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Abstract—LiDAR-camera fusion models are essential for ro-
bust 3D scene understanding in autonomous driving. How-
ever, existing multi-modal augmentation methods are typically
developed independently for the LiDAR and image domains,
which often leads to misalignment between 3D geometric trans-
formations and corresponding 2D visual information. In this
paper, we present a geometry-aware framework bridging 2D-3D
transformations. With a diffusion inpainting model conditioned
on transformed 3D bounding boxes and object appearance, aug-
mented images are generated to preserve LiDAR object geometry
and align with the surrounding scene context. Experiments on
the nuScenes dataset with BEVFusion demonstrate that our
augmentation improves geometric alignment and yields consistent
gains in 3D detection performance over both object sampling and
object paste baselines. Our findings highlight the importance
of geometry-aware, multi-modal augmentation for advancing
LiDAR-Camera fusion models.

Index Terms—3D object detection, data augmentation, diffu-
sion, autonomous driving

I. INTRODUCTION

Multi-modal information from LiDAR and camera sensors
is essential for accurate 3D scene understanding in Au-
tonomous Driving (AD). LiDAR provides accurate 3D spatial
geometry of the scene, whereas cameras offer complementary
2D appearance and semantic texture such as color, texture,
lighting, and contextual cues. These complementary properties
make LiDAR-camera fusion a critical component of modern
autonomous perception systems.

However, most existing data augmentation pipelines for
multi-modal fusion still treat the two modalities independently.
In the LiDAR branch, 3D augmentations such as flipping,
rotation, scaling, object sampling, and scene-level mixing
(e.g., PolarMix [1], LaserMix [2]) are commonly applied.
In contrast, the camera branch relies on 2D operations such
as flipping, rotation, cut-and-paste, and mosaic [3]. Beyond
simple global transformations, LiDAR-specific 3D operations
do not have corresponding camera-side transformations. As
a result, when LiDAR objects undergo unshared rotations or
resampling, their projected shapes and locations no longer
match the static RGB images, which degrades cross-modal
feature alignment.
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This misalignment issue becomes more pronounced in
widely used architectures such as BEVFusion [4]. It is com-
monly used two-stage training strategy first pretrains a LiDAR-
only detector with strong 3D augmentations and then intro-
duces camera inputs, which tends to bias learning toward the
LiDAR branch. As observed in [5], image features are often
under-exploited, making it difficult for the model to develop
a well-balanced multi-modal representation.

Cross-modal misalignment is often addressed using object-
paste (GT-Paste [6]), which pastes corresponding 2D object
patches into images based on projected 3D locations. Although
the same object can be observed in both modalities, depth or-
dering, occlusion, and scene-level appearance are not explicitly
considered, which often results in visible artifacts. PointAug-
menting [7] considers depth and occlusion in both LiDAR and
camera views, which improves geometric alignment. However,
since it is still based on cut-and-paste in the image domain,
mismatches in illumination, color, and surrounding context are
not fully resolved.

To overcome these limitations, we introduce a diffusion-
based multi-modal augmentation framework that keeps LiDAR
and camera views geometrically aligned. We first apply 3D
transformations to LiDAR objects, project the resulting 3D
bounding boxes onto each camera image, and then perform
Stable Diffusion [8]-based inpainting conditioned on the pro-
jected geometry to generate context-compatible object appear-
ance. While the object’s position and scale remain fixed, its
texture, lighting, and seam transitions are blended with the
target scene, which mitigates typical cut-and-paste artifacts.
On BEVFusion [4], our method yields consistent gains over
object sampling and object-paste baselines by strengthening
cross-modal alignment.

II. RELATED WORK

Heterogeneous Augmentation for Multi-modal Fusion. Ex-
isting augmentation techniques widely used in LIDAR—camera
fusion models remain largely confined to modality-specific
approaches. For LiDAR, basic 3D point-based transformations
such as flipping, rotation, and scaling are primarily em-
ployed, alongside techniques like instance sampling or scene-
level mixing (e.g., PolarMix [1], LaserMix [2]). In contrast,
the camera domain employs 2D image transformation-based



augmentations like flipping, resizing, color jittering, cut-and-
paste, and mosaic [3], which are applied independently of 3D
geometric transformations. Due to the inherent heterogeneity
between the two modalities, consistency is generally limited
to simple global transformations such as scene rotation or
flipping. This limitation restricts the range of augmentation
strategies that can be directly exploited by multi-modal fusion
models. To mitigate these issues, PointAugmenting [7] intro-
duces an occlusion-aware cross-modal augmentation frame-
work that leverages depth information to explicitly account
for occlusion during object insertion in images. While this
approach effectively preserves geometric consistency, it does
not adequately capture photometric properties or contextual
coherence.

Diffusion. Diffusion models (DDPM [9], LDM [8]) stabi-
lize high-resolution synthesis and inpainting compared to
GAN [10] and VAE [11] approaches but largely operate in
2D with text or label conditioning, offering limited explicit
3D control. Recent 3D-aware efforts (e.g., MagicDrive [12]
with text, HD maps, BEV features, and 3D boxes) primarily
target scene generation or simulation rather than augmentation
for LiDAR-camera fusion. Closer to augmentation, MObI [13]
conditions a Paint-by-example [14] diffusion model on range
images and 3D boxes to refine image realism, but it functions
as an image-level inpainting stage and does not integrate with
common LiDAR object sampling strategy. Neural Assets [15]
enables controllable multi-object 2D synthesis by disentan-
gling appearance and pose, but it is computationally heavy and
has not been evaluated for LiDAR—camera fusion or down-
stream detection. In contrast, we directly leverage 3D-aware
diffusion conditioning to build geometry-consistent, cross-
modal augmentations that plug into standard LiDAR object
sampling and scene mixing, delivering both 3D alignment and
photometric and contextual realism for training-time fusion.

III. METHOD

This section describes cross-modal geometry-consistent
augmentation framework in detail. The framework consists of
three components: (1) procedures for baseline object sampling
and object pasting, (2) a geometry-aware diffusion inpainting
model conditioned on 3D boxes, and (3) a geometry-consistent
cross-modal augmentation framework.

A. Object Sampling and Object-Paste

We first introduce the object sampling and object-paste
baselines used for comparison. Given an original scene (e.g.
Figure 1-(a)), we take the point cloud of source object Pyp;
and its 3D bounding box Boy; = (c,d, ), where ¢ € R3 is
the object center, d = (w, h,1) the object size, and 6 the yaw
angle.

Object sampling. As shown in Figure 1-(b), the extracted
object points are directly inserted into a target scene:

Pobj = Lsrc—tgt 'Pobja Bobj = Lsre—tgt - Bobj7 (1)

where Tic_.tg¢ is the rigid transformation applied to align the
source object with the target LIDAR coordinate system. While
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Fig. 1: (a) Original scene with the source object. (b) Object
sampling: The point cloud and 3D bounding box of the source
object are transformed and inserted into the target scene to
augment the LiDAR point cloud without modifying the image.
(c) Object-paste: The sampled object is inserted into both
modalities, preserving geometric consistency but often leading
to visual artifacts in appearance and context.

this procedure preserves geometric consistency in the LiDAR
domain, the camera image remains unchanged, resulting in
cross-modal misalignment.

Object-paste. To paste the object into the image domain, we
compute the eight transformed 3D bounding box corners of
Bobj and project them into the image:

uw={u}5_, € R¥*2, ()
A 2D bounding box is obtained as
Bop = (minu?, minu!, maxu?, maxu!), 3)
7 7 7 K]

and the corresponding patch is cropped and blended into the
target image (Figure 1-(c)). Although this produces a shared
object in both modalities, naive cut-and-paste often introduces
artifacts such as color discontinuities and background mis-
match.

B. 3D Geometry-Aware Diffusion Inpainting

As shown in Figure 2, our 3D geometry-aware diffusion
inpainting conditions on projected 3D boxes to preserve
LiDAR-camera alignment. We build upon the MObI [13]
architecture but simplify the modality pathways by removing
the range-view branch and operating solely on the camera
image. To enforce geometric consistency between LiDAR and
image domain, the model receives three conditioning inputs:
(1) a reference image providing object appearance, (2) a
LiDAR-derived 3D bounding box describing object geometry,
and (3) a target image where the object region is masked. Each
input is encoded into latent conditioning tokens and injected
into the U-Net [16] denoiser via cross-attention.

Inpainting formulation. We formulate inpainting by masking
out the object region defined by the projected 3D box. Follow-
ing Stable Diffusion v2.1, the model does not observe the full
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Fig. 2: Overview of the proposed cross-modal geometry-consistent augmentation framework.

target image; instead, the masked image is constructed using
a binary mask m € {0, 1}P*P:
Tmask = Timg O] (1 - m)l (4)

A pretrained VAE encoder Ej,,; maps the masked input to the
latent space:

20 = Eimg(fr'mask) S RdXdXC7 (5)

where d = D/s is determined by the VAE down-sampling
factor s.

During the forward process of diffusion, noise is added
according to

zt = Varzp + V1 — aqe,

and the U-Net denoiser €y predicts the noise under the com-
bined conditioning

e~ N(0,1), (6)

C= {Crefa Cbox}~ (7)

The model is trained using the standard diffusion noise-
prediction objective function:

‘C:Ezo,t,e [||e—eg(zt,C,t)||2] ) (8)

which reconstructs the masked region in a manner consistent
with the reference appearance and the 3D geometric con-
straints.

Reference image encoding. The reference image .o iS
obtained by cropping the minimal 2D region covering the

projected 3D bounding box. We encode x.¢ using a pretrained
CLIP [17] image encoder E,.f, and pass the resulting embed-
ding through a trainable MLP layer to obtain the appearance
token:

Crof = M LP,t (Eref(zref)) s 9)

which preserves object-level cues such as color, texture, and
fine-grained shape.

3D bounding box encoding. The 3D bounding box is pro-
jected onto the image using calibrated extrinsics and intrinsics,
yielding an eight points representation Boxsq € R®*3 encod-
ing (z,y) image coordinates. Following the 3D box encoding
strategy of MagicDrive [12], we apply Fourier positional
encoding followed by an MLP layer:

Chox = Epox(Boxsq) = M LPyox(Fourier(Boxsg)) (10)

This geometry conditioned token provides the U-Net with
implicit spatial cues that guide it to synthesize image content
aligned with the transformed object.

C. Geometry-Consistent Cross-Modal Augmentation

We now use the trained diffusion model to generate
geometry-consistent augmentation pairs for LiDAR-camera
fusion. Although the conventional object sampling pipeline
is capable of inserting multiple objects into a target scene,
current diffusion models struggle to perform stable multi-
object inpainting, and multi-object generation frameworks
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Fig. 3: Comparison of object-paste and diffusion-based augmented image.

such as Neural Assets [15] incur prohibitive computational
costs. Therefore, our augmentation procedure operates at the
single-object level while still following the standard object
sampling setup.

The process begins with the object sampling step described
in Section III-A. The source object is transformed into the
target LiDAR frame, producing a transformed 3D box Bobj
and point cloud 750bj, where the transformed 3D box is used
to condition the diffusion model on object geometry. Using the
projected 3D box, a patch is cropped from the source image to
extract an appearance token, while the transformed box Bobj is
used to derive a geometry token, which are then jointly used to
condition the diffusion model. Both tokens modulate the U-Net
denoiser through cross-attention, enabling the diffusion model
to generate an inpainted latent feature Z that is consistent with
the transformation. The latent prediction is decoded using the
pretrained image decoder Dy, yielding the final augmented
image

(1)

It is paired with the transformed LiDAR points 750bj to
form a geometry-aligned multi-modal augmentation sample,
overcoming the misalignment and visual artifacts inherent in
traditional object sampling and object-paste.

LTaug = Dimg(ZNO)-

1V. EXPERIMENTS
A. Experimental Settings

Datasets. The experiments are evaluated on the nuScenes [18],
which provides 700 training scenes and 150 validation scenes.
We restricted augmentation to the front cam attribute, since
the diffusion models used in our work do not guarantee multi
view consistency. Also, we focus on two object categories, car
and pedestrian, which representative classes in driving scenes.

Multimodal Fusion Model. We used BEVFusion [4] as
the 3D object detection model and evaluated augmentation
performance using per-class mAP and NDS. To fairly mea-
sure augmentation performance, all detectors are trained from
scratch, and each model is trained for a single object class.
Image patches are resized to 512 x 512, LiDAR uses the
standard multi-sweep setting, and each model is trained for
about 48 hours on two NVIDIA A6000 GPUs.

Diffusion Model. The 3D-aware diffusion inpainting model
is trained using cropped image patches of resolution 512 x
512. We fine-tune a Stable Diffusion v2.1 and use a latent
resolution of 64 x 64. Generation takes 2.5 seconds per image,
and training requires 24 hours on four NVIDIA A6000 GPUs
with batch size 4.

Augmentation Strategy. To ensure a fair comparison across
augmentation methods, we control the sampling procedure
such that object sampling, object-paste, and our diffusion-
based synthesis operate on the same object—image pairs.
For each epoch, we record the indices of the target front
camera image and the corresponding source object selected
for augmentation. These index pairs are reused to generate the
object-paste images and the diffusion-based inpainted results,
so that all methods are evaluated under identical geometric
configurations and object placements. Each epoch contains
approximately 21,000 augmented front camera images, which
are paired with the corresponding transformed LiDAR data
and used to train the 3D detection model.

B. Qualitative Result

Figure 3 compares the visual results of the original images,
the object-paste baseline, and our diffusion-based augmen-
tation for both the car and pedestrian classes. The object-
paste baseline frequently introduces visual artifacts such as



[Baseline]: Multi-modal BEVFusion

a Object Sample Object Paste Ours

ass mAP  NDS mAP NDS mAP NDS
Car | 74.0 735 | 807 (+6.7) 742 (+0.7) | 81.5 (+7.5) 792 (+5.7)

Pedestrian | 63.9 69.1 | 65.1 (+1.2) 7TL1 (+2.0) | 65.9 (+2.0) 70.8 (+1.7)

TABLE I: Evaluation of BEVFusion [4] on the nuScenes [18] dataset under multiple augmentation schemes. The proposed
LiDAR-Camera aligned strategy achieves superior performance compared to non-aligned methods.

color discontinuities, blurred boundaries, and illumination mis-
matches, which stem from directly inserting cropped objects
into the target scene. A typical failure case appears in the
fourth column of Figure 3, where a day-time pedestrian is
placed into a night-time background, resulting in clear visual
inconsistency.

In contrast, our method preserves geometric alignment
between LiDAR and image domains while maintaining con-
sistent appearance with the surrounding scene. The diffusion-
generated objects are adapted to the local background context,
which effectively suppresses boundary artifacts and satisfies
the imposed 3D geometric constraints. As a result, the pro-
posed approach produces visually more natural and geometri-
cally consistent augmentations than conventional strategies.

C. Quantitative Result

The impact of our augmentation framework is summa-
rized in Table I. Compared with object sampling (LiDAR-
only) and object-paste, our method achieves improvements of
+6.7 mAP and +0.7 NDS for the car class. This indicates
that correcting cross-modal misalignment between LiDAR
and image modalities plays an important role in improving
detection performance. A similar trend is observed for the
pedestrian class, where object-paste consistently outperforms
object sampling.

While object-paste provides a clear improvement over object
sampling, its performance remains below that of our method,
indicating that paste-based augmentation alone is insufficient.
For the car class, our approach achieves additional gains of
+1.2 mAP and +5.0 NDS over object-paste. This suggests
that both geometric alignment and appearance consistency are
jointly required for stable multi-modal fusion. For the pedes-
trian class, although mAP improves, NDS remains relatively
low, which is likely attributable to the limited image fidelity of
small objects generated by the diffusion model. We believe that
improvements in diffusion resolution and generation quality
will further enhance the effectiveness of our augmentation
framework for multi-modal fusion training.

V. CONCLUSION

In this work, we proposed a novel cross-modal consistent
augmentation framework based on diffusion-based approach.
By integrating our approach with conventional LiDAR-specific
object sampling strategies, the proposed method effectively
preserves the geometric alignment between LiDAR and im-
age modalities. Through experiments on nuScenes 3D object

detection, our method consistently outperforms conventional
object sampling and object-paste techniques, demonstrating
that LiDAR—camera alignment plays a critical role in multi-
modal training. However, the proposed framework requires
approximately 2.5 seconds per image for generation, which
incurs a considerably higher computational cost compared
to previous real-time augmentation methods. Besides, our
method is limited in its applicability to multi-view and multi-
object scenarios. Nevertheless, given the rapid advancement
of diffusion models, we expect that these limitations can be
substantially alleviated in future work. We expect that further
improvements along this direction will positively contribute to
the training of multi-modal fusion models.
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