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Abstract—Navigating cluttered indoor environments requires
robust continuous control under sensor uncertainty. This paper
presents a deep reinforcement learning framework using trun-
cated quantile critics (TQC) to learn velocity control directly
from LiDAR data. Raw 3D point clouds from a simulated
Ouster LiDAR are projected to 2D scans and discretized into
sectors to form the state representation. To ensure robustness,
we train a skid-steer robot in a randomized ROS 2-Gazebo
environment with dynamic start-goal and obstacle configura-
tions. A composite reward function utilizing zone-based collision
detection is designed to encourage safe and smooth trajectories.
Experimental results on a 16 x 16 m map demonstrate that
the TQC-based policy achieves high success rates with low
collision frequency, demonstrating the efficacy of distributional
reinforcement learning for reliable mobile robot navigation.

Index Terms—Deep reinforcement learning, Mobile robot nav-
igation, Truncated quantile critics, LiDAR, ROS2, Autonomous
driving

I. INTRODUCTION

Autonomous mobile robots are increasingly deployed in fac-
tories, warehouses, and other indoor logistics environments to
automate material handling and transport. These environments
contain narrow aisles, dense static structures, and dynamic
variations, requiring a robot to reliably reach goal locations
from arbitrary poses while avoiding collisions and generating
smooth, feasible motions. Classical navigation stacks typically
combine a global planner with a local planner such as the
dynamic window approach (DWA) [1], timed-elastic-band
(TEB) [2], or A* variants. Although these methods are mature,
they often depend on simplified motion models, carefully
tuned cost weights, and accurate maps. Their performance
can degrade in cluttered, partially observed scenes or when
perception, planning, and control modules are not perfectly
synchronized.

Deep reinforcement learning (DRL) offers an end-to-end
alternative where a navigation policy is learned directly from
interaction [3]. With rich sensor inputs and a suitable reward
function, a DRL agent can map observations to continuous
control commands that jointly account for goal reaching,
obstacle avoidance, and motion smoothness. However, apply-
ing DRL to mobile robotics faces key challenges: ensuring
stable learning in continuous action spaces, designing rewards
that balance safety and efficiency, and constructing realistic
simulation pipelines that reflect real-world dynamics.
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Fig. 1: Schematic of the TQC-based learning architecture.
The system employs an ensemble of critics and a truncation
mechanism to provide stable value estimates for the actor.

Target Q value Average

In this work, we formulate indoor navigation as a
continuous-control Markov decision process in a ROS 2 [4]-
Gazebo [5] simulation using a skid-steer robot model equipped
with a LiDAR sensor. The raw LiDAR data is processed into a
sector-based representation and concatenated with the relative
goal distance, heading error, and the previous action vector.
At each time step, the DRL agent outputs linear and angular
velocities. The control objective is to reach a goal region
within a fixed horizon while avoiding collisions with randomly
placed obstacles and minimizing oscillatory movements.

To address this problem, we adopt the truncated quan-
tile critics (TQC) algorithm [6], a distributional actor—critic
method that maintains multiple quantile critics to control
overestimation bias. The environment implements a composite
reward function that includes: (i) progress towards the goal,
(ii) a curvature penalty to suppress abrupt rotations, (iii) zone-
based safety penalties utilizing sector-specific thresholds, and
(iv) a time-step penalty to encourage efficiency.

The overall learning architecture is illustrated in Fig. 1.
The agent interacts with the simulation environment, storing
state transitions in a replay buffer. The TQC algorithm utilizes
an ensemble of critics to estimate the return distribution. To
mitigates overestimation, the top quantiles from these critics
are truncated before averaging, yielding a robust Q-value
estimate that guides the stochastic policy update.

The main contributions of this paper are summarized as
follows:

e We design a ROS 2-Gazebo training environment that



facilitates robust learning through domain randomiza-
tion [7], varying the poses of the robot, goal, and ob-
stacles in every episode to prevent overfitting.

o We propose a comprehensive reward function that bal-
ances goal-directed behavior with safety, specifically em-
ploying a zone-based collision detection mechanism to
refine obstacle avoidance in critical sectors.

o We successfully adapt the TQC algorithm for the mobile
robot navigation task, demonstrating that its distributional
nature contributes to stable convergence and high success
rates in cluttered environments.

o We empirically evaluate the learned policies, reporting
metrics on success rate, collision frequency, and path
efficiency, confirming the validity of the proposed frame-
work.

II. RELATED WORK
A. Classical vs. Learning-Based Navigation

Classical navigation pipelines typically separate localiza-
tion, mapping, and planning. While local planners like DWA
and TEB are computationally efficient, they struggle in com-
plex environments due to their reliance on hand-crafted cost
functions and simplified kinematics. DRL-based approaches,
conversely, learn collision avoidance and path planning end-to-
end. Early works utilized value-based methods (e.g., deep Q-
network (DQN) [8]) with discrete actions, while recent studies
employ continuous actor-critic algorithms (e.g., deep determin-
istic policy gradient (DDPG) [9], soft actor-critic (SAC) [10]).
However, these methods often suffer from training instability
and value overestimation when facing high-dimensional sensor
data [11].

B. Distributional RL and Truncated Quantile Critics

Distributional reinforcement learning models the full return
distribution instead of only its expectation. Categorical and
quantile-based methods (e.g., C51, QR-DQN, IQN [12], FQF)
have shown improved stability and sample efficiency by better
capturing uncertainty in returns. For continuous control, quan-
tile critics have been integrated with actor—critic methods to
represent the action-value distribution with multiple quantile
estimates [13].

TQC [6] extend this line of work by sorting all critic
quantiles and explicitly discarding the highest ones, thereby
controlling overestimation bias and improving the robustness
of policy evaluation in continuous-action settings. Combined
with entropy-regularized policies (as in SAC [10]), TQC has
been reported to achieve strong performance on standard
continuous-control benchmarks by stabilizing training and
yielding more conservative value estimates in risky states.

C. Positioning of This Work

Unlike prior works relying on simplified sensors or static
maps, we integrate TQC into a high-fidelity ROS 2 pipeline.
Our approach distinguishes itself by: (i) Using TQC to sta-
bilize learning in cluttered environments. (ii) Implementing
a realistic perception frontend that converts simulated Ouster

3D LiDAR point clouds to 2D laser scans, bridging the gap
to real-world hardware. (iii) Employing a zone-based reward
structure that explicitly reflects robot kinematics for enhanced
safety. This combination allows for systematic evaluation
of distributional RL as a robust backbone for autonomous
navigation.

III. PROBLEM FORMULATION AND SYSTEM SETUP
A. Robot Platform and Simulation Environment

We simulate a four-wheeled skid-steer mobile robot
(parametrized after the Bunker platform) in a ROS 2 [4]
and Gazebo [5] environment. The robot is controlled via
linear velocity v € [—1.7,1.7Jm/s and angular velocity
wy € [—3.14,3.14] rad/s. The training environment consists
of a 16 x 16 m arena with 15 cylindrical obstacles. To ensure
policy robustness, the poses of the robot, goal, and obstacles
are randomly reset at the start of each episode, leveraging
domain randomization techniques [7]. The control frequency
is set to 10 Hz.

Perception relies on a simulated 3D Ouster LiDAR, which
is converted into a 2D laser scan and compressed into an
Ny = 80 dimensional range vector by taking the minimum
distance in each sector. Episodes terminate upon reaching
the goal (success), colliding with an obstacle (failure), or
exceeding 500 time steps.

B. Markov Decision Process

We model the navigation task as a Markov decision process
(MDP)

M:(SaA7P7Ra’Y)7 (1)

where S is the state space, A the action space, P the transition
kernel, R the reward function, and v € (0,1) the discount
factor. We set v = 0.99 in all experiments.

At time ¢, the state s; € S concatenates LiDAR and agent-
level features:
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where d; € RVZ is the sector-wise minimum LiDAR range
vector (clipped to [0, diax]), d5° is the distance to the goal,
6¢'* the heading error, and (¥;—1,@:—1) the previous linear
and angular commands normalized by (Vmax, Wmax)-

The policy outputs a normalized action a; = [0y, @] €

[—1,1]?, which is mapped to physical commands by

Vg = Umax Ut, Wi = Wiax Wi €))

These commands are sent as a geometry_msgs/Twist to
the simulator and applied for one control interval At.
C. Reward Design

The reward function 7; is designed to encourage efficient
path planning while strictly enforcing safety. It is composed
of a sparse terminal reward and dense shaping rewards:
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TABLE I: Key Environment and Reward Parameters

Parameter Value
Map size / Obstacles 16 X 16m / 15
Action Limits (v, w) +1.7m/s,+3.14rad/s
LiDAR Sectors (INy,) / Zones (Nz) 80/8
Goal Threshold dggal 0.42m
Safety Margin p 1.5

a) Terminal and Navigation Rewards

A large reward (+10) is granted for reaching the goal, while
a penalty (—10) is applied for collisions. The navigation term
7% includes a progress reward proportional to the decrease in
distance to the goal and a heading reward for facing the target.
A small time penalty is subtracted at each step to encourage
faster completion.

b) Zone-based Safety Penalty (Tgafety )

To reflect the robot’s kinematics and geometry, we employ
a zone-based collision detection scheme rather than a simple
minimum-distance check. The LiDAR field-of-view is parti-
tioned into Nz = 8 angular zones. For each zone i, we define
a distance deficit 557') if the obstacle distance zt(z) falls below

a safety threshold d&)r:

1 Nz ) Z(l)
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where p is a safety margin factor and w'? represents the
importance weight of each zone (e.g., frontal zones have higher
weights). This formulation allows the agent to learn precise
maneuvering in tight spaces by receiving granular feedback
on which part of the robot is at risk. Finally, an additional
curvature penalty is applied to discourage excessive in-place
rotation, and the total reward is clipped to [—1, 1] for training
stability.

IV. TQC-BASED NAVIGATION POLICY
A. Overview of Truncated Quantile Critics

We adopt truncated quantile critics (TQC) [6] to handle the
continuous action space of the mobile robot. TQC extends
distributional reinforcement learning by approximating the
return distribution Z (s, a) using a set of quantiles, rather than
a single scalar expectation. In our framework, we employ an
ensemble of N¢ critic networks, where each critic predicts
Ng quantiles.

To mitigate the overestimation bias often observed in Q-
learning, TQC applies a truncation mechanism during the tar-
get value calculation. For a next state—action pair (S¢41, G¢+1),
the quantiles from all N critics are pooled and sorted. The
top k estimates are discarded (truncation), and the target value
y; is computed by averaging the remaining quantiles in the set
erunc:
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Here, « is the temperature parameter balancing the entropy
maximization, which is automatically tuned during training.
The critics are updated to minimize the quantile Huber loss
against this target.

B. Network Architecture

The policy and value functions are parameterized using
standard feedforward neural networks.

Actor Network

The actor is a stochastic policy network parameterized as
a multi-layer perceptron (MLP). It consists of three hidden
layers with 256 units each, using ReLU activations. The
network takes the state vector s; as input and outputs the mean
1 and log-standard deviation logo of a diagonal Gaussian
distribution. Actions are sampled using the reparameterization
trick and bounded to the range [—1,1] via a tanh activation
function. Finally, the actions are scaled to match the robot’s
physical velocity limits (Vmax, Wmax)-

Critic Networks

The critic ensemble consists of No = 5 parallel networks.
Each critic follows the same architecture: a three-layer MLP
(256 units per layer) with ELU activations. The final layer
outputs a vector of size Ng = 25, representing the quantiles
of the return distribution. A set of target critics with identical
architecture is maintained and updated via Polyak averaging
to stabilize the learning process.

Prioritized Replay Buffer

We utilize a prioritized replay buffer [14] to improve sample
efficiency. Transitions with higher temporal-difference (TD)
errors are sampled more frequently, allowing the agent to focus
on unexpected or informative experiences.

C. Training Procedure

The training process follows an off-policy actor-critic loop.
Transitions (s, at, 7+, S¢4+1) collected from the Gazebo en-
vironment are stored in the replay buffer. A single training
iteration consists of the following steps:

1) Critic Update: A batch of transitions is sampled. The
target distribution is constructed using the truncation
mechanism described in (6). The critics are updated by
minimizing the quantile regression loss averaged over
all valid quantile pairs.

2) Actor Update: The policy is updated by maximizing
the expected Q-value (averaged over all critics and
quantiles) combined with the entropy term.

3) Entropy Tuning: The temperature « is adjusted via
gradient descent to maintain a target entropy, preventing
premature convergence to a deterministic policy.

4) Soft Update: The target network parameters are updated
using a moving average of the online network parame-
ters.



TABLE II: Core TQC hyperparameters

Hyperparameter Value
Discount factor ~y 0.99

Batch size 256

Replay buffer size 108
Critics (N¢) / Quantiles (Nq) 5/25

Dropped quantiles (k) 2
Target update 7 0.005
Learning rates (Actor/Critic/Ent) | 3 X 104

D. Implementation in ROS 2

The proposed framework is fully integrated into the
ROS 2 [4] ecosystem to ensure compatibility with real-world
robotic standards.

o Environment Node: This node wraps the Gazebo [5]
simulation, handling the synchronization of physics steps
and publishing sensor data (LiDAR, odometry). It im-
plements the zone-based reward calculation and exposes
standard ROS services for resetting episodes.

o Training Node: Implementing the TQC algorithm in
PyTorch, this node interacts with the environment node
asynchronously. It sends velocity commands and receives
observations, managing the replay buffer and network
updates on a dedicated GPU.

« Evaluation Node: A separate node is designed for de-
terministic policy evaluation. It bypasses the exploration
noise and logs performance metrics such as success
rate, collision frequency, and path efficiency for post-hoc
analysis.

V. EXPERIMENTS AND RESULTS
A. Experimental Setup

We evaluate the proposed navigation policy in the
ROS 2 [4]-Gazebo [5] simulation environment. The robot
operates in a 16 x 16 m arena with 15 cylindrical obstacles.
At the start of each episode, the poses of the robot, goal,
and obstacles are uniformly randomized with a minimum
separation of 2.5m to ensure feasible initial configurations.

Training is performed off-policy with a control frequency of
10 Hz. Transitions (s¢, as, 7, S¢4+1) are stored in a prioritized
replay buffer. The training consists of 1,000,000 steps, starting
with a 25,000-step warm-up phase. Evaluation rollouts are
conducted every 5,000 steps using a deterministic policy to
monitor convergence. Table II lists the key hyperparameters.
We use an ensemble of No = 5 critics with Ng = 25
quantiles each, discarding the top k = 2 quantiles to mitigate
overestimation. The entropy coefficient « is automatically
tuned.

B. Training Analysis

We analyze the training dynamics using metrics averaged
over the final 10% of steps (Table III). The entropy coefficient
o converges to =~ 0.0186 with low variance, indicating a shift
towards a deterministic policy. Both actor and critic losses
stabilize with negligible drift, and the mean Q-values plateau
around 14.4. The bounded maximum Q-values confirm that

TABLE III: Training metrics (Final 10%)

Metric Mean / Median Slope
Entropy o 0.0186 —
Actor loss —14.36 +8.9 x 107
Critic loss 0.169 +4.9 x 1078
Q values 14.39 —9.0 x 1077

TABLE IV: Navigation success rates over 6 independent runs

Test Run | Success Rate (> 3.0m) | Success Rate (> 6.0 m)
1 0.99 0.97
2 0.98 0.97
3 1.00 0.98
4 0.99 0.97
5 1.00 0.96
6 1.00 0.97
Average 0.993 0.970

quantile truncation effectively controls overestimation in risky
states.

Fig. 2 visualizes these trends. The stable plateau behavior
across all metrics demonstrates robust convergence of the TQC
algorithm.

C. Navigation Performance

To rigorously evaluate the policy’s robustness and con-
sistency, we conducted 6 independent test runs. Each run
consisted of randomized episodes, separated into two difficulty
levels based on the start—goal distance: Medium (> 3.0m) and
Long (> 6.0m).

Table IV details the success rates for each run. In the
Medium-distance scenarios, the policy demonstrated near-
perfect performance, with success rates ranging from 0.98 to
1.0. In the more challenging Long-distance scenarios, which
require navigating through denser obstacle fields, the policy
maintained high stability, with success rates fluctuating slightly
between 0.96 and 0.98. Across all 6 runs, the average success
rates were approximately 99.3% for medium distances and
97.0% for long distances. These results confirm that the
proposed TQC framework yields a highly reproducible and
reliable navigation policy.

D. Discussion on Robustness

The results highlight the efficacy of distributional rein-
forcement learning for navigation. By explicitly truncating the
upper tail of the return distribution, the TQC agent maintains
conservative value estimates, avoiding the aggressive behav-
iors often seen in standard actor-critic methods near obstacles.
Furthermore, the zone-based collision penalty provides dense,
directional feedback that superiorly guides the agent in tight
spaces compared to scalar distance penalties. This combination
of distributional value estimation and safety-aware reward
shaping yields a policy that is both efficient and robust across
randomized configurations.

VI. DISCUSSION
A. Behavioral Analysis

The learned policy demonstrates distinct behaviors driven
by the shaped reward structure. In open spaces, progress
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Fig. 2: Training curves showing stable convergence of entropy coefficient, actor loss, and Q-values.

and heading rewards dominate, leading to rapid acceleration.
Conversely, near obstacles, the zone-based proximity penalties
induce proactive deceleration and smooth turning maneuvers.
This graded feedback mechanism effectively prevents the
“stop-and-go” oscillations often observed in sparse-reward
settings, ensuring efficient yet safe navigation.

B. Role of Distributional RL

TQC proves essential for stability in randomized environ-
ments by explicitly modeling return variance. Unlike stan-
dard actor-critic methods prone to value overestimation in
cluttered settings, our agent utilizes quantile truncation to
maintain conservative value estimates. This mechanism keeps
Q-values bounded and, combined with automatic entropy
tuning, achieves a robust balance between exploration and
exploitation.

C. Limitations and Sim-to-Real Gap

Despite simulation success, several limitations persist. First,
the Gazebo physics approximation neglects complex wheel
slippage and assumes perfect localization, underestimating
real-world sensor noise and drift. Second, the current state
representation relies on local history, which may be insufficient
for complex mazes requiring global memory (e.g., long short-
term memory (LSTM) or global maps). Finally, real-world
deployment would require additional safety layers, such as
control barrier functions (CBF) [15], to bridge the gap between
simulated rewards and physical safety constraints.

VII. CONCLUSION AND FUTURE WORK

This paper presented an end-to-end framework for the
autonomous navigation of a skid-steer mobile robot using
truncated quantile critics (TQC) [6]. By integrating a realistic
ROS 2-Gazebo simulation stack with a simulated 3D Ouster
LiDAR, we formulated the navigation task as a continuous
control problem. We proposed a comprehensive reward func-
tion incorporating a zone-based collision detection scheme,
which was shown to effectively balance goal-directed progress
with rigorous safety requirements. Empirically, the TQC-based
policy demonstrated robust performance, achieving high suc-
cess rates in randomized environments with dense obstacles.

The distributional critic design, coupled with quantile trun-
cation, successfully mitigated the value overestimation bias,
leading to stable convergence and smooth trajectories. The
modular implementation, separating the environment, training,
and testing nodes within the ROS 2 ecosystem, provides a
reusable baseline for future research in robotic reinforcement
learning.
Future work will focus on three key directions:

1) Dynamic Environments: Extending the simulation to
include moving obstacles and human actors to evaluate
the policy’s adaptability to time-varying hazards.
Ablation Studies: Conducting systematic comparisons
against baseline algorithms (e.g., SAC [10], TD3 [11])
and analyzing the impact of specific components like
prioritized replay and zone-based rewards.
Sim-to-Real Transfer: Deploying the trained policy
on a physical Bunker robot. This will involve domain
randomization techniques to handle sensor noise and
the implementation of a safety-filter layer for real-world
validation.
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