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Abstract—Low-power wide-area (LPWA) technologies for the
Internet of Things (IoT) enable long-range and long-term data
acquisition with minimal energy consumption. However, as the
number of devices transmitting within the same coverage area
increases, packet collisions become more frequent, leading to
degraded communication stability and efficiency. Conventional
collision avoidance schemes are not well suited to high-density
and dynamically changing IoT environments, and often fail to
meet the low-power requirements of battery-operated nodes. To
address this issue, we previously proposed an autonomous and
decentralized collision avoidance scheme based on the Kuramoto
model with smallest-phase-difference intermittent inhibitory cou-
pling, and demonstrated its ability to reduce the packet er-
ror rate (PER) on LoRa devices. Nevertheless, the Kuramoto
model exhibits only a small phase response for small phase
differences, resulting in slow separation of transmission timings
and prolonged collision occurrences. In this study, we propose
an autonomous decentralized collision avoidance method based
on the frog chorus model, whose phase response is strong for
small phase differences and weak for large phase differences.
The contributions of this paper are threefold: (i) we design
and formulate a frog-chorus-based inhibitory coupling rule that
accelerates the separation of transmission timings in dense
networks, (ii) we conduct a fair simulation-based comparison
using normalized coupling strengths and show substantially faster
convergence than the Kuramoto-based approach, and (iii) we im-
plement the proposed algorithm on 50 LoRa devices and validate
its effectiveness through PER measurements, demonstrating its
applicability to large-scale IoT networks.

Index Terms—LoRa, TDMA, nonlinear oscillator, collision
avoidance, synchronization, autonomous decentralized protocol,
Frog Chorus Model.

I. INTRODUCTION

With the widespread deployment of the Internet of Things
(IoT), the number of simultaneously operating sensor nodes
and edge devices has been increasing [1], [2]. In particular, in
large-scale networks with dynamically changing topologies,

such as condition monitoring of factory equipment and wide-
area sensing in urban infrastructure, a large number of devices
need to share the same channel for communication [3]–
[6]. In such high-density environments, packet collisions are
unavoidable, and it has been pointed out that they lead to a
significant degradation in communication quality [7].

Conventionally, representative collision avoidance schemes,
such as Carrier Sense Multiple Access/Collision Avoidance
(CSMA/CA) and Time Division Multiple Access (TDMA),
have been widely used. However, the performance of
CSMA/CA degrades in high-density environments because
channel utilization decreases, which leads to longer waiting
times for transmission and a higher probability of packet
collisions even when carrier sensing is performed. In contrast,
although TDMA guarantees collision-free communication by
design, it relies on static or centrally controlled scheduling and
therefore cannot respond effectively to dynamic IoT environ-
ments where the number of active devices frequently changes,
making it unsuitable for autonomous and decentralized op-
eration [8]. Furthermore, many IoT devices are assumed to
be battery powered, and both low power consumption and
long-term operation are required. Consequently, there are an
increasing number of cases in which existing schemes alone
cannot ensure sufficient performance, such as maintaining
low packet error rates, ensuring timely data transmission,
and sustaining stable communication efficiency under varying
network densities.

To address this issue, methods that exploit autonomous
and decentralized synchronization phenomena to distribute
transmission timings have attracted considerable attention [9]–
[11]. In particular, a method that applies intermittent inhibitory
coupling with the smallest phase difference based on the
Kuramoto model to communication control has been proposed,



and implementation experiments using LoRa devices have
reported a reduction in packet error rate (PER) [12]. Because
each node adjusts its transmission phase based only on local
information, this method offers high adaptability to dynamic
networks and low power consumption, which are major ad-
vantages of this method.

However, in the Kuramoto model, the magnitude of the
phase update becomes very small when the phase difference
is small. Consequently, it takes a long time for the phases
of devices that are initially close to each other to separate
sufficiently, and in high-density environments, the problem of
delayed collision avoidance remains. Therefore, to suppress
collisions more rapidly, a coupling design is required in which
the repulsive interaction becomes stronger as the phase differ-
ence decreases and weaker as the phase difference increases.

A model that satisfies this requirement is the frog chorus
model, which was originally designed for wireless sensor
networks (WSNs) [13]. The frog chorus model is inspired by
the calling behavior of frogs and features a nonlinear phase
response characteristic. By generating strong repulsion when
the phases are close, the transmission timings among the nodes
can be quickly separated.

In this study, we implement the frog chorus model on
LoRa devices and experimentally verify the effectiveness of a
collision avoidance scheme that overcomes the limitations of
conventional Kuramoto-model-based approaches. In addition,
through simulations, we compare the speed of convergence
to desynchronization between the proposed method and the
Kuramoto method. Furthermore, we construct a large-scale
testbed consisting of up to 50 LoRa devices and evaluate the
collision suppression performance of the proposed scheme.

The remainder of this paper is organized as follows. Sec-
tion II introduces the theoretical background of the frog
chorus model. Section III describes our model improvements
that adapt the frog chorus model for IoT environments. Sec-
tion IV presents simulation results comparing the conventional
Kuramoto-based method and the proposed frog chorus-based
method. Section V presents the performance evaluation in
a real experimental environment and discusses the results.
Finally, Section VI concludes this paper and outlines future
research directions.

II. A COLLISION AVOIDANCE METHOD FOR IOT DEVICES
USING THE FROG CHORUS MODEL

This section describes an autonomous decentralized method
that applies the anti-phase synchronization phenomenon of
nonlinear oscillators, which has been proposed in WSNs
to suppress wireless communication collisions among IoT
devices. This method is based on the frog chorus model
and incorporates several modifications to adapt it to IoT
environments. In the following, we explain each stage of the
model modifications and their mathematical background.

A. Description of the Frog Chorus Model

The frog chorus model is a nonlinear phase oscillator
model inspired by the calling behavior of frogs. It exhibits
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Fig. 1: Coupling Function for the Phase Difference in (1)

a characteristic phase response, in which strong repulsion
appears when the phase difference of the oscillators is small.
In this model, the temporal evolution of the phase θi of the ith
oscillator among N oscillators coupled to the other oscillators
is given by the following equation [13],

dθi
dt

= ωi +
Kl

N

N∑
j=1
j ̸=i

−1

π

((
(θj − θi) mod 2π

)
− π

)
(1)

where ωi denotes the natural angular frequency of oscillator
i, and Kl represents the coupling strength between the oscil-
lators, and x mod 2π is defined as the unique value in [0, 2π)
such that x = 2πq+(x mod 2π) for some integer q. Figure 1
illustrates the phase difference and the corresponding rate of
phase change induced by the coupling function in Eq. (1).
For collision avoidance, we exploit the property of anti-phase
synchronization under inhibitory coupling with Kl < 0, in
which the phases are evenly distributed.

B. Description of the assumed IoT environment

In this study, we assume a periodic-reporting IoT system
in which each device periodically transmits sensing data to a
gateway. Under normal operation, each data packet is intended
to be received and processed solely by the gateway. However,
in the proposed scheme, we additionally assume that each
transmitting device can overhear packets sent by other devices
and measure their reception timings.

Equation (1) represents the evolution of the internal phase
of each device, and the transmission timing is determined at
the moment when this phase reaches a predefined value. In
this framework, the reception timings of packets from other
devices are treated as coupling events in (1). Upon detecting
these receptions, each device updates its phase according to the
oscillator dynamics, thereby determining its next transmission
timing.

In this way, (1) links the transmission and reception timings
within the network, enabling each device to autonomously
adjust its transmission instant based solely on locally observed
packet receptions.



III. APPLICATION OF THE FROG CHORUS MODEL TO IOT
DEVICES

A. Model Modification for Intermittent Coupling

Because many IoT devices are battery powered, they cannot
perform continuous transmission and reception and instead
operate by periodically switching between sleep and active
states. In light of this operating pattern, it is not appropriate to
assume continuous coupling in the model, and it is necessary
to modify the model so that intermittent coupling is allowed.
Therefore, we modify the model to the following intermittent
form, in which coupling is restricted to a specific interval
[−rπ, rπ] in the phase space.

dθi
dt

=

{
ωi +

Kl

N

∑N
j=1

−1
π

((
(θj − θi) mod 2π

)
− π

)
ωi

(2)
where r is the ratio of the listening window and takes values
in the range 0 < r < 1, and the condition applies for −rπ ≤
θi < rπ and otherwise.

Because coupling with other nodes is disabled during the
sleep period, intermittent operation can be achieved.

B. Extension to the smallest phase difference Coupling Model

Because listening is impossible during the sleep period in
intermittent operation, we change the model to the smallest
phase difference coupling model in which the coupling target
is limited not to all nodes but to a single node whose phase
difference from node i is the smallest. In this model, the phase
is updated as follows,

dθi
dt

=

{
ωi − Kl

π

((
(θj − θi) mod 2π

)
− π

)
ωi

(3)

j = argmin
j ̸=i

|θi − θj | , θi − θj ∈ [−rπ, rπ] (4)

where j is the index of the other node whose phase difference
from node i is the smallest, as defined in (4). This modification
also contributes to more efficient communication.

C. Implementation based on discrete-time models

To run the model described above on a microcontroller
or system-on-chip, it must be converted into a discrete-time
form. By applying Euler discretization with a step size ∆t,
the discrete-time model is defined as follows,

θi(tn+1) =

{
θi(tn) + ∆t(ωi − Kl

π

((
(θj − θi) mod 2π

)
− π

)
)

θi(tn) + ∆tωi

(5)
Here, tn denotes the nth discrete time instant. Node i is
designed to transmit a packet at the time when θi = 0, and by
updating its phase in each period based on the received infor-
mation, it realizes autonomous collision avoidance behavior.

In the next subsection, we describe the algorithm for imple-
menting the proposed collision avoidance method and present
simulation results comparing the Kuramoto and frog chorus
models based on this algorithm.
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Fig. 2: Proposed flowchart.

D. Implementation of an algorithm for phase controlled op-
eration

The most important aspect of applying the proposed method
to LoRa devices is that each device autonomously adjusts
its transmission timing so that a sufficiently dispersed set of
communication timings is formed. In this study, we realize
phase updating based on anti-phase synchronization inside
each device by controlling the sleep time of the devices ac-
cording to (5). The overall processing flow of the implemented
algorithm is shown in Fig. 2. The operation in each phase is
outlined below.

• First half of listening period: After startup, the device
listen to frames from other devices during the first half
of the listening window (−rπ ≤ θi ≤ 0) and records
the transmission time tj of the smallest phase difference
node.

• Packet transmission: The device transmits a packet at
the timer instant corresponding to θi = 0, which repre-
sents the center of the listening window. The transmission
time at this moment is denoted by ti.

• Second half of listening period: After transmission, the
device listen to frames from other devices during the
second half of the listening window (0 ≤ θi ≤ rπ) and
records the transmission time tj of the smallest phase
difference node.

• Calculation of sleep period: Using the transmission time
tj of the smallest phase difference node obtained from the



received frame, the next sleep period is calculated as

α = Kl × T × 1

π
(
ti − tj
T

× 2π − π) (6)

where Kl is the coupling strength and T is the duration
of one operation cycle. In standard LoRa communication,
we set α = 0 and do not adjust the timing.

• Sleep: Based on the computed α, the device determines
the sleep period and restarts at t = T + α, thereby
autonomously updating the transmission timing for the
next cycle. After waking up from sleep, t is reset to 0.

Through this sequence of processing, each device adjusts
its own phase according to the surrounding transmission
activity, and ultimately an evenly dispersed set of transmission
timings is formed among nodes, thereby realizing autonomous
decentralized collision avoidance.

IV. COMPARISON OF THE KURAMOTO MODEL AND FROG
CHORUS MODEL BY SIMULATION

A. Parameter settings for simulation

Based on the algorithm described in Section III-D, we
compare the behavior of the Kuramoto model and the frog
chorus model by simulation. Here, the coupling functions
of the Kuramoto and frog chorus models are given by
Ks sin(θj−θi) and Kl/π(θj−θi−π), where Ks and Kl denote
the coupling strengths, respectively. Because the convergence
speed depends on the repulsive strength of the coupling func-
tion, the coupling coefficients were determined such that the
maximum value of the coupling function within the coupling
range becomes identical for both methods. This normalization
is appropriate because, under the smallest-phase-difference
inhibitory coupling, the separation process is driven by the
node pair experiencing the strongest repulsion, which governs
the worst-case time required to resolve collisions. We evaluate
the case of N = 50 nodes and set the coupling strengths to
Ks = −0.0080 and Kl = −0.0010, respectively. The simu-
lation conditions are as follows: transmission interval of 30 s,
listening ratio r = 0.25, simulation length of 3,000 cycles, and
an initial offset of 1 ms between the first transmission times
of the devices.

B. Results of the speed comparison in simulation

The simulation results are shown in Figs. 3(a) and 3(b). In
these figures, the vertical axis represents the phase difference
with a base device, and the horizontal axis represents the
number of transmissions of each device. In addition, the initial
phase differences are clustered in a small range and increase
over time, eventually approaching almost equal spacing among
the devices. However, we can observe that the phase differ-
ences in the frog chorus model increase more rapidly than
in the Kuramoto model. This is because, in the frog chorus
model, the amount of phase update is large when the phase
difference is close to 0 or 2π and becomes smaller as the phase
difference increases, so that the states with phase differences
of 0 or 2π do not become stable.

(a) Kuramoto model.

(b) Frog chorus model.

Fig. 3: Simulation results for the temporal evolution of phase
differences among devices.

Next, we evaluate the speed of phase dispersion by rep-
resenting the phase of each device as a unit vector and
computing the magnitude of the vector sum. The more evenly
the phases are distributed, the smaller this magnitude becomes.
Figure 4 shows the temporal evolution of the vector sum
magnitude for each model. From the results, we see that
the magnitude decreases more rapidly in the frog chorus
model, indicating that the phases become evenly dispersed
more quickly and that collision avoidance is achieved earlier
compared with the Kuramoto model.

V. COMPARISON OF PACKET ERROR RATES USING DEVICES

In this section, we present the experimental results obtained
using LoRa devices to demonstrate that the proposed collision
avoidance method is effective in reducing the packet error rate
(PER).
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(a) Single device. (b) Fifty devices.

Fig. 5: Implemented devices.

Fig. 6: Receiver.

A. Hardware components and implementation

To measure PER with real devices, we designed and con-
structed the following two types of hardware configurations.

a) Terminal devices: Each transmitting node is com-
posed of the ES920LR LoRa communication module [14] and
an ESP32-WROOM-32E microcontroller for control [15]. To
emulate a large-scale network environment, we prototyped 50
devices and used them in our experiments. Photographs of a
single device and all 50 devices are shown in Figs. 5(a) and
5(b), respectively.
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(b) Synchronous start.

Fig. 7: Experimental relationship between the number of
devices and PER.

b) Receiver: To collect and analyze the data transmitted
from the devices, we prototyped a dedicated receiver com-
posed of the ES920LR LoRa communication module [14] and
a Raspberry Pi 4 single-board computer [16]. This receiver
records information such as the transmission timing and device
ID of each device, and the PER is calculated based on these
records to evaluate the collision avoidance performance of the
proposed method. A photograph of the prototype receiver is
presented in Fig. 6.

B. Measurement results on the devices

Each device performs a broadcast transmission, and on
the receiver side, the source device ID and reception time
are recorded. In this experiment, the following parameters
are set identically for all devices: transmission interval 30
s, number of measurement trials 50, center frequency 920.4
MHz, bandwidth 500 kHz, spreading factor (SF) 7, payload
length 1 byte, coupling strength Kl = −0.0010 and listening
ratio r = 0.25. The success rate is defined as the ratio of
the number of packets received by the receiver to the total



number of transmission attempts, and PER is obtained as the
complement of this success rate.

First, we configure the system so that the startup time of
each device is randomly distributed within one transmission
interval, and perform measurements under this condition. The
results are shown in Fig. 7(a). Fig. 7(a). indicate that when the
proposed method is applied, PER is consistently low. Even in
the case of 50 devices, PER remains at 0 %, indicating higher
performance than standard LoRa communication.

Next, we configure the condition so that the startup times of
all devices are close to each other, and perform measurements
again. The results are shown in Fig. 7(b). Fig. 7(b) shows
that, while standard LoRa exhibits a high PER regardless of
the number of devices, the proposed method maintains a low
PER, similar to the case with random startup times.

From these observations, it can be inferred that in standard
LoRa, sufficient diversity in transmission timing among de-
vices is not formed, and simultaneous startup causes the trans-
mission timings to overlap frequently, resulting in frequent
collisions that manifest as an increase in PER. In contrast, the
anti-phase synchronization property of the proposed method
enables each device to autonomously adjust its transmission
timing, thereby forming appropriate temporal dispersion and
suppressing collisions. These results confirm that, even in
large-scale deployments, the proposed method based on the
frog chorus model can maintain a stable communication
quality and functions as an effective approach for reducing
PER.

VI. CONCLUSION

In this study, we applied an autonomous decentralized
collision avoidance method based on the frog chorus model
to LoRa communication and verified its effectiveness in re-
ducing the PER in large-scale LoRa networks. By combining
standard LoRa modules with microcontrollers, we constructed
50 communication terminals and conducted evaluation ex-
periments in a real environment. The results confirmed that
the proposed method can suppress packet collisions more
effectively than conventional LoRa communications. These
findings indicate that the proposed method is a promising
approach for achieving high communication stability, even in
large-scale LoRa networks. In particular, it was clearly shown
that the proposed method converges faster than schemes based
on the conventional Kuramoto model, thereby enabling more
efficient communication control.

In future work, we plan to optimize various parame-
ters, including the coupling strength, to achieve even faster
convergence. In addition, we will conduct a more detailed
comparative evaluation of the convergence speed and verify
the adaptability of the proposed method to increases in the
number of devices and changes in the network topology
in real environments. Furthermore, to confirm the reliability
and practicality of the proposed method, we will evaluate
its performance under more complex and realistic operating
conditions, with the goal of contributing to the overall per-
formance improvement of IoT systems. In particular, we will

test the robustness of the proposed method against hidden-
node effects and topology variations, as well as external inter-
ference sources. Moreover, we will evaluate its performance
under mild mobility, or alternatively emulate mobility-induced
link dynamics using controlled attenuation and asymmetric
reception conditions.
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