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Abstract—With the increasing deployment of unmanned aerial
vehicles (UAVs) in diverse environments, robust signal anal-
ysis capabilities are essential for counter-UAV operations. In
particular, Accurate estimation of frequency hopping spread
spectrum (FHSS) parameters in UAV uplinks is important for
link characterization and electronic warfare, especially under
low signal to noise ratio (SNR) conditions. However, spectro-
gram based semantic segmentation methods suffer from limited
frequency resolution because the short time Fourier transform
uses a fixed FFT size. To overcome this limitation, this paper
proposes a coarse to fine FHSS parameter estimation scheme
for UAV uplink signals. First, a DeepLabV3+ based semantic
segmentation network separates uplink, downlink, drone ID, and
noise components on the spectrogram and provides coarse dwell
times and frequency bands for each uplink hop. Then, for every
dwell time, a high resolution power spectral density (PSD) is
computed from the time domain signal, and a region of interest
is defined from the coarse frequency band. The PSD outside this
region is used to estimate and subtract the average noise power,
and the resulting noise calibrated PSD is used to estimate the hop
center frequency and occupied bandwidth. Simulation results for
OcuSync 2.0 UAV uplink signals show that the proposed method
consistently outperforms a coarse only baseline. At high SNR, the
RMSE of center frequency estimation is reduced from 0.11 MHz
to 0.01 MHz and the RMSE of occupied bandwidth estimation
is reduced from 0.86 MHz to 0.05 MHz.

Index Terms—coarse-to-fine, semantic segmentation, FHSS,
parameter estimation

I. INTRODUCTION

Recently, unmanned aerial vehicles (UAVs) have been ac-
tively used for various military and tactical purposes, such
as reconnaissance, surveillance, and target strikes [1]. As a
result, the importance of electronic warfare (EW) technolo-
gies for detecting and identifying hostile UAVs has signif-
icantly increased [2]. In this environment, to characterize
UAV communication links, it is essential to precisely estimate
frequency hopping spread spectrum (FHSS) parameters [3].
These parameters include the center frequency and bandwidth
of each hop. In particular, the ability to stably estimate these
parameters even in low signal-to-noise ratio (SNR) conditions
is a key element for counter-UAV operations, such as link
analysis and jamming strategies [2].

Commercial UAV systems often employ complex signal
structures, such as the OcuSync protocol from DJI [4]. In

these systems, signals for different purposes, including uplinks
using FHSS, downlinks, and Drone IDs, are transmitted and
received in a time-division manner across various frequency
bands. In such environments, various drone signals and noise
are observed in the time-frequency domain at the EW receiver.
Therefore, it is crucial to effectively separate each signal
component and then precisely estimate the parameters for the
FHSS signals [5].

As an approach to address this issue, various methods
have been studied that apply the short time Fourier transform
(STFT) to the received signal to generate a spectrogram and
process the signal directly in the time-frequency domain [6].
For instance, previous research proposed a technique that
treats the spectrogram as an image and applies a semantic
segmentation model based on DeepLabV3+ [7]. By generating
segmentation maps for the uplink, downlink, Drone ID, and
noise components, this method effectively separates the drone
communication signals. Results from estimating the center
frequency using the separated spectrogram showed that this
method outperforms the conventional dual sliding window
(DSW) based approach in terms of signal separation and
parameter estimation [8].

However, these spectrogram-based semantic segmentation
techniques have an intrinsic limitation from the perspective
of FHSS parameter estimation. In these methods, the center
frequency and bandwidth of each hop are estimated directly
from the discrete frequency grid of the spectrogram, where
the frequency spacing is determined by the fast Fourier
transform (FFT) size NFFT used for the STFT. Since it is
difficult to set a large NFFT due to computational constraints,
spectrograms with relatively coarse frequency spacing are
inevitably used in practice. Consequently, even if the semantic
segmentation itself is accurate, the estimated values of the hop
center frequency and bandwidth are quantized to the coarse
frequency grid, resulting in an irreducible root mean square
error (RMSE).

Therefore, to more precisely estimate the FHSS parameters
of UAV communication signals, a new design paradigm is re-
quired to overcome the trade-off between frequency resolution
and computational complexity inherent in spectrogram-based
semantic segmentation techniques. Specifically, a Coarse-to-



Fig. 1. Overall block diagram of the Coarse-to-Fine framework structure.

Fine architecture is needed to effectively reduce the RMSE.
In this structure, deep learning is intensively utilized for the
coarse detection of signal presence regions, while parameters
requiring high frequency resolution, such as hop center fre-
quency and bandwidth, are processed in the fine stage using
spectral analysis with high-resolution FFT within the narrowed
regions of interest (ROI). Furthermore, since the areas outside
the ROI can be regarded as pure noise intervals, the average
noise power can be estimated from these regions and used
to calibrate the power spectral density (PSD), thereby further
enhancing the accuracy of hopping parameter estimation.

II. PROPOSED COARSE-TO-FINE FRAMEWORK

A. Overall Framework Structure

The method proposed in this paper builds upon the ex-
isting semantic segmentation-based drone signal separation
technique by incorporating a parameter estimation stage with a
Coarse-to-Fine structure [8]. Fig. 1 illustrates the overall block
diagram of the proposed framework.

First, in the coarse stage, the received signal is trans-
formed into a spectrogram via the STFT. Subsequently, a
DeepLabV3+ based semantic segmentation model is applied to
generate segmentation maps for the uplink, downlink, Drone
ID, and noise components. From the uplink segmentation map,
the coarse dwell time and the coarse frequency band where the
uplink signal resides can be simultaneously extracted.

In the subsequent fine stage, time domain signals are
extracted for each uplink dwell time identified in the coarse
stage. The PSD is then calculated for each dwell time to

precisely estimate the hop center frequency and bandwidth.
Furthermore, a frequency ROI is defined based on the coarse
frequency range of the uplink obtained in the coarse stage.
The spectrum outside this ROI is utilized as a noise-only
interval to estimate the average noise power, which is then
subtracted from the PSD. Consequently, even if the frequency
resolution of the spectrogram used for semantic segmentation
is relatively coarse, the RMSE of the FHSS parameters can be
effectively reduced through high-resolution PSD analysis and
noise calibration in the fine stage.

B. Coarse Stage: Uplink Signal Separation and Information
Extraction via Semantic Segmentation

The coarse stage adopts the same architecture as the seman-
tic segmentation-based drone signal separation technique pro-
posed by [8]. The STFT is performed on the received baseband
signal y[n] to obtain the complex spectrogram S(t, f), and its
magnitude |S(t, f)| is utilized as the input to the DeepLabV3+
model.

The DeepLabV3+ model employs an encoder-decoder struc-
ture with ResNet18 serving as the backbone neural network.
The trained semantic segmentation model outputs four binary
segmentation maps, MUL(t, f), MDL(t, f), MID(t, f), and
MN(t, f), which indicate whether each time-frequency pixel
belongs to the uplink, downlink, Drone ID, or noise class,
respectively. Here, MUL(t, f) ∈ {0, 1} denotes whether the
corresponding time-frequency pixel belongs to the uplink
signal.



a) Coarse Dwell Time: Let t = 1, . . . , T and k =
1, . . . ,K denote the time and frequency indices of the spectro-
gram, respectively. The existence of an uplink signal at time
index t is defined as âUL(t):

âUL(t) =

{
1, ∃k s.t. MUL(t, fk) = 1

0, otherwise
(1)

By connecting consecutive intervals where âUL(t) = 1, the
dwell time intervals [t(d)s , t

(d)
e ] for d = 1, . . . , D, where uplink

hops are present, can be obtained. These intervals represent
the coarse dwell time of the corresponding hops.

b) Coarse Frequency Band: For each dwell interval d,
the coarse frequency band for the corresponding hop is defined
using the minimum and maximum frequency indices k satis-
fying MUL(t, fk) = 1 within the time range t

(d)
s ≤ t ≤ t

(d)
e :

f
(c,d)
L = min{fk | MUL(t, fk) = 1}, (2)

f
(c,d)
H = max{fk | MUL(t, fk) = 1}, (3)

where the superscript (c, d) indicates that f
(c,d)
L and f

(c,d)
H

are the coarse lower and upper frequency bounds for the d-th
uplink hop. Here, since fk represents a discrete frequency axis
with a spacing of ∆fSTFT = fs/NSTFT determined by the
FFT size NSTFT used in the STFT, the frequency information
obtained in the coarse stage is an approximation limited to
this resolution level.

In summary, the coarse stage simultaneously extracts the
dwell time and approximate frequency band of the uplink hops
via semantic segmentation, which are subsequently utilized for
initial estimation and ROI configuration in the fine stage.

C. Fine Stage: FHSS Parameter Estimation using PSD and
Noise Calibration

In the fine stage, the FHSS parameters (center frequency and
bandwidth) for each uplink hop are precisely estimated using
the dwell time and frequency information obtained from the
coarse stage.

First, let yd[n] denote the time-domain sample interval
corresponding to the d-th dwell interval [t(d)s , t

(d)
e ]. The PSD

for this interval is calculated using Welch’s method. Given the
sampling frequency fs and the FFT size Nfine used in the fine
stage, the fine-resolution PSD is obtained as follows:

P̂d(fℓ), fℓ =
ℓfs
Nfine

(ℓ = 0, 1, . . . , Nfine − 1). (4)

Here, Nfine is set to be sufficiently larger than NSTFT used in
the coarse stage STFT. This reduces the frequency axis spacing
∆ffine = fs/Nfine, thereby decreasing the quantization error
in the estimation of the hop center frequency and bandwidth.

Next, using the uplink frequency range [f
(c,d)
L , f

(c,d)
H ] ob-

tained in the coarse stage, the ROI on the fine frequency axis
is defined as:

F (d)
ROI = {fℓ | f (c,d)

L ≤ fℓ ≤ f
(c,d)
H }. (5)

This set represents the frequency region where the actual en-
ergy of the corresponding hop is expected to be concentrated.
Conversely, the region defined as

F (d)
noise = {fℓ | fℓ < f

(c,d)
L or fℓ > f

(c,d)
H } (6)

is assumed to be a noise-only frequency interval where no
signal components exist. Using this, the average noise PSD is
estimated as

P̂ (d)
w =

1∣∣∣F (d)
noise

∣∣∣
∑

fℓ∈F(d)
noise

P̂d(fℓ) (7)

and the noise-calibrated PSD is defined by subtracting this
estimate from the total PSD.

P̃d(fℓ) = max
(
P̂d(fℓ)− P̂ (d)

w , 0
)

(8)

Finally, the FHSS parameter estimation is performed using
P̃d(fℓ) for frequencies belonging to F (d)

ROI. For instance, the
center frequency f̂

(d)
c of the d-th hop can be estimated using

a power-weighted average as follows:

f̂ (d)
c =

∑
fℓ∈F(d)

ROI

fℓ P̃d(fℓ)

∑
fℓ∈F(d)

ROI

P̃d(fℓ)
(9)

The bandwidth is defined as the 99% occupied bandwidth
based on the energy distribution of the noise-calibrated PSD.

III. SIMULATIONS

In this section, we validate the performance of the pro-
posed Coarse-to-Fine parameter estimation technique through
simulations. The simulated received signals were generated
using the DJI OcuSync 2.0 signal model, with the sampling
frequency set to 122.88 MHz. The semantic segmentation net-
work employed in the coarse stage utilizes the DeepLabV3+
architecture with ResNet18 as the backbone. The ResNet18
backbone network, known for its strengths in sophisticated
feature extraction, has a total computational cost of 2.3
GFLOPs and 1.1 × 107 parameters. The training dataset
consists of 31,000 spectrogram-label pairs. For the testing
phase, performance was evaluated using 10,000 independent
signals generated for each SNR level. Other simulation pa-
rameters, including the hopping frequency range and occupied
bandwidth are summarized in Table 1.

TABLE I
SIMULATION PARAMETERS

Parameters Values
Sampling frequency 122.88 MHz

Center frequency of uplinks {-50, -49, ..., 49, 50} MHz
Uplink bandwidth 1.4 MHz
FFT size of STFT 256
FFT size of PSD 8192

SNR {-10, -9, ..., 19, 20} dB



Fig. 2. RMSE comparison of center frequency. Fig. 3. RMSE comparison of ouccupied bandwidth.

Performance evaluation was conducted by comparing the
proposed Coarse-to-Fine method with a baseline Coarse
method that utilizes only the results obtained from the coarse
stage. The Coarse method estimates the center frequency
and occupied bandwidth directly on the grid resolution of
the spectrogram by projecting the uplink segmentation map
obtained from semantic segmentation onto the frequency axis.
In contrast, the proposed Coarse-to-Fine method operates in
two stages, as described in Section II. First, it extracts the
coarse dwell time and frequency band using the segmentation
map and then calculates the PSD for each dwell time using
a larger FFT size. Subsequently, an ROI is established based
on the frequency information from the coarse stage, and the
average noise power is estimated from frequency components
outside the ROI to be subtracted from the PSD. Finally, the
center frequency and occupied bandwidth of the uplink hop
are precisely estimated using this noise-calibrated PSD.

The RMSE for the center frequency and occupied band-
width is defined for a parameter θ as follows:

RMSE =

√√√√ 1

M

M∑
i=1

(
θ̂i − θi

)2
(10)

where M represents the number of test signals per SNR.
Fig. 2 illustrates the RMSE comparison results for the

uplink hop center frequency with respect to SNR. As observed
in this figure, while the RMSE decreases for both meth-
ods as SNR increases, the proposed Coarse to Fine method
consistently exhibits a lower RMSE compared to the Coarse
method across the entire SNR range. In particular, in the
high SNR region, the center frequency RMSE of the Coarse
method converges to approximately 0.11 MHz, whereas that
of the Coarse to Fine method decreases to about 0.01 MHz,
confirming that the proposed method provides superior RMSE
performance for center frequency estimation.

Fig. 3 shows the RMSE comparison results for the occupied
bandwidth. A similar trend is observed: although both methods

exhibit high RMSE in the low SNR range, the RMSE of
the Coarse to Fine method decreases more rapidly as SNR
increases, demonstrating a distinct performance improvement
over the Coarse method in the medium to high SNR regions.
Specifically, in the high SNR region, the occupied bandwidth
RMSE of the Coarse method saturates at approximately 0.86
MHz, whereas the Coarse to Fine method converges to about
0.05 MHz. This indicates that the proposed coarse to fine
architecture effectively mitigates the quantization error caused
by the spectrogram frequency axis spacing.

IV. CONCLUSION

In this paper, we proposed a Coarse-to-Fine framework to
precisely estimate the center frequency and occupied band-
width of UAV FHSS uplink signals by extending the semantic
segmentation-based drone signal separation technique. The
proposed method is designed to extract the uplink dwell time
and approximate frequency band from the segmentation map
in the coarse stage, while in the fine stage, it calculates a high-
resolution PSD for the corresponding interval and estimates
hopping parameters using a noise-calibrated PSD, obtained by
estimating and subtracting the noise power outside the ROI.

Simulation results based on OcuSync 2.0 demonstrated that
the proposed Coarse-to-Fine method exhibited a lower RMSE
compared to the conventional Coarse method across the entire
SNR range. Notably, in the high SNR region, the RMSE for the
center frequency significantly decreased from approximately
0.11 MHz to 0.01 MHz, and for the occupied bandwidth from
approximately 0.86 MHz to 0.05 MHz. These results confirm
that the proposed technique effectively mitigates the limita-
tions of spectrogram frequency resolution and enhances the
performance of FHSS hopping parameter estimation. Future
work will focus on further improving practicality by validating
the method with actual measured UAV signals and extending
it to multi-UAV and multi-link environments.
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