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Abstract— Large language models are vulnerable to jailbreak and 

prompt injection attacks, and most existing defenses rely on a 

single, human-crafted global system prompt. This paper proposes 

a method that automatically optimizes only the suffix of the system 

prompt on a per-cluster basis while keeping the model parameters 

and the global prefix fixed. We cluster attack prompts using k-

means on the model's final hidden states, and, for each cluster, 

learn a suffix through an Analyzer–Rebuilder loop. In evaluations 

that combine an LLM judge with watermark-based detection, our 

method reduces the test attack success rate (ASR) from about 0.42 

to 0.28. 
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I.  INTRODUCTION 

Large language models (LLMs) [1, 2] are widely used for 
programming assistance, information retrieval, and writing 
support, but they remain vulnerable to prompt injection attacks 
in which malicious users induce the model to bypass built-in 
safety mechanisms [3]. Recently, methods that tune a system 
prompt to control the model's response tendencies have been 
actively employed to prevent prompt injection attacks [4]. 
However, most approaches apply a single global system prompt 
uniformly across all domains and attack types, resulting in the 
limitation that they cannot reliably defend against diverse 
domains and attack types. As a result, they struggle to provide 
robust protection against the wide variety of attack styles 
observed in the real world [3, 5]. 

To address this limitation, we propose a defense that clusters 
user prompts by attack type and automatically optimizes the 
suffix of the system prompt appended after the user prompt for 
each cluster. We construct the input to the target model by 
prepending a system prompt (prefix) before the user prompt and 
appending another system prompt (suffix) after it. The prefix is 
a global safety directive applied uniformly to all requests, 
serving as a fixed system prompt without modification. The 
suffix is a phrase containing additional constraints specific to 
domains or attack patterns, dynamically appended to the user 
prompt based on the optimal system prompt identified for each 
cluster. 

This work makes two main contributions. 

• We show that even in a suffix-only setting, where model 
parameters and the global prefix are fixed, automatic 
optimization can substantially reduce the attack success 
rate (ASR). 

• We propose a defense that combines clustering in the 
target model’s internal representation space with 
cluster-wise automatic prompt optimization, enabling 
different safety phrases to be used for different attack 
domains and patterns. 

The rest of the paper is organized as follows. Section Ⅱ 
reviews related work. Sections Ⅲ and Ⅳ describe the proposed 
method and experiment setup in detail. Section Ⅴ analyzes the 
results, and Section Ⅵ concludes with directions for future 
research. 

II. RELATED WORK 

A. Jailbreak and prompt injection. 

Liu et al. (2024) [6] define jailbreak attacks on large 
language models as attacks that intentionally manipulate input 
prompts to bypass the safety policies and guidelines the model 
was designed to follow and treat prompt injections as a general 
pattern underlying such attacks. They view both jailbreaks and 
prompt injections as attempts to take over the instruction space 
by causing the model to ignore internal prompts and system 
instructions and instead follow rules specified by the attacker 
and provide a systematic taxonomy of attack patterns and 
defenses. 

B. Prompt-based defenses with Self-Reminder. 

In the Self-Reminder Prompt study [7], the authors propose 
a prompt-based defense for ChatGPT [8] that can be applied 
without additional training. Their method encapsulates a user 
query inside a system prompt that reminds the model to act as a 
responsible AI, thereby continually nudging the model to behave 
safely. Our work shares with Self-Reminder the high-level idea 
of defending via system prompts but differs in that we do not fix 
the system prompt to a single global phrase. Instead, we 
automatically optimize different suffixes for different internal-
representation clusters. 



III. PROPOSED METHOD 

In this section we describe our method for automatically 
optimizing the system-prompt suffix appended after the user 
prompt. We first introduce the structure of the system prompt, 
then explain how we cluster and classify user prompts, and 
finally detail how we search for an optimal suffix for each 
cluster. 

A. System prompt structure 

 In the proposed method, the system prompt consists of three 
parts, as shown in Figure 1. 

The prefix is a global safety directive applied uniformly to 
all inputs, containing general ethical and safety guidelines 
instructing users to avoid harmful or misleading outputs while 
reviewing requests. This prefix is defined as a single statement 
throughout the entire experiment and remains unchanged. 

The user prompt is the adversarial harmful prompt crafted by 
the attacker. It is an input designed to elicit dangerous behavior 
or knowledge that the model would ideally refuse to produce. 

The suffix is a short directive appended after the user prompt. 
It is used to express additional constraints specialized to 
particular domains or attack patterns. For example, it may 
explicitly warn about potential misuse in a specific technical 
field or instruct the model to always refuse requests of a certain 
type. 

B. Clustering based on internal model representations 

This study constructs a customized defense system tailored 
to different types of user prompt attacks. It divides user prompts 
into multiple groups based on the hidden states of the target 
model and adopts a strategy of optimizing different suffixes for 
each group as shown in Figure 2. For each attack prompt, we 
first form an input of the form “prefix + user prompt” and feed 
it into the target model. We then extract the hidden states of the 

final token at the last layer as a single vector. This vector can be 
interpreted as the internal representation of the attack prompt in 
the presence of the global prefix, that is, the point in semantic 
space to which the model maps the prompt. 

We then apply a standard clustering algorithm such as k-
means to the set of vectors, partitioning them into clusters that 
group together attack prompts that are similar in the model’s 
internal representation space. We treat each cluster as 
corresponding to a domain or attack-pattern group and design a 
separate suffix for each group. 

C. Analyzer–Rebuilder–based automatic prompt optimization 

To automatically construct a suffix for each cluster, we adopt 
an Analyzer–Rebuilder loop inspired by the Automatic Prompt 
Optimization (APO) framework from Self-Reminder. The loop 
repeatedly evaluates the current suffix, collects failure cases, 
analyzes their causes, and generates improved suffix candidates. 

For a given cluster, we first construct system prompts using 
the current suffix and obtain responses from the target model. 
Prompt–response pairs in which the defense fails, i.e., where the 
attack succeeds, are collected as failure cases and passed to the 
Analyzer. 

The Analyzer takes as input the failure cases along with the 
current prefix and suffix and analyzes what domains and attack 
patterns are problematic in that cluster and what constraints or 
conditions are missing from the suffix. The Rebuilder then uses 
the Analyzer's feedback and the current suffix to generate 
multiple new suffix candidates. These candidates are evaluated 
again with the target model, and the process is repeated, 
gradually refining each cluster’s suffix to better match the 
characteristics of that cluster. 

IV. EXPERIMENTS 

In this section we detail our experiment setup. We first 
describe the dataset and models used, then the clustering 
procedure, and finally the prompt-injection judges and 
evaluation metrics. 

A. Dataset and models 

For our experiments, we use only the adversarial harmful 
(AH) category of the WildJailbreak [5] benchmark as attack 
prompts. From these AH prompts we construct a set of harmful 
prompts and split it into training and test sets. The train split is 
used exclusively during the APO stage to search and refine 
suffixes, while the test split is used only after training is 
complete to evaluate performance. 

As the target model we use the publicly available Llama-2-
13B-Chat-HF [9]. GPT-5-nano [10] is used as the Analyzer, the 
Rebuilder, and the LLM judge. 

B. Clustering and per-cluster training configuration 

We perform clustering using standard k-means with the 
number of clusters set to K = 6. This choice strikes a balance: 
each cluster is large enough to apply APO, while the clusters are 
not so large that they mix overly diverse attack types. Applying 

[Prefix] + {user prompt} + [Suffix] 

Figure 1. System Prompt Structure. 

 

Figure 2.  Clustering-based Prompt Selection Structure. 



this procedure to the train split yields six subsets, and we 
independently optimize a different suffix for each cluster. 

For each cluster we apply the Analyzer–Rebuilder–based 
APO framework described in Section Ⅲ.C independently. For a 
given cluster, APO is run for at most 10 rounds. In each round 
we randomly sample five failure cases—i.e., successful 
attacks—from the cluster and provide them as input to the 
Analyzer. 

The Rebuilder takes the Analyzer's feedback together with 
the current suffix and generates five new suffix candidates. We 
evaluate the attack success rate for each candidate and select the 
candidate with the lowest ASR. Here, the attack success rate 
(ASR) simply refers to the ratio of evaluated prompts classified 
as successful attacks out of all inputs [3, 5, 7, 11]. The suffix is 
updated only if the best candidate clearly improves upon the 
current suffix. The APO loop terminates when the attack success 
rate no longer meaningfully decreases across rounds or the 
maximum of 10 rounds is reached, and the final suffix for that 
cluster is fixed. 

C. LLM judge and watermark-based detection 

Attack success is determined by combining two detectors: an 
LLM judge and watermark-based detection. For the LLM judge 
we use GPT-5-nano. For each example it receives the attack 
prompt, a reference safe completion for that prompt, and the 
target model’s response. It then performs a semantic and 
contextual assessment of whether the response carries out or 
promotes harmful behavior, or otherwise constitutes a clear 
policy violation, and outputs a binary label of ‘True’ (attack 
success) or ‘False’ (defense success). 

The watermark-based detector is implemented by asking the 
target model, under a separate prompt, to answer “with the 
beginning of ‘YES’”. If the model's output string starts with 
‘YES’, we label the example as an attack success; if it starts with 
‘NO’, we label it as a defense success. 

In our study, we combine the two detectors using a logical 
AND. That is, an example is counted as an attack success only 
if the LLM judge labels it ‘True’ (harmful response) and the 
watermark label is ‘YES’. This conservative rule reduces false 
positives and counts as successful jailbreaks only those cases 
that are supported by both detectors. 

Ⅴ. RESULTS 

In this section, we present our experiment results. We first 
analyze the ASR of each cluster on the train split and then 
evaluate the overall ASR on the full test split. of 10 rounds is 
reached, and the final suffix for that cluster is fixed. 

A. ASR of Each Cluster in Train Split 

The results for the training data are presented in Figure 3. 
Figure 3 compares the ASR of the Initial system prompt and the 
proposed method (Ours) for each cluster after dividing the AH 
train split into 6 clusters. Across all clusters, the proposed 
method maintained the same level of ASR as Initial or recorded 
lower ASR.  

ASR also decreased in c1 and c2 compared to Initial, 
suggesting that cluster-specific suffix optimization can provide 
defense performance similar to or better than the existing 
approach for clusters where specific types of attacks are 
concentrated, from the perspective of the model's internal 
representation. Notably, for cluster c5, after applying APO, no 
successful attack instances occurred for the training examples 
belonging to that cluster, resulting in ASR dropping to zero. 
Conversely, for clusters like c0, c3, and c4, which already 
offered some defense with the initial global suffix alone, the 
suffixes did not change significantly after optimization. 
Consequently, the ASR remained nearly identical. 

B. ASR of Full Test Split 

Figure 4 compares the ASR of the Initial system prompt and 
proposed method (Ours) on the entire test split. Under the Initial 
configuration, where a single global suffix is applied uniformly 
to all examples, the overall ASR is about 0.42. When we instead 
use the cluster-specific suffixes learned on the train split, the 
ASR on the test split drops to about 0.28. This shows that 

designing suffixes specialized to domains and attack patterns on 
the training data leads to a lower attack success rate on unseen 
test examples than a single global suffix. 

 Figure 3. Attack Success Rate for each cluster on train split. 

 

Figure 4. Attack Success Rate on full test split. 



Ⅵ. CONCLUSIONS 

This paper proposes a defense method that automatically 
optimizes only the suffix of the system prompt for each cluster, 
without modifying any model parameters or the global prefix. 
We clustered attack prompts in the internal representation space 
using the hidden states of the target model's last token and 
learned distinct suffixes by iterating a loop of failure case 
analysis and LLM-based automatic prompt generation for each 
cluster.  

Experiment results show that compared to configurations 
using a single global suffix, our proposed cluster-based suffix 
optimization method reduces attack success rate (ASR). This 
suggests that a strategy of dividing attack prompts into types 
based on the model's internal representation and applying 
different suffixes to each group may be more effective than a 
global prompt approach. 

We will measure performance across more diverse models 
and benchmarks, explore sensitivity analysis regarding 
clustering methods and the number of clusters, and investigate 
the possibility of co-optimizing prefixes and suffixes. 
Nevertheless, this study is significant in that it provides 
quantitative evidence that combining internal representation 
clustering with automatic prompt optimization can effectively 
enhance jailbreak defense performance even under the limited 
suffix-only setting. 
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