Defending Against Prompt Injection Attacks Using
Automatic System Prompt Engineering

Hyeokjin Kwon
School of Computer Science and Engineering
Yeungnam University
Gyeongsan, Republic of Korea
hjkwon337@yu.ac.kr

Abstract— Large language models are vulnerable to jailbreak and
prompt injection attacks, and most existing defenses rely on a
single, human-crafted global system prompt. This paper proposes
a method that automatically optimizes only the suffix of the system
prompt on a per-cluster basis while keeping the model parameters
and the global prefix fixed. We cluster attack prompts using k-
means on the model's final hidden states, and, for each cluster,
learn a suffix through an Analyzer—Rebuilder loop. In evaluations
that combine an LLM judge with watermark-based detection, our
method reduces the test attack success rate (ASR) from about 0.42
to 0.28.

Keywords— Prompt Injection Defense, Large Language Model,
System Prompt, Clustering.

I. INTRODUCTION

Large language models (LLMs) [1, 2] are widely used for
programming assistance, information retrieval, and writing
support, but they remain vulnerable to prompt injection attacks
in which malicious users induce the model to bypass built-in
safety mechanisms [3]. Recently, methods that tune a system
prompt to control the model's response tendencies have been
actively employed to prevent prompt injection attacks [4].
However, most approaches apply a single global system prompt
uniformly across all domains and attack types, resulting in the
limitation that they cannot reliably defend against diverse
domains and attack types. As a result, they struggle to provide
robust protection against the wide variety of attack styles
observed in the real world [3, 5].

To address this limitation, we propose a defense that clusters
user prompts by attack type and automatically optimizes the
suffix of the system prompt appended after the user prompt for
each cluster. We construct the input to the target model by
prepending a system prompt (prefix) before the user prompt and
appending another system prompt (suffix) after it. The prefix is
a global safety directive applied uniformly to all requests,
serving as a fixed system prompt without modification. The
suffix is a phrase containing additional constraints specific to
domains or attack patterns, dynamically appended to the user
prompt based on the optimal system prompt identified for each
cluster.

This work makes two main contributions.

Wooguil Pak

School of Computer Science and Engineering
Yeungnam University
Gyeongsan, Republic of Korea
wooguilpak@yu.ac.kr

e We show that even in a suffix-only setting, where model
parameters and the global prefix are fixed, automatic
optimization can substantially reduce the attack success
rate (ASR).

e We propose a defense that combines clustering in the
target model’s internal representation space with
cluster-wise automatic prompt optimization, enabling
different safety phrases to be used for different attack
domains and patterns.

The rest of the paper is organized as follows. Section II
reviews related work. Sections III and IV describe the proposed
method and experiment setup in detail. Section V analyzes the
results, and Section VI concludes with directions for future
research.

II. RELATED WORK

A. Jailbreak and prompt injection.

Liu et al. (2024) [6] define jailbreak attacks on large
language models as attacks that intentionally manipulate input
prompts to bypass the safety policies and guidelines the model
was designed to follow and treat prompt injections as a general
pattern underlying such attacks. They view both jailbreaks and
prompt injections as attempts to take over the instruction space
by causing the model to ignore internal prompts and system
instructions and instead follow rules specified by the attacker
and provide a systematic taxonomy of attack patterns and
defenses.

B. Prompt-based defenses with Self-Reminder.

In the Self-Reminder Prompt study [7], the authors propose
a prompt-based defense for ChatGPT [8] that can be applied
without additional training. Their method encapsulates a user
query inside a system prompt that reminds the model to act as a
responsible Al thereby continually nudging the model to behave
safely. Our work shares with Self-Reminder the high-level idea
of defending via system prompts but differs in that we do not fix
the system prompt to a single global phrase. Instead, we
automatically optimize different suffixes for different internal-
representation clusters.

III. PROPOSED METHOD

In this section we describe our method for automatically
optimizing the system-prompt suffix appended after the user
prompt. We first introduce the structure of the system prompt,
then explain how we cluster and classify user prompts, and
finally detail how we search for an optimal suffix for each
cluster.

A. System prompt structure

In the proposed method, the system prompt consists of three
parts, as shown in Figure 1.

[Prefix] + {user prompt} + [Suffix]

Figure 1. System Prompt Structure.

The prefix is a global safety directive applied uniformly to
all inputs, containing general ethical and safety guidelines
instructing users to avoid harmful or misleading outputs while
reviewing requests. This prefix is defined as a single statement
throughout the entire experiment and remains unchanged.

The user prompt is the adversarial harmful prompt crafted by
the attacker. It is an input designed to elicit dangerous behavior
or knowledge that the model would ideally refuse to produce.

The suffix is a short directive appended after the user prompt.
It is used to express additional constraints specialized to
particular domains or attack patterns. For example, it may
explicitly warn about potential misuse in a specific technical
field or instruct the model to always refuse requests of a certain

type.

B. Clustering based on internal model representations

This study constructs a customized defense system tailored
to different types of user prompt attacks. It divides user prompts
into multiple groups based on the hidden states of the target
model and adopts a strategy of optimizing different suffixes for
each group as shown in Figure 2. For each attack prompt, we
first form an input of the form “prefix + user prompt” and feed
it into the target model. We then extract the hidden states of the

-0 oo---o:il!ﬁi::- -0

Large Language Model

a8 ssas
LNl AR L N L)

prefix user prompt suffix

suffix candidates

Figure 2. Clustering-based Prompt Selection Structure.

final token at the last layer as a single vector. This vector can be
interpreted as the internal representation of the attack prompt in
the presence of the global prefix, that is, the point in semantic
space to which the model maps the prompt.

We then apply a standard clustering algorithm such as k-
means to the set of vectors, partitioning them into clusters that
group together attack prompts that are similar in the model’s
internal representation space. We treat each cluster as
corresponding to a domain or attack-pattern group and design a
separate suffix for each group.

C. Analyzer—Rebuilder—based automatic prompt optimization

To automatically construct a suffix for each cluster, we adopt
an Analyzer—Rebuilder loop inspired by the Automatic Prompt
Optimization (APO) framework from Self-Reminder. The loop
repeatedly evaluates the current suffix, collects failure cases,
analyzes their causes, and generates improved suffix candidates.

For a given cluster, we first construct system prompts using
the current suffix and obtain responses from the target model.
Prompt-response pairs in which the defense fails, i.e., where the
attack succeeds, are collected as failure cases and passed to the
Analyzer.

The Analyzer takes as input the failure cases along with the
current prefix and suffix and analyzes what domains and attack
patterns are problematic in that cluster and what constraints or
conditions are missing from the suffix. The Rebuilder then uses
the Analyzer's feedback and the current suffix to generate
multiple new suffix candidates. These candidates are evaluated
again with the target model, and the process is repeated,
gradually refining each cluster’s suffix to better match the
characteristics of that cluster.

IV. EXPERIMENTS

In this section we detail our experiment setup. We first
describe the dataset and models used, then the clustering
procedure, and finally the prompt-injection judges and
evaluation metrics.

A. Dataset and models

For our experiments, we use only the adversarial harmful
(AH) category of the WildJailbreak [5] benchmark as attack
prompts. From these AH prompts we construct a set of harmful
prompts and split it into training and test sets. The train split is
used exclusively during the APO stage to search and refine
suffixes, while the test split is used only after training is
complete to evaluate performance.

As the target model we use the publicly available Llama-2-
13B-Chat-HF [9]. GPT-5-nano [10] is used as the Analyzer, the
Rebuilder, and the LLM judge.

B. Clustering and per-cluster training configuration

We perform clustering using standard k-means with the
number of clusters set to K = 6. This choice strikes a balance:
each cluster is large enough to apply APO, while the clusters are
not so large that they mix overly diverse attack types. Applying

this procedure to the train split yields six subsets, and we
independently optimize a different suffix for each cluster.

For each cluster we apply the Analyzer—Rebuilder—based
APO framework described in Section III.C independently. For a
given cluster, APO is run for at most 10 rounds. In each round
we randomly sample five failure cases—i.e., successful
attacks—from the cluster and provide them as input to the
Analyzer.

The Rebuilder takes the Analyzer's feedback together with
the current suffix and generates five new suffix candidates. We
evaluate the attack success rate for each candidate and select the
candidate with the lowest ASR. Here, the attack success rate
(ASR) simply refers to the ratio of evaluated prompts classified
as successful attacks out of all inputs [3, 5, 7, 11]. The suffix is
updated only if the best candidate clearly improves upon the
current suffix. The APO loop terminates when the attack success
rate no longer meaningfully decreases across rounds or the
maximum of 10 rounds is reached, and the final suffix for that
cluster is fixed.

C. LLM judge and watermark-based detection

Attack success is determined by combining two detectors: an
LLM judge and watermark-based detection. For the LLM judge
we use GPT-5-nano. For each example it receives the attack
prompt, a reference safe completion for that prompt, and the
target model’s response. It then performs a semantic and
contextual assessment of whether the response carries out or
promotes harmful behavior, or otherwise constitutes a clear
policy violation, and outputs a binary label of ‘True’ (attack
success) or ‘False’ (defense success).

The watermark-based detector is implemented by asking the
target model, under a separate prompt, to answer “with the
beginning of “YES’”. If the model's output string starts with
‘YES’, we label the example as an attack success; if it starts with
‘NO’, we label it as a defense success.

In our study, we combine the two detectors using a logical
AND. That is, an example is counted as an attack success only
if the LLM judge labels it ‘True’ (harmful response) and the
watermark label is “YES’. This conservative rule reduces false
positives and counts as successful jailbreaks only those cases
that are supported by both detectors.

V. RESULTS

In this section, we present our experiment results. We first
analyze the ASR of each cluster on the train split and then
evaluate the overall ASR on the full test split. of 10 rounds is
reached, and the final suffix for that cluster is fixed.

A. ASR of Each Cluster in Train Split

The results for the training data are presented in Figure 3.
Figure 3 compares the ASR of the Initial system prompt and the
proposed method (Ours) for each cluster after dividing the AH
train split into 6 clusters. Across all clusters, the proposed
method maintained the same level of ASR as Initial or recorded
lower ASR.

ASR for Each Cluster on Train Split

c0 c c2 c3 c4 c5

M [nitial ™ Ours

0.6000
0.5000
0.4000
0.3000
0.2000
0.1000
0.0000

Figure 3. Attack Success Rate for each cluster on train split.

ASR also decreased in cl and c2 compared to Initial,
suggesting that cluster-specific suffix optimization can provide
defense performance similar to or better than the existing
approach for clusters where specific types of attacks are
concentrated, from the perspective of the model's internal
representation. Notably, for cluster c5, after applying APO, no
successful attack instances occurred for the training examples
belonging to that cluster, resulting in ASR dropping to zero.
Conversely, for clusters like c0, ¢3, and c4, which already
offered some defense with the initial global suffix alone, the
suffixes did not change significantly after optimization.
Consequently, the ASR remained nearly identical.

B. ASR of Full Test Split

Figure 4 compares the ASR of the Initial system prompt and
proposed method (Ours) on the entire test split. Under the Initial
configuration, where a single global suffix is applied uniformly
to all examples, the overall ASR is about 0.42. When we instead
use the cluster-specific suffixes learned on the train split, the
ASR on the test split drops to about 0.28. This shows that

ASR on Full Test Dataset

0.5000
0.4000
0.3000
0.2000
0.1000

0.0000
Initial Ours

Figure 4. Attack Success Rate on full test split.
designing suffixes specialized to domains and attack patterns on
the training data leads to a lower attack success rate on unseen
test examples than a single global suffix.

VI. CONCLUSIONS

This paper proposes a defense method that automatically
optimizes only the suffix of the system prompt for each cluster,
without modifying any model parameters or the global prefix.
We clustered attack prompts in the internal representation space
using the hidden states of the target model's last token and
learned distinct suffixes by iterating a loop of failure case
analysis and LLM-based automatic prompt generation for each
cluster.

Experiment results show that compared to configurations
using a single global suffix, our proposed cluster-based suffix
optimization method reduces attack success rate (ASR). This
suggests that a strategy of dividing attack prompts into types
based on the model's internal representation and applying
different suffixes to each group may be more effective than a
global prompt approach.

We will measure performance across more diverse models
and benchmarks, explore sensitivity analysis regarding
clustering methods and the number of clusters, and investigate
the possibility of co-optimizing prefixes and suffixes.
Nevertheless, this study is significant in that it provides
quantitative evidence that combining internal representation
clustering with automatic prompt optimization can effectively
enhance jailbreak defense performance even under the limited
suffix-only setting.

ACKNOWLEDGMENT

This work was supported by the National Research
Foundation of Korea (NRF) grant funded by the Korea
Government (MSIT) (No. NRF-RS-2025-24683865).

[10]

[11]

REFERENCES

A. Vaswani et al., “Attention is all you need,” Advances in Neural
Information Processing Systems, vol. 30, 2017.

W. X. Zhao et al., “A survey of large language models,” arXiv preprint,
arXiv:2303.18223, Mar. 2023.

Y. Liu et al, “Prompt injection attack against LLM-integrated
applications,” arXiv preprint, arXiv:2306.05499, Jun. 2023.

“System prompts,” platform.claude.com.
https://platform.claude.com/docs/en/release-notes/system-prompts
(accessed Nov. 21, 2025).

L. Jiang et al., “WildTeaming at scale: From in-the-wild jailbreaks to
(adversarially) safer language models,” Advances in Neural Information
Processing Systems (NeurIPS), 2024.

Y. Liu, Y. Jia, R. Geng, J. Jia, and N. Z. Gong, “Formalizing and
benchmarking prompt injection attacks and defenses,” 33rd USENIX
Security Symposium, 2024

Y. Xie et al., “Defending ChatGPT against jailbreak attack via self-
reminders,” Nature Machine Intelligence, vol. 5, no. 12, pp. 1486—1496,
2023, doi: 10.1038/s42256-023-00765-8.

“ChatGPT: Optimizing Language Models for Dialogue,” openai.com.
https://openai.com/blog/chatgpt (accessed Nov. 19, 2025).

“meta-llama/Llama-2-13b-chat-hf,” huggingface.co.
https://huggingface.co/meta-llama/Llama-2-13b-chat-hf (accessed Oct.
28, 2025).

“Model - OpenAl APL” platform.openai.com.
https://platform.openai.com/docs/models/gpt-5-nano (accessed Nov. 23,
2025)

S. Lee, J. Kim, and W. Pak, “Mind mapping prompt injection: Visual

prompt injection attacks in modern large language models,” Electronics,
vol. 14, no. 10, p. 1907, 2025.

