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Abstract—Surround-view monitoring systems for heavy-duty
vehicles must maintain reliable BEV (bird’s-eye-view) imagery
over long-term operation in harsh environments. Classical ge-
ometric calibration with checkerboards or ChArUco boards
provides accurate intrinsics and extrinsics at installation time,
but cannot easily cope with parameter drift caused by vibration,
thermal cycles, and minor impacts. This paper proposes a two-
stage AVM (around-view monitoring) framework that combines
pattern-based commissioning with learning-based maintenance of
camera intrinsics. A learning-based calibration network predicts
a ray-direction field from natural driving scenes and fits a
parametric fisheye model, enabling both user-initiated recal-
ibration and automatic monitoring of intrinsics drift during
runtime. Experiments on a four-camera surround-view platform
show that the proposed method reduces reprojection error from
102.44/107.52 pixels (GeoCalibradial/gen) to 47.304 pixels (Oursdist),
lowers angular error from 4.28/7.24° to 0.77°, and decreases verti-
cal/horizontal field-of-view errors from 7.45/14.88° to 0.49/1.26°,
while matching or improving the accuracy of recent learning-
based calibration. These gains translate into visibly more stable
surround-view images compared to purely geometric baselines.

Index Terms—Surround-view monitoring, fisheye camera,
learning-based calibration, bird’s-eye view, autonomous driving.

I. INTRODUCTION

Surround-view monitoring is a key safety function for
heavy-duty and special-purpose vehicles operating in narrow
depots, construction sites, and logistics hubs. Drivers rely on
stitched BEV images to avoid collisions with nearby obstacles
and workers, but long-term field operation shows that AVM
image quality gradually deteriorates: seams open up, objects
become misaligned, and operators lose trust in the system.
This degradation is caused by accumulated physical changes—
vibration, minor impacts, temperature cycles, humidity, and
cable strain—that perturb camera intrinsics and extrinsics, so
even pixel-level parameter drift produces visible artifacts and
safety-critical perception errors.
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Fig. 1. High-level design goals of the proposed AVM system: usability via
field recalibration, automatic operation via self-diagnosis and correction, and
a two-stage AVM pipeline separating commissioning and runtime.

Classical geometric calibration with checkerboards or
ChArUco boards remains the de-facto standard for setting up
AVM systems and can achieve sub-pixel reprojection error.
However, it requires vehicle downtime, controlled space, cali-
bration patterns with sufficient coverage, and expert operation,
so in practice it is performed only at installation or major
maintenance while the system is expected to operate for years
in harsher conditions [1], [2]. This gap motivates learning-
based calibration that works on natural scenes, monitors the
consistency between live images and the stored camera model,
and enables in-field adjustment [3], [4]. In this context, cali-
bration should be not only accurate but also practically usable
and capable of automatic operation. Fig. 1 summarizes these
three design goals in terms of usability, automatic operation,
and a two-phase AVM pipeline.

To realize this goal, we formulate AVM operation as a two-
stage pipeline from initial commissioning to long-term run-
time. During commissioning, geometric tools estimate baseline



Fig. 2. Two-stage AVM pipeline. During commissioning (red path), learning-based calibration estimates intrinsics, pattern-based tools estimate extrinsics, and
a BEV transformer plus blending module generate a reference surround-view. During runtime (green path), stored extrinsics are reused while the learning-based
module updates effective intrinsics and maintains BEV quality.

intrinsics and extrinsics and generate a reference surround-
view image [5], [6]. During runtime, the stored extrinsics are
reused while a learning-based calibration module analyzes live
fisheye images, detects intrinsics drift, and maintains BEV
image quality under everyday disturbances, combining high-
precision pattern-based calibration with continuous learning-
based maintenance.

Based on this perspective, this paper makes the following
contributions:

• Learning-based calibration for usability. We introduce
a learning-based calibration model that operates on nat-
ural driving scenes so that users can re-check and refine
camera parameters without dedicated patterns or expert
tools, improving the usability and maintainability of AVM
in the field.

• Learning-based calibration for automatic operation.
We extend the same model into a runtime diagnostic
module that monitors the consistency between live fisheye
images and the stored camera model, detects intrinsics
drift, and triggers automatic correction, enabling system-
level “automatic operation” in which the AVM can self-
diagnose and self-calibrate.

• Two-stage AVM framework. We integrate the proposed
module into a two-stage AVM framework that separates
commissioning and runtime, and we experimentally show
that this design maintains surround-view image quality
more robustly than conventional pattern-only calibration.

II. PROPOSED AVM FRAMEWORK

A. Two-Stage AVM Pipeline
Fig. 2 gives an overview of the proposed AVM pipeline,

which explicitly separates an initial commissioning path from
a runtime path. During commissioning, a single-view fisheye
image from each camera is first fed to a learning-based
calibration module that estimates effective intrinsics (K,D)
for the given hardware and mounting configuration. These
intrinsics are passed to an undistort-map generator, which
produces a dense rectification map and a rectified image for
each camera. On the rectified views, a board detector locates
checkerboard or ChArUco patterns [2], [7], and a coordinate
transformer then estimates extrinsics (Rvehicle, tvehicle) that
anchor all cameras to the vehicle frame.

Given the estimated intrinsics and extrinsics, the system
computes a BEV transform and feeds the resulting BEV
images into a deterministic blending/stitching module [8], [9].
This module is responsible for composing the multi-camera
BEV into a single surround-view image while suppressing
seams, ghosting, and geometric inconsistency. The resulting
parameters and maps—intrinsics, extrinsics, and BEV warps—
are stored as the baseline calibration and are reused during
runtime.

At runtime, the same extrinsics are loaded directly without
requiring boards or vehicle downtime. Live fisheye images
are continuously processed by the learning-based calibration
module, which tracks potential intrinsics drift caused by
vibration, temperature cycles, or minor impacts. When drift
is detected, the module updates the effective intrinsics while
keeping the extrinsics fixed, and the downstream undistort,
BEV transform, and blending steps are updated accordingly. In
this way, the proposed framework combines the high accuracy
of pattern-based commissioning with continuous, learning-
based maintenance during normal operation.

B. Learning-Based Calibration Architecture

The internal structure of the learning-based calibration
module is illustrated in Fig. 3. A single fisheye input image
is first processed by a convolutional feature extractor based
on a lightweight ResNet backbone [10]. This stage converts
the raw image into a multi-scale feature tensor that captures
local texture and edge information while preserving the global
layout of the scene.

The extracted feature maps are then tokenized and passed to
a Vision Transformer (ViT) encoder [11]. The encoder models
long-range dependencies across the full field of view, which
is critical for fisheye images where rays near the periphery
correspond to large angular changes. Through self-attention,
the ViT aggregates evidence across the entire image and
produces a compact latent representation that encodes both
appearance and underlying ray geometry.

A shallow CNN decoder maps this latent representation
back to a dense latent field defined over the image plane.
From this latent field, a small prediction head regresses per-
pixel or low-dimensional ray-vector descriptors, which are
subsequently interpreted by a closed-form camera model to



Fig. 3. Learning-based calibration architecture. A ResNet feature extractor produces image features, which are encoded by a ViT and decoded by a lightweight
CNN into a latent field. From this field, ray-vector descriptors are inferred and fitted with a parametric fisheye camera model to obtain intrinsics (K,D).

obtain intrinsics parameters such as focal length, principal
point, and distortion coefficients. In other words, the network
learns to predict a ray-direction field in the latent space, and
the camera model fits a parametric fisheye projection that best
explains this field, similar in spirit to AnyCalib [12].

Because the model operates on ordinary driving scenes, it
can be applied repeatedly during runtime without any calibra-
tion pattern [13], [14]. When the predicted intrinsics deviate
from the stored commissioning values beyond a threshold,
the system treats this as evidence of parameter drift and
updates the effective intrinsics used by the undistort map and
BEV transformer. This design allows the same architecture to
support both user-initiated recalibration in the field and fully
automatic monitoring and correction of camera intrinsics.

III. EXPERIMENTS

A. Experimental Setup

We evaluate the proposed learning-based calibration on a
surround-view system installed on a vehicle platform with
four fisheye cameras mounted at the front, rear, left, and right.
Each camera captures 1920 × 1080 images at 30 FPS. From
continuous video, we extract a dataset of 2,000 single frames
containing a mixture of outdoor and indoor scenes, building
facades, vehicles, hand-drawn lines, and geometric patterns.

For surround-view generation, all methods use the same
BEV configuration: a 1024 × 1024 canvas corresponding to
roughly 50 pixels/m, and a fixed set of extrinsics that map each
camera to the vehicle coordinate frame. The AVM pipeline
runs on an Ubuntu environment.

To provide a reliable reference, we first perform a con-
ventional board-based geometric calibration with checker-
board/ChArUco targets. The resulting intrinsics and extrinsics
are treated as a pseudo ground truth (GT) for the given hard-
ware configuration. Our learning-based method is trained using
only images, but all quantitative comparisons are reported with
respect to the board-based calibration and the surround-view
images generated from its parameters.

B. Optimization of Camera Model

Before training the final network, we study which projection
model is most suitable for our fisheye cameras. Fig. ?? plots,
for each candidate model, the mapping from incident angle θ

TABLE I
CALIBRATION ACCURACY FOR DIFFERENT METHODS. LOWER IS BETTER

FOR ALL METRICS.

Method RE [pix]↓ AE [◦]↓ vFoV err [◦]↓ hFoV err [◦]↓

GeoCalibradial [17] 102.44 4.28 7.45 14.88
GeoCalibgen [17] 107.52 7.24 9.59 11.01
AnyCalibdist [12] 48.764 0.77 0.51 1.26
AnyCalibgen [12] 51.498 1.04 0.52 1.26

Oursdist 47.304 0.77 0.49 1.26
Oursgen 51.521 1.04 0.49 1.26

to image radius r(θ) for the ground-truth parameters and the
parameters predicted by learning-based optimization. The five
subplots correspond to UCM, EUCM, pinhole, edit, and dist
models, arranged from the top left to the bottom right.

For UCM and EUCM, the predicted curves deviate sig-
nificantly from the ground truth, especially at large incident
angles. The radius grows too quickly near the periphery, pro-
ducing strong over-stretching and poor extrapolation beyond
the range covered by calibration data. The pinhole model
behaves similarly and cannot reproduce the heavy fisheye
distortion. The edited model gains flexibility but exhibits
unstable behavior: the radius curve shows a sharp spike or
collapse around high angles, which leads to severe artifacts in
undistorted images.

In contrast, the dist model closely matches the ground-
truth curve across the entire field of view. The GT and
predicted curves almost overlap, with no sudden divergence or
singular behavior. This indicates that the dist parameterization
provides enough degrees of freedom to fit real fisheye lenses
while remaining numerically stable for learning. Based on this
observation, we adopt the dist camera model as the default
projection model in all subsequent experiments.

C. Quantitative Results and Analysis

Table I reports numerical errors for different calibration
pipelines in terms of pixel reprojection error (RE), angular
error (AE), and vertical/horizontal field-of-view (vFoV/hFoV)
deviations.

GeoCalibradial and GeoCalibgen denote our baseline learning-
based calibration variants configured with a radial distortion
model and a more generic wide-angle model, respectively.
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Fig. 4. Comparison of radius–angle mappings between the board-calibrated ground truth and the learned camera model. (a) UCM. (b) EUCM. (c) Pinhole.
(d) EDiT. (e) Dist. Blue curves represent the board-based ground truth, while orange curves indicate the learned model. Among the tested parameterizations,
the Dist model exhibits the closest agreement with the ground truth across the full field of view.

They show the largest errors in this benchmark, with RE
above 100 pixels and FoV deviations exceeding 7◦–14◦, which
indicates that these parameterizations are not well suited to
our fisheye surround-view setup. AnyCalibdist and AnyCalibgen
already reduce RE by more than half (down to 48.764 and
51.498 pixels, respectively) and significantly improve AE as
well as vFoV/hFoV accuracy. Our method further refines
the camera model on top of these learning-based baselines:
Oursdist achieves the lowest RE of 47.304 pixels while keeping
AE at 0.77◦ and reducing vFoV error to 0.49◦ with an hFoV
error of only 1.26◦. The generic variant Oursgen matches
the FoV accuracy of Oursdist (vFoV 0.49◦, hFoV 1.26◦) and
closely tracks its RE and AE. Overall, the proposed calibration
scheme improves upon the baseline GeoCalib variants and
reaches or surpasses AnyCalib across all metrics.

D. Qualitative Results and Analysis

Fig. 5 shows qualitative surround-view results for the
geometric baseline and the proposed method. With purely
geometric calibration, the stitched BEV image exhibits visible
seams and distortions around the vehicle. Objects near the
overlapping regions appear slightly stretched or duplicated,

and the rectangular platform in the center of the scene is
warped, with its edges misaligned across camera boundaries.

Using the proposed learning-based calibration, the surround-
view image becomes noticeably more coherent. The rectan-
gular platform and nearby shelves appear more regular and
symmetric; seams are less noticeable, and high-contrast struc-
tures such as lines on the floor are better aligned across views.
However, minor residual distortions remain in some far-range
areas. These artifacts mainly arise from accumulated errors
in converting each camera’s extrinsics to the unified vehicle
coordinate frame via the multi-step bridge transformation [15],
[16]. Even small pose errors in that chain can be amplified
in the BEV domain. Despite this limitation, the qualitative
comparison clearly demonstrates that the proposed calibration
improves the perceptual stability and usability of the AVM
image over the geometric baseline.

IV. CONCLUSION

This paper presented a two-stage surround-view framework
that augments classical board-based calibration with learning-
based maintenance of fisheye intrinsics. By combining a
learning-based calibration network with a stable dist camera
model, the proposed method can operate on natural scenes,



Fig. 5. Qualitative surround-view results. Left: geometric calibration with
board-based intrinsics only. Right: proposed learning-based calibration (dist
model). The proposed method reduces seams and distortion around the
vehicle, while small residual artifacts remain due to accumulated errors in
extrinsics to vehicle-frame conversion.

enabling user-initiated recalibration and automatic monitoring
of intrinsics drift during runtime. Experiments on a four-
camera AVM platform showed that the method matches or
surpasses recent learning-based calibration in reprojection and
field-of-view errors, while also delivering qualitatively more
coherent surround-view images. In future work, we plan to
extend the approach to joint refinement of intrinsics and
extrinsics, and to integrate uncertainty estimates so that the
AVM system can reason about calibration confidence in real
time.
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