Group Relative 

Policy Optimization (GRPO). GRPO is well-suited for defect 

inspection because the task produces verifiable outputs—

JSON format, bounding box geometry, label correctness, and 

metadata accuracy—allowing reward functions to provide 

precise optimization signals. We use another 7500-sample set 

(500 per class) for GRPO training. Each sample contains an 

image, a system prompt enforcing the <think>…</think> and 

<answer>…</answer> structure, and a user prompt 

specifying the required JSON schema. GRPO samples 

multiple candidate outputs per prompt and updates the model 

based on the advantage of each candidate relative to the group. 
To improve unified detection and report generation, we 

design a reward suite consistent with Figure 1 and tailored to 
the LNG inspection schema. Rewards operate only on the 
<answer> slice, ensuring that chain-of-thought remains 
hidden while still guiding structured reasoning. The main 
reward components are: 

• Format-Tag Reward: Ensures the output respects the 
strict <think>…</think> and <answer>…</answer> 
envelope. Reward = 1 if strictly matched; else 0. 

• JSON Validity Reward: Encourages syntactically 
correct JSON arrays. Reward = 1 for valid JSON; else 
0. 

• Schema Compliance Reward: Measures whether each 
predicted object satisfies the required fields (label, 
bbox, tank_type, location, sub_location, part, material, 
quality) and allowed category sets. 

• Count Consistency Reward: Rewards matching the 
number of predictions to the ground truth, normalized 
by count difference. 

• Detection IoU-F1 Reward: Uses greedy IoU-based 
matching (threshold 0.5) to compute label-aware F1, 
rewarding correct localization while penalizing false 
positives and false negatives. 

• Attribute Accuracy Reward: Evaluates correctness of 
all six metadata fields for IoU-matched object pairs. 

• Anti-Gibberish Reward: Light hygiene constraint 
penalizing extraneous or noisy text beyond the JSON 
output. 

These rewards collectively shape both format correctness 
(JSON validity, tag structure, schema compliance) and 
semantic accuracy (bbox localization, label prediction, 
metadata attributes). GRPO fine-tuning substantially 

improves JSON correctness, IoU-F1 detection performance, 
and metadata prediction accuracy over the SFT-only baseline. 

D. Performance Evaluation 

Model performance is assessed using the test split of 7500 
images (500 samples per defect class). Following the unified 
output structure shown in Figure 1, evaluation focuses on two 
complementary aspects: defect localization and structured 
attribute prediction. 

For localization, we compute mean Average Precision at 
IoU 0.5 (mAP@50), where a prediction is considered correct 
if the Intersection-over-Union between the predicted and 

ground-truth bounding box is ≥ 0.5. mAP@50 summarizes 

per-class Average Precision (AP) and provides a reliable 
measure of how well the LVLM identifies and localizes defect 
regions. 

For structured report generation, we measure F1 score, the 
harmonic mean of precision and recall, to evaluate 
classification accuracy for all categorical fields within the 
JSON output. Specifically, F1 is computed for the predicted 
label, tank_type, location, sub_location, part, and quality 
attributes associated with each localized defect. These metrics 
jointly capture the core requirements of industrial multimodal 
inspection: accurate spatial localization and reliable semantic 
interpretation. 

IV. EXPERIMENTAL RESULTS AND DISCUSSION 

A. Experimental Setup 

All experiments were conducted on a workstation with an 
AMD Ryzen 9 7950X CPU, NVIDIA RTX 4090 GPU (24GB 
VRAM), and 96GB DDR5 RAM. All LVLMs were fine-
tuned using the Unsloth framework [32]. 

B. SFT–GRPO Fine-tuning Process Evaluation 

Table II reports the performance of four LVLMs before 
and after applying the proposed SFT–GRPO fine-tuning 
framework. Prior to fine-tuning, all models exhibit limited 
localization capability on LNG-specific defects, with 
mAP@50 values of 35–39%. After SFT–GRPO, localization 
accuracy improves dramatically by 47–51 percentage points, 
yielding final mAP@50 scores between 84% and 88%. 
Among the evaluated models, Qwen2.5-VL-7B achieves the 
highest localization accuracy (88.77% mAP@50), indicating 
stronger spatial reasoning and more reliable bounding-box 
prediction. 

Fine-tuning also substantially improves structured 
attribute prediction. Defect label F1 increases from 
approximately 14% to 84–90%, reflecting effective schema 
learning and reward-based alignment. High-level categorical 
fields such as tank_type, location, and quality consistently 
achieve over 90% F1, demonstrating robust semantic 
understanding of LNG manufacturing contexts. More fine-
grained attributes, including sub_location and part, show 
slightly lower absolute performance but still benefit from 30–
40 percentage point gains, confirming the effectiveness of 
GRPO-based reward shaping for complex multimodal 
reasoning. Overall, Qwen2.5-VL-7B delivers the strongest 
performance across both localization and attribute prediction. 
Notably, smaller models (Gemma-3-4B and Qwen2.5-VL-
3B) also achieve large performance gains, indicating that the 
proposed pipeline remains effective under compact model and 
24GB GPU constraints. 



These results highlight the complementary roles of the two 
training stages: SFT establishes prompt compliance and 
structured output generation, while GRPO refines localization 
accuracy and semantic consistency through verifiable, task-
aligned rewards. 

C. Ablation study 

To analyze the contribution of each training strategy and 
contextualize performance against conventional detectors, we 
conduct an ablation study on Qwen2.5-VL-7B and compare it 
with representative YOLO-based and transformer-based 
detectors, as summarized in Table III. 

TABLE III.   ABLATIONS ON DIFFERENT TRAINING STRATEGIES OF THE 

OPTIMIZED QWEN2.5-VL-7B AND TRADITIONAL DETECTORS . 

For evaluation, we report mAP@50 for defect localization 
and F1 scores for the label and quality attributes, which 
represent the two most critical elements of industrial 
inspection reports: defect category identification and quality 
assessment. 

When trained with SFT only, Qwen2.5-VL-7B achieves 
85.26% mAP@50 and 84.16% F1 (label), indicating that 
supervised schema-constrained fine-tuning effectively 
establishes prompt compliance, structured output generation, 
and baseline defect-recognition capability. Training with 
GRPO only yields comparable localization and classification 
performance (85.23% mAP@50, 84.33% F1), demonstrating 
that verifiable reward signals can guide multimodal reasoning 
even without explicit paired supervision. However, both 
single-stage strategies underperform in structured attribute 
accuracy and overall consistency. 

The combined SFT+GRPO strategy consistently 
outperforms both individual stages, achieving 88.77% 
mAP@50, 90.19% F1 (label), and 91.15% F1 (quality). This 
confirms that SFT provides stable grounding and schema 

adherence, while GRPO further refines spatial localization 
and semantic alignment, making their integration essential for 
unified defect detection and structured inspection reporting. 

For a fair comparison with traditional detectors, 
YOLOv11m, YOLOv12m, and RT-DETR are each trained in 
two separate configurations. In the first setting, models are 
trained for object detection, and we report mAP@50 and F1 
score for defect labels. In the second setting, the same 
architectures are retrained as quality classifiers, and 
performance is reported using F1 score for the quality attribute. 
This two-stage protocol reflects the fact that conventional 
detectors cannot jointly predict detection and semantic 
attributes within a single unified model. 

Although YOLO-based and RT-DETR models achieve 
competitive localization performance (86.51–86.56% 
mAP@50), they remain inferior to the SFT+GRPO–
optimized LVLM in both detection accuracy and semantic 
attribute prediction. More importantly, traditional detectors 
are limited to task-specific outputs and lack the ability to 
generate structured, multimodal inspection reports, which are 
critical in LNG manufacturing workflows. 

V. CONCLUSION 

This paper presents a unified LVLM-based multimodal 
inspection framework for LNG tank manufacturing, enabling 
joint defect localization and structured inspection-report 
generation within a single model. By combining parameter-
efficient supervised fine-tuning (SFT) with Group Relative 
Policy Optimization (GRPO), the proposed approach 
effectively aligns LVLMs with industrial inspection 
requirements under practical on-premises constraints. 

Experiments on a open-source LNG inspection dataset 
from AIHub show that the optimized Qwen2.5-VL-7B 
(SFT+GRPO) achieves strong localization and semantic 
accuracy, outperforming single-stage training strategies and 
traditional detectors such as YOLO and RT-DETR on key 
inspection attributes. Beyond detection accuracy, the 
proposed framework provides a distinct advantage in semantic 
interpretability and structured reporting, which are critical for 
complex industrial workflows. 

Overall, these results indicate that properly aligned 
LVLMs can serve as a practical and scalable foundation for 
next-generation industrial inspection, unifying detection and 
semantic reporting in complex production environments. 
Future work will extend the framework to richer attribute sets, 
improve robustness under distribution shifts (e.g., lighting and 

Model mAP@50 (%) 

(Before  After) 

F1 (%) 

(Before  After) 

label tank_type location sub_location part quality 

LLaVA-1.6-Mistral-
7B 

36.52  86.75 14.23  87.10 3.59  97.27 15.56  72.08 10.71  45.87 7.27  62.11 29.62  91.24 

Gemma-3-4B 39.32  85.61 13.88  84.91 4.13  97.20 12.20  70.10 9.77  44.73 8.23  61.02 33.23  89.62 

Qwen2.5-VL-3B 35.07  84.68 13.11  84.87 4.54  97.21 18.79  73.57 8.04  45.21 9.02  65.15 30.11  89.93 

Qwen2.5-VL-7B 39.13  88.77 14.56  90.19 2.47  97.82 13.92  73.19 8.18  48.33 12.9  65.84 35.67  91.15 

Model mAP@50 

(%) 

F1 (%) 

label quality 

Qwen2.5-VL-7B 
(SFT) 

85.26 84.16 89.92 

Qwen2.5-VL-7B 

(GRPO) 

85.23 84.33 90.01 

Qwen2.5-VL-7B 
(SFT+GRPO) 

88.77 90.19 91.15 

YOLOv11m 86.53 85.01 87.92 

YOLOv12m 86.56 85.89 88.89 

RT-DETR 86.51 84.45 86.69 

TABLE II.  PERFORMANCE EVALUATION ON THE TEST SET BEFORE AND AFTER SFT–GRPO FINE-TUNING 

 



process drift), and investigate real-time deployment and 
integration with factory inspection workflows. 
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