
Tamperproof Quantum-Inspired Hierarchical
Federated Learning for Side-Channel Security in 6G

Resource-Constrained V2X Communications
Simeon Okechukwu Ajakwe* , Dong-Seong Kim

Department of IT Convergence Engineering, Kumoh National Institute of Technology, Gumi, South Korea
*ICT Convergence Research Centre, Kumoh National Institute of Technology, Gumi, South Korea

simeonajlove@gmail.com, dskim@kumoh.ac.kr

Abstract—This paper proposes a tamperproof Quantum-
Inspired Federated Learning (QiFL) framework for side-channel
attack mitigation in resource-constrained V2X networks. Phase 1
demonstrates that a tensor-network-based QiFL model achieves
comparable guessing entropy to a conventional CNN while
reducing parameters by approximately 95.8% and accelerating
hierarchical federated training by 3.6×. Phase 2 integrates
cryptographic authentication, anomaly-aware Byzantine-robust
aggregation, and quantum-inspired security layers into a hier-
archical FL architecture. A qubit (tensor-rank) ablation study
shows that a 1-qubit QiFL configuration preserves security-level
performance with minimal parameters and runtime, validating
its suitability for vehicular edge–cloud deployment.

Index Terms—Quantum-Inspired Federated Learning, Tam-
perproof Federated Learning, Side-Channel Attack Mitiga-
tion, Vehicular Networks, V2X Communications, Hierarchical
Federated Learning, Byzantine-Robust Aggregation, Resource-
Constrained Edge Devices

I. INTRODUCTION

Vehicular-to-Everything (V2X) communications are central
to intelligent transportation systems, enabling safety-critical
applications such as cooperative perception and collision
avoidance [1]. However, the cryptographic modules embedded
in vehicles and roadside units remain vulnerable to side-
channel attacks (SCAs), where attackers exploit power or
electromagnetic leakages to recover secret keys. Recent works
have shown that deep learning (DL) significantly improves
profiling SCAs on datasets such as ASCAD [2], and that data
augmentation and architectural tuning further enhance attack
success [3]. However, these approaches typically assume cen-
tralized training, rely on large convolutional networks with
millions of parameters, and ignore the realities of resource-
constrained V2X devices and adversarial clients in federated
settings [4].

First, centralizing sensitive traces at a single server con-
flicts with privacy and regulatory requirements for vehicular
data [5]. Second, heavyweight DL models are difficult to
deploy on on-board units with limited memory, compute, and
bandwidth [6]. Third, federated learning (FL) alleviates data
centralization, but existing federated learning (FL)–based SCA
defenses largely overlook tampering and Byzantine behavior:
malicious vehicles can inject poisoned updates, disrupt aggre-
gation, or exfiltrate model information [7].

Motivated by these gaps, this paper proposes a tamperproof
Quantum-Inspired Federated Learning (QiFL) framework that
leverages quantum-classical artificial intelligence [8], tailored
to V2X SCA mitigation. We employ tensor-network–based
QiFL models to dramatically reduce parameter counts, embed
them into a hierarchical FL architecture (cloud–edge–vehicle)
that aligns with V2X infrastructure, and integrate crypto-
graphic authentication, anomaly-aware secure aggregation, and
quantum-inspired security layers to counter malicious partici-
pants. Thus, the key contributions are threefold:

1) we demonstrate that QiFL achieves approximately
95.8% parameter reduction while preserving SCA-level
performance under hierarchical FL.

2) we design a tamperproof FL protocol that remains
lightweight yet robust to poisoned or forged updates;
and

3) we conduct a qubit (tensor-rank) ablation study showing
that a 1-qubit QiFL configuration offers the best trade-
off between security performance and resource con-
sumption, validating its suitability for edge–cloud V2X
deployment.

In this paper, section II describes the proposed cybercognitive
security architecture, section III presents the result discussion
and performance evaluation, while section IV concludes the
work with future direction.

II. SYSTEM DESIGN MODEL AND ARCHITECTURE

Fig. 1 presents the system design and architecture of the
proposed tamperproof quantum-inspired hierarchical feder-
ated learning (QiFL) framework for side-channel secure and
resource-constrained V2X communications. We describe the
hierarchical network model, the federated learning formula-
tion, the side-channel and adversary model, the tamperproof
security mechanisms, and the quantum-inspired components.

A. Hierarchical V2X Network Model

We consider a three-tier architecture: (i) a single Global
Aggregation & Security Server (cloud), (ii) a set of edge
servers / RSUs, and (iii) resource-constrained vehicles.

Let
E = {1, 2, . . . , E} (1)



Fig. 1. System architecture of the proposed tamperproof quantum-inspired hierarchical federated learning (QiFL) framework for side-channel secure and
resource-constrained V2X communications. The model integrates global tamperproof aggregation, hierarchical edge-level secure learning, vehicle-level
compressed QiFL training with side-channel data, and explicit modeling of SCA and Byzantine adversaries.

denote the set of edge servers. Each edge server e ∈ E serves a
set of vehicles Ve = {1, 2, . . . , Ve}. The global set of vehicles
is

V =
⋃
e∈E

Ve, V = |V|. (2)

Edge server e maintains a local copy of the global model
parameters w(t) ∈ Rd at global round t ∈ {0, 1, . . . , T}. Each
vehicle (e, v) holds its own local dataset

De,v = {(x(i)
e,v, y

(i)
e,v)}

Ne,v

i=1 , (3)

where x
(i)
e,v corresponds to a side-channel trace and y

(i)
e,v is a

task-specific label (e.g., key class, leakage profile, or security
level).
B. Federated Learning Objective

The global objective of hierarchical federated learning is

min
w∈Rd

F (w) =
∑
e∈E

αeFe(w), (4)

where αe ≥ 0,
∑

e αe = 1, and Fe(w) denotes the edge-level
objective:

Fe(w) =
∑
v∈Ve

pe,vfe,v(w), (5)

with pe,v =
Ne,v∑

u∈Ve
Ne,u

and

fe,v(w) =
1

Ne,v

Ne,v∑
i=1

ℓ
(
fw(x(i)

e,v), y
(i)
e,v

)
, (6)

where ℓ(·, ·) is a suitable loss function and fw(·) denotes the
QiFL model.

At global round t, each edge e distributes w(t) to its
vehicles. Vehicle (e, v) performs K local stochastic gradient
steps:

w(t,k+1)
e,v = w(t,k)

e,v − ηt,k∇fe,v
(
w(t,k)

e,v ; B(t,k)
e,v

)
, (7)

where B(t,k)
e,v is a mini-batch sampled from De,v , and the initial

condition is w
(t,0)
e,v = w(t).

After local training, the vehicle computes its model update

∆w(t)
e,v = w(t,K)

e,v −w(t). (8)

C. Resource-Constrained Communication and Compression
Because vehicles are resource-constrained and V2X links

are bandwidth-limited, each update ∆w
(t)
e,v is compressed into

a lower-rate representation

∆̂w
(t)

e,v = C
(
∆w(t)

e,v

)
, (9)



where C(·) is a (possibly lossy) compression operator (e.g.,
quantization, sparsification, or low-rank projection). The ef-
fective communication cost is then

B(t)
e,v = bits

(
∆̂w

(t)

e,v

)
, (10)

subject to a per-vehicle budget Bmax:

B(t)
e,v ≤ Bmax, ∀e, v, t. (11)

D. Side-Channel Leakage Model

Each vehicle (e, v) hosts a cryptographic module (e.g., AES
engine) producing side-channel leakages. Let ke,v denote the
secret key and me,v(t) the processed message at time t. The
observed leakage (e.g., power or EM trace) can be modeled
as:

Le,v(t) = g
(
ke,v,me,v(t)

)
+ ne,v(t), (12)

where g(·) is a deterministic leakage function and ne,v(t)
is noise.

The local QiFL model is trained to extract security-relevant
features from side-channel traces:

x(i)
e,v = Le,v(ti), (13)

y(i)e,v ∈ Y (14)

(e.g., key class, leakage level, or attack success indicator), and
the loss ℓ in (4) is evaluated over such pairs.

E. Adversary Model: SCA and Byzantine Clients

1) Side-Channel Attacker: An external side-channel at-
tacker can eavesdrop on Le,v(t) and attempts to recover ke,v:

k̂e,v = ASCA

(
{Le,v(t)}t

)
, (15)

where ASCA denotes a generic SCA algorithm (e.g., CPA,
DPA, or profiling attacks). The QiFL framework aims to train
models that assess and mitigate such risks while keeping the
federated updates secure and privacy-preserving.

2) Byzantine / Poisoning Clients: A subset Be ⊆ Ve of
vehicles under edge e may be compromised and transmit
arbitrary malicious updates b

(t)
e,v instead of the honest ∆̂w

(t)

e,v .
Formally, the edge receives

∆̃w
(t)

e,v =

∆̂w
(t)

e,v, v /∈ Be,

b
(t)
e,v, v ∈ Be.

(16)

The objective is to design aggregation rules that remain robust
under such Byzantine behavior.

F. TamperproofSecurityManager-Cryptographic Signatures

Each vehicle (e, v) shares a secret key Ke,v with the
TamperproofSecurityManager (TSM) at the global server. The
vehicle signs its compressed update using an HMAC:

σ(t)
e,v = HMAC

(
Ke,v, ∆̂w

(t)

e,v∥t
)
, (17)

where ∥ denotes concatenation. The transmitted packet is

P(t)
e,v =

(
∆̂w

(t)

e,v, σ
(t)
e,v

)
. (18)

Upon reception, the edge (and/or global server) verifies

Valid
(
P(t)
e,v

)
=

{
1, if σ(t)

e,v = HMAC
(
Ke,v, ∆̂w

(t)

e,v∥t
)
,

0, otherwise.
(19)

Only updates with Valid(P(t)
e,v) = 1 are passed to the secure

aggregator. The TSM can further maintain a security score
sTSM
e,v (t) ∈ [0, 1] for each client, updated over time based on

anomaly indicators:

sTSM
e,v (t+ 1) = ϕ

(
sTSM
e,v (t), a(t)e,v

)
, (20)

where a
(t)
e,v are anomaly features (e.g., deviation from ag-

gregate, historical behavior) and ϕ(·) is an update rule (e.g.,
exponential moving average).

G. SecureAggregator: Byzantine-Resilient Aggregation

At edge server e, the SecureAggregator combines the veri-
fied updates ∆̃w

(t)

e,v into an aggregated edge update ∆w
(t)
e . A

general weighted aggregation is

∆w(t)
e =

∑
v∈Ve

ω(t)
e,v ∆̃w

(t)

e,v, (21)

where ω(t)
e,v ≥ 0,

∑
v∈Ve

ω
(t)
e,v = 1.

To be resilient against Byzantine updates, we can use
coordinate-wise trimmed mean. For each coordinate j ∈
{1, . . . , d}, consider the multiset S(t)

e,j = {[∆̃w
(t)

e,v]j : v ∈ Ve}.
Sorting in ascending order gives

s
(t,1)
e,j ≤ s

(t,2)
e,j ≤ · · · ≤ s

(t,|Ve|)
e,j , (22)

and the β-trimmed mean is

[∆w(t)
e ]j =

1

|Ve| − 2β

|Ve|−β∑
k=β+1

s
(t,k)
e,j , (23)

where β is the trimming parameter.
Alternatively, the weights ω(t)

e,v in (21) can be constructed
from security scores (see next subsection), thereby implement-
ing security-weighted aggregation:

ω(t)
e,v =

sQS
e,v(t)∑

u∈Ve
sQS
e,u(t)

, (24)

where sQS
e,v(t) arises from the QuantumSecurityLayer.

The global server performs another secure aggregation over
edge-level updates:

∆w(t) =
∑
e∈E

αe∆w(t)
e , (25)

leading to the global model update:

w(t+1) = w(t) + ηg
(
∆w(t) + ξ(t)

)
, (26)

where ηg is the global step size and ξ(t) is quantum-inspired
noise (Section II-I).



H. QuantumSecurityLayer and Security Scoring

Each local QiFL model embeds a QuantumSecurityLayer
(QSL), which maps a latent representation to a scalar security
score.

Let fw(·) be decomposed as

fw(x) = gθ2

(
hθ1(x)

)
, (27)

where hθ1
(x) ∈ Rr is an intermediate representation. The

QSL transforms hθ1(x) into a score:

sQS
e,v(t) = σ

(
ψθq

(hθ1
(x(t)

e,v))
)
, (28)

where ψθq (·) is a parameterized function inspired by quantum
interactions (e.g., entanglement-like mixing) and σ(·) is a
squashing nonlinearity (e.g., sigmoid) mapping to [0, 1].

A simple instantiation is

ψθq
(h) = h⊤Qh+ u⊤h+ bq, (29)

where Q ∈ Rr×r, u ∈ Rr, and bq ∈ R are learnable
parameters, reminiscent of quadratic forms encountered in
quantum Hamiltonians.

The security score (28) can be integrated into the training
objective as a regularizer, for example:

fQiFL
e,v (w) = fe,v(w) + λEx∈De,v

[
R(sQS

e,v(x))
]
, (30)

where R(·) penalizes low security scores and λ > 0 is a
tradeoff parameter.

I. Quantum Noise Injection

To harden the system against model inversion and recon-
struction attacks, the global server injects quantum-inspired
noise into aggregated updates. In (26), the noise term ξ(t) can
be modeled as

ξ(t) ∼ N
(
0, σ2

qId
)
, (31)

where σ2
q is tuned based on the desired privacy level and

robustness.
Alternatively, inspired by depolarizing quantum channels, a

stochastic mixing with a reference model wref can be used:

w(t+1) = (1− ε)
[
w(t) + ηg∆w(t)

]
+ εwref , (32)

where ε ∈ [0, 1] controls the strength of the mixing. This ef-
fectively perturbs the learned parameters in a way analogous to
quantum depolarization, thereby reducing information leakage
through shared updates.

In summary, to ensure tamperproof security against side-
channel leakage, the Hierarchical QiFL Protocol allows each
global round t to proceed as:

1) Broadcast: The global server sends w(t) to all edge
servers, which forward it to their vehicles.

2) Local Training: Each vehicle (e, v) performs local
QiFL training on De,v , yielding ∆w

(t)
e,v .

3) Compression & Signing: Vehicles compute ∆̂w
(t)

e,v =

C(∆w
(t)
e,v) and σ

(t)
e,v = HMAC(Ke,v, ∆̂w

(t)

e,v∥t), then
send P(t)

e,v to the edge server.

4) Edge-Level Secure Aggregation: Edge e verifies signa-
tures, filters invalid/anomalous updates, and aggregates
the remaining ones using trimmed mean or security-
weighted aggregation (leveraging QSL scores) to obtain
∆w

(t)
e .

5) Global Tamperproof Aggregation: The global server
collects edge updates, applies SecureAggregator and
Anomaly Detection, injects quantum-inspired noise, and
updates the global model via (26).

6) Security Scoring & Key Management: The Tamper-
proofSecurityManager maintains and updates client se-
curity scores and cryptographic keys, mitigating Byzan-
tine and SCA-driven threats over time.

This mathematical formulation captures the key elements of
the proposed tamperproof quantum-inspired hierarchical fed-
erated learning architecture: global QiFL coordination, edge-
level secure aggregation, side-channel-aware vehicle clients,
adversary models (SCA and Byzantine), cryptographic tam-
perproofing, and quantum-inspired security mechanisms.

The experiments use the ASCAD variable-key side-channel
dataset [9], containing profiling and attack power traces from
AES implementations with associated plaintext and key meta-
data. Traces are cropped to 1,400 samples, converted to
float32, and standardized using StandardScaler (zero mean,
unit variance) fitted on profiling traces and applied to at-
tack traces. Labels are derived as the XOR of plaintext and
key bytes (256-class S-box output) and, in some analyses,
binned into 16 classes. All models and training pipelines are
implemented in Python using PyTorch, NumPy, h5py, and
scikit-learn.

Fig. 2. QiFL configuration highlighting the hierarchies of edge servers in
vehicles participating in the training rounds

III. RESULT AND PERFORMANCE EVALUATION

To evaluate the performance of the proposed framework in
achieving lightweight tamperproof security, we analyzed the
results in two (2) phases: no degradation in SCA performance
(without tamperproofing) and tamper-resistance and resilience
while maintaining lightweight characteristics. The ASCAD
variable-key profiling and attack traces on AES implementa-
tions. The task was a 256-class classification of S-box output
(per-trace), typical in SCA works. The baseline CNN has three



Fig. 3. Model Complexity and Efficiency Performance for Mitigating SCA in V2X Communication

Conv1D blocks and a dense classifier. On the other hand,
the QiFL model uses tensor-network layers (Matrix Product
State-like decomposition) for parameter compression. It has
3 edge servers (RSUs), each serving 4 vehicular clients (12
total), as seen in Fig. 2.

To train the model, the Hierarchical FL (global–edge–client)
has 10 global rounds, 2 edge rounds, and 2 local epochs.

A. QiFL SCA Efficiency and Capacity

Table I captures the model complexity and efficiency of
QiFL and the baseline CNN model.

TABLE I
MODEL COMPLEXITY AND EFFICIENCY OF QIFL AND CNN

Model Parameters Model Size (float32) Reduction vs CNN

CNN 12 6862848 ≈6.4 MB -
QiFL 70, 624 ≈ 0.27MB 95.8% fewer

From Table I, the QiFL model compresses the baseline
by roughly 24× while still being trainable in the hierarchi-
cal FL setup. We compared the performance of a baseline
centralized CNN with Hierarchical QiFL without tamper-
proofing on the ASCAD dataset. This supports the claim of
resource-constrained suitability for vehicular clients (limited
memory, bandwidth, and compute). Also, the communication
overhead per FL round is reduced in the same proportion,
as model update size scales linearly with parameter count.
Also, for the SCA performance (see Fig. 3 (c)), the base-
line CNN achieved a final guessing entropy (GE) of 254
and per-trace accuracy of 0.46% while QiFL achieved the
same result. GE measures the average rank of the correct
cryptographic key among all hypotheses, with higher values
indicating stronger resistance to key recovery. In the 256-
class AES S-box task, a GE of 254 implies near-maximal
key uncertainty, confirming that QiFL preserves side-channel
security despite model compression and tamperproof federated
learning. In this ASCAD configuration, per-trace accuracy is
low, even for the baseline CNN, which is consistent with
the difficulty of direct 256-class S-box prediction from noisy
traces. Thus, the QiFL achieves identical GE as the baseline,
meaning that there is no degradation in side-channel resistance
compared to the CNN. Hence, from an SCA perspective,

QiFL is as effective as the baseline at modeling the leakage
needed for key recovery. Relative to existing CNN-based
SCA approaches, this result shows that a quantum-inspired
tensor-network architecture can compress the model by ≈96%
without sacrificing SCA performance under hierarchical FL.
Finally, for model efficiency and suitability in V2X, the
baseline CNN had a training time of 12.6 mins while it
took QiFL ≈3.5 min, i.e., ≈3.6 × faster (see Fig. 3(a)). The
reduction in both parameter count and computation leads to a
substantial training speed-up, which is critical for online model
updates in dynamic vehicular environments, and lower energy
consumption on vehicles and RSUs. This empirically validates
that QiFL is better aligned with resource-constrained V2X
devices than conventional CNNs while maintaining SCA-level
performance (same GE).

B. QiFL Tamper-Proof Security Resilience

To optimize the security resilience of the proposed frame-
work, Phase 2 builds on Phase 1 of the QiFL model and
introduces a tamperproof FL framework that combines crypto-
graphic authentication, Byzantine-robust aggregation, anomaly
detection, and quantum-inspired security layers as described
in section II. The tamperproof framework overheads com-
prise (i) TamperproofSecurityManager per-client HMAC
signatures over model parameters and Security scores, com-
bining Signature verification history, Gradient anomaly detec-
tion, and Update norm consistency; (ii) SecureAggregator

with security-weighted, trimmed-mean aggregation, tolerates
a fraction of malicious/Byzantine clients and injects small
quantum-inspired noise as an additional obfuscation layer; and
(iii) QuantumSecurityLayer “Entanglement” features and a
learned security score that influence the final classifier. We
conducted an ablation study on the QiFL model by varying the
number of qubits (n = 4, 3, 2, 1) to determine the optimized
and best resource-efficient model for V2X communication, as
seen in Table III.

As summarized in Table III, the tamperproof QiFL models
in Phase 2 contain between 231k and 274k trainable pa-
rameters, depending on the qubit (tensor-rank) setting, and a
complete tamperproof hierarchical FL run (5 global rounds,



TABLE II
KEY RESULTS COMPARING BASELINE CNN, QIFL, AND TAMPERPROOF QIFL CONFIGURATIONS.

Model / Phase Setting Params Time [min] GE Acc. [%] Performance/Outcome

Baseline CNN (Phase 1) HFL, 256-class S-box 1,686,848 12.6 254 0.46 Standard CNN, no compression, no tam-
perproof FL

QiFL (Phase 1) HFL, 256-class S-box 70,624 3.5 254 0.46 ≈ 95.8% parameter reduction, same
GE as CNN

Tamperproof QiFL (Phase 2,
1 qubit)

HFL + security, 256-
class S-box

231,553 ≈ 1.7–1.9 254 0.46 Secure aggregation, signatures, anomaly
detection, quantum noise

Centralized QiFL (Stage A,
16-class)

Central, 16-class binned
task

55,024 1.38 14 (max
16)

6.38 Simplified task to analyze ML behavior
(not core SCA metric)

TABLE III
PHASE 2 TAMPERPROOF QIFL RESOURCE USAGE FOR DIFFERENT QUBIT

(TENSOR-RANK) SETTINGS.

#Qubits Tensor Rank Parameters Time [s] Time [min]

4 16 273,665 114.21 1.90
3 8 249,601 106.68 1.78
2 4 237,569 106.15 1.77
1 2 231,553 100.66 1.68

3 edges × 4 clients, secure aggregation and anomaly de-
tection enabled) completes in approximately 1.7–1.9 minutes
on a CPU-only machine. These results confirm that, despite
the added costs of key management, anomaly detection,
Byzantine-robust aggregation, and quantum-inspired security
layers, the overall model and protocol remain lightweight
enough for edge–cloud V2X deployments. Across all metrics,
the tamperproof QiFL model with 1 qubit is the most resource-
efficient security model against SCA in V2X communication,
as seen in Fig. 4.

Fig. 4. Tamperproof QiFL ablation study highlighting the number of param-
eters vs No. of qubits

Finally, Table II summarizes the key differences in perfor-
mance between the proposed model and baseline CNN in
phase 1 and the tamper-proof security-resilient model with
increased overhead in phase 2. In phase 1, the QiFL reduces
parameters by ≈95.8% and training time by ≈3.6×, while
keeping GE and accuracy identical to the baseline CNN under
HFL. In Phase 2, the tamperproof QiFL (1-qubit) maintains
the same GE/accuracy regime as Phase 1, even after adding se-
cure aggregation, signatures, anomaly detection, and quantum
noise, and runs in 1.7–1.9 minutes per full tamperproof HFL
experiment on CPU. The result demonstrates that even under
a simplified task (Centralized 16-class run), absolute accuracy

remains modest, reinforcing that the main contributions are
efficiency and secure FL design, not raw per-trace accuracy.

IV. CONCLUSION AND FUTURE WORK
This work proposed a tamperproof Quantum-Inspired Fed-

erated Learning (QiFL) framework for side-channel attack
mitigation in resource-constrained V2X networks. By lever-
aging tensor-network compression and hierarchical feder-
ated learning, QiFL achieves over 95% parameter reduc-
tion while preserving CNN-level side-channel security, as
measured by guessing entropy. The tamperproof extensions
remain lightweight and suitable for edge–cloud deployment.
While Byzantine-robust aggregation and anomaly detection are
integral to the design, explicit empirical evaluation under ma-
licious client attacks is not yet included and will be addressed
in future work.
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