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Abstract— This study proposes and evaluates a method for 

automatically recording the timing and order of leaf emergence 

using only timelapse images that can be obtained in a typical 

plant experimental environment. A series of top‐view images of 

Arabidopsis thaliana were processed using instance 

segmentation with the deep learning framework Detectron2, 

and the extracted leaf regions were then tracked based on 

positional information. Approximately 2,400 segmented leaf 

samples obtained from growth sequences were used for model 

training, and leaf association between consecutive frames was 

performed using the Hungarian algorithm. Furthermore, by 

incorporating backward tracking and a loss‐recovery procedure 

that leverage structural constraints of plant growth, the stability 

of leaf identification was improved. 

Experimental results showed that the proposed method 

successfully reproduced leaf orientation and spatial 

arrangement during later growth stages, demonstrating its 

potential for automatically estimating the order of leaf 

emergence. In contrast, early-stage leaves tended to exhibit 

tracking fluctuations due to unstable segmentation results, 

indicating room for improvement. Nevertheless, because the 

primary aim of this study is to provide a low-cost and easily 

adoptable framework for acquiring important plant phenotypic 

information—such as leaf emergence order and growth 

tendencies—without specialized equipment, the proposed 

method is considered highly useful. Future work includes 

improving imaging conditions and segmentation models to 

achieve more accurate and fully automated plant growth 

recording. 
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I. INTRODUCTION 

In plant science research, a wide variety of plant species 
are used as experimental subjects. Regardless of the target 
species, many experiments share a common workflow in 
which genetic modifications or environmental treatments are 
applied and the resulting phenotypic changes are observed and 
recorded. Traditionally, these observational tasks have relied 
heavily on manual inspection, and the creation of detailed 
growth records has been reported to require substantial time 
and labor [1], [2]. Minervini et al. [1] pointed out that many 

steps in plant phenotyping remain manual, limiting 
experimental throughput, while Fahlgren et al. [2] emphasized 
the growing demand for automated and high-throughput 
phenotyping approaches. 

To address this issue, a variety of automated plant 
phenotyping systems have been developed. For example, 
Fujita et al. [3] proposed RIPPS, a fully automated 
phenotyping platform that constructs a dedicated imaging 
environment and controls environmental factors such as 
temperature, humidity, light intensity, and watering. The 
system enables precise and reproducible measurements of 
plant traits but requires specialized equipment and a large-
scale experimental setup. Similarly, Li et al. [4] proposed a 
plant growth tracking method based on skeleton extraction 
from three-dimensional point cloud data acquired using 
structured light and turntable-based imaging. Although such 
3D approaches provide detailed structural information, they 
often involve high equipment costs and complex operation, 
limiting their accessibility for routine use in many laboratories. 

Recognizing these limitations, several studies have 
explored methods for analyzing plant growth under simpler 
imaging conditions. Nagahara et al. [5] demonstrated that 
plant structural changes can be tracked using time-series 
images combined with a high-precision 3D model obtained at 
a later growth stage, reducing the need for specialized 
facilities. In parallel, advances in image processing and 
machine learning have enabled accurate estimation of plant 
morphological traits—such as leaf size, number, color, and 
skeletal structure—from two-dimensional images [6]. In 
particular, deep learning–based instance segmentation has 
been successfully applied to leaf segmentation tasks in 
Arabidopsis and other plant species [7]. 

In recent years, increasing attention has been paid to low-
cost and easily deployable plant phenotyping approaches 
based on consumer-grade cameras and time-lapse imaging. 
These approaches offer practical solutions for improving 
experimental throughput while maintaining accessibility in 
standard laboratory environments. However, an essential 
aspect of plant growth analysis—namely, determining when 
each leaf emerges and in what sequence—remains difficult to 
automate. Granier et al. [8] and Walter et al. [9] reported that 
leaf emergence timing is a critical physiological indicator 



related to plant development and environmental response, yet 
automatically estimating emergence order from image data 
alone remains challenging. Even methods based on 3D 
reconstruction or multi-view imaging often struggle to 
robustly identify the temporal sequence of leaf emergence, 
particularly during early growth stages. 

Despite recent progress in deep learning–based plant 
image analysis, most existing approaches either require 
complex imaging systems or depend on extensive manual 
annotation to determine leaf emergence order. Therefore, 
there is a growing need for a lightweight and cost-effective 
framework that can automatically record leaf emergence 
timing and sequence using simple imaging setups. 

In this study, we propose a practical framework for 
estimating leaf emergence order by integrating instance 
segmentation and tracking applied to top-view time-lapse 
images acquired in a typical laboratory environment. By 
combining deep learning–based leaf segmentation with 
backward tracking and loss recovery strategies, the proposed 
method aims to robustly identify individual leaves over time 
without relying on specialized equipment. This approach 
enables automatic extraction of important growth-related 
information, such as leaf emergence order and orientation, and 
provides a low-cost and easily adoptable solution for plant 
phenotyping studies. 

II. OBJECTIVE 

he objective of this study is to establish a cost-effective 
method for automatically recording when each leaf emerges 
and in what order it develops, using timelapse images captured 
in a typical laboratory environment. Many existing 
approaches in plant phenotyping require large-scale 
specialized equipment or rely on complex 3D point cloud 
analysis, making them difficult to adopt in standard plant 
biology laboratories. Moreover, only limited methods exist for 
automatically determining the order of leaf emergence, and 
current analyses still depend heavily on manual annotation by 
researchers. Therefore, developing a technique capable of 
estimating leaf emergence order under simple imaging 
conditions represents an important challenge that may reduce 
observational workload and improve research throughput in 
plant science. 

In this study, instance segmentation is applied to top-view 
timelapse images to extract leaf regions at each time point. 
Based on the segmentation results, individual leaves are 
tracked across frames, and their emergence timing and 
emergence sequence are estimated from the resulting 
trajectories. This approach allows us to examine the potential 
for automating growth record acquisition, which has 
traditionally required detailed manual observation. In addition, 
information obtained through tracking—such as changes in 
leaf morphology and orientation—is analyzed to explore its 
potential as a novel indicator of plant growth characteristics. 

III. PROPOSED METHOD 

In this study, we propose a method for tracking individual 
leaves and estimating the order of leaf emergence by utilizing 
leaf region information obtained through instance 
segmentation, as illustrated in Fig. 1. 

Fig. 1. Overview of the proposed framework for leaf segmentation, tracking, 

and emergence order estimation from top-view timelapse images. The 

pipeline consists of instance segmentation, tiled inference–based 

enhancement, backward tracking, and loss correction. 

First, timelapse videos are recorded from the moment the 
first leaf emerges. Images are captured every 30 minutes from 

a top‐view perspective. The analysis focuses on the early 

growth stage commonly examined in plant experiments, 
spanning from germination to the development of 
approximately ten true leaves. Frames captured during 
nighttime without illumination, which appear nearly black, are 
excluded from analysis. 

Next, instance segmentation is applied to all frames 
extracted from the video to obtain leaf regions at each time 
point. It is known that very small early-stage leaves are often 
missed under standard inference settings due to their size [10]. 
To mitigate this issue, the present study incorporates a tiled 
inference strategy in which each image is divided into multiple 
subregions, and segmentation is performed on each tile. 
Although tiled inference is typically used for high-resolution 
images to improve small object detection, here it serves as an 
auxiliary technique to increase the detection rate of small 
emerging leaves. 

Based on the extracted leaf masks and positional 
information, leaf tracking is performed by associating leaf 
instances across successive frames. This enables continuous 
identification of each leaf while accounting for natural 
changes in shape and relative position during growth. From 
the resulting trajectories, both the emergence timing and the 
emergence sequence of individual leaves are estimated. In 
addition, the tracking results allow further analysis of 
accompanying characteristics such as leaf orientation and 
growth rate, offering the potential to derive new phenotypic 
indicators. 

By integrating segmentation and tracking in this manner, 
the proposed method aims to automate the recording of leaf 
emergence order—traditionally performed manually—while 
maintaining low cost and requiring minimal modifications to 
standard experimental environments. 

In this study, we propose an approach that focuses on plant 
leaves, as illustrated in Fig. 1. The method utilizes instance 
segmentation to detect individual leaves and track them across 
time-lapse images, with the goal of extracting growth-related 
data. 

 



First, a time-lapse video is prepared to capture the entire 
growth process of a plant starting from the emergence of the 
first leaf. The video is recorded at 30-minute intervals, using 
a top-down camera angle. In this study, we target a typical 
growth phase in plant experiments—specifically, the period 
from germination to the point where the plant has developed 
approximately ten leaves. 

Next, each frame extracted from the time-lapse video is 
processed using instance segmentation to detect and segment 
each leaf individually. Since nighttime frames appear nearly 
black due to the lack of lighting, such frames are excluded 
from the dataset. 

By combining the coordinate information of each detected 
leaf—obtained through a deep learning segmentation 
library—with the segmented leaf images, we aim to 
consistently identify and match the same leaves across 
multiple frames, even as the plant continues to grow. Through 
this matching process, we effectively track individual leaves. 
This enables us to trace the origin of each leaf, determine when 
it first appeared, and ultimately visualize the chronological 
order of leaf emergence by assigning intuitive labels (e.g., 
numbered annotations) to each leaf in a given image. This 
visualization helps distinguish older leaves from newly 
emerged ones. 

Moreover, this tracking process can compensate for 
temporary segmentation errors, such as missed detections in 
individual frames, by leveraging temporal continuity in the 
data. Finally, by integrating the segmentation and tracking 
results, we aim to automatically determine the emergence 
order of leaves and facilitate the automatic extraction of 
various growth-related features. 

IV. EXPERIMENTS 

A. Preparation of Time-Lapse Video 

In this study, Arabidopsis thaliana, a widely used model 
organism in plant biology, was selected as the experimental 
material. Arabidopsis is well known for its small size, short 
life cycle, and suitability for genetic and developmental 
analyses. To observe growth dynamics in detail, timelapse 
videos were recorded starting from the emergence of the first 
leaf. Images were captured from a top-view perspective at 30-
minute intervals. Multiple videos were acquired, and a 
representative example used in this study is shown in Fig. 2. 

Fig. 2. Representative frame from the top-view timelapse images of 

Arabidopsis thaliana used in this study. The video sequence was captured at 

30-minute intervals starting from the emergence of the first leaf. (1280 × 

780) 

B. Selection of a Platform for Leaf Segmentation 

Accurate extraction of individual leaf regions from each 
frame is essential for estimating leaf emergence order. Early-

stage leaves are particularly small, and overlapping leaves 
often lead to false detections or missed detections. Therefore, 
stability, reproducibility, and the ability to learn from a 
relatively small dataset were key considerations in selecting 
the segmentation model. 

For these reasons, Detectron2[11] was adopted in this 
study. Detectron2, developed by Meta AI, is a PyTorch-based 
segmentation library that provides robust baseline models 
such as Mask R-CNN. Mask R-CNN has been widely applied 
to leaf segmentation in plant images[12] and is known to 
achieve stable inference performance even with modest 
amounts of training data. Although more advanced 
segmentation methods exist, the aim of this study is not to 
perform large-scale benchmarking but rather to validate a new 
framework for estimating leaf emergence order. Thus, 
employing a well-established and reliable platform such as 
Detectron2 is appropriate. 

To further reduce missed detections of very small early-
stage leaves, a tiled inference strategy was incorporated. In 
this approach, each image is divided into multiple subregions, 
and inference is performed on each tile independently. While 
tiled inference is commonly used in high-resolution image 
analysis to improve small-object detection, it is introduced 
here as a supportive measure to increase detection stability for 
emerging leaves. 

C. Construction of the Dataset 

Prior to training with Detectron2, frames were randomly 
selected from several timelapse videos to construct a training 
dataset. In the example presented in this paper, approximately 
30 frames were extracted and manually annotated using 
COCO-annotator [13]. This resulted in a dataset containing 
approximately 2,400 annotated leaf segments. 

D. Training of the Segmentation Model 

Mask R-CNN from the Detectron2 Model Zoo was fine-
tuned for leaf segmentation. The maximum number of training 
epochs was set to 1000, and the model was saved after 
confirming convergence of the loss functions. During 
inference, only leaf segments with a confidence score of 0.6 
or higher were retained. 

E. Tracking Based on Coordinate Informatio 

In this study, leaf tracking is performed by associating 
segmented leaf instances across frames based on spatial 
proximity. To improve robustness against ID switching 
caused by temporary detection failures, a backward tracking 
strategy combined with a loss recovery procedure is adopted. 
The overall tracking procedure is summarized in Algorithm 1. 

Algorithm 1. Backward Leaf Tracking with Loss Recovery 

Input: Leaf instances at each frame (centroid position, 
mask, orientation angle) 

Output: Estimated leaf trajectories and emergence order 

Step 1  Apply instance segmentation to all frames to 
obtain leaf candidates. 

Step 2 Initialize tracking from the last frame, where the 
number of leaves is maximal. 

Step 3 Compute a cost matrix between leaf instances at 
frame t and t−1, where the cost is primarily defined by the 
Euclidean distance between centroid positions. 

 



Step 4  Apply the Hungarian algorithm[14] to obtain 
optimal leaf correspondences. 

Step 5 Assign leaf IDs by backward tracking from frame 
t to t−1. 

Step 6 If a leaf is missing due to temporary detection 
failure, apply loss recovery by searching neighboring 
frames within a predefined temporal window. 

Step 7 Record the first appearance of each leaf ID as its 
emergence timing and determine the emergence order. 

 

In real timelapse data, temporary detection failures may 
still occur due to leaf occlusion, illumination changes, or 
segmentation instability, as illustrated in Fig. 3. Such failures 
can lead to fragmented tracking sequences and degrade the 
accuracy of leaf emergence order estimation. 

Fig. 3.  Example frame illustrating temporary leaf occlusion or 

segmentation failure. Such situations motivate the adoption of backward 

tracking and loss recovery described in Algorithm 1. 

By incorporating backward tracking and the proposed loss 
recovery procedure, the method maintains temporal 
consistency of leaf identities and achieves stable estimation of 
both leaf emergence timing and emergence order. 

V. RESULTS 

Using the tracking algorithm developed in this study, the 
temporal changes in leaf angle and growth metrics were 
extracted for each leaf. Figure 4 illustrates the leaf orientation 
obtained from the tracking results, visualized in a polar 
coordinate representation. 

Fig. 4. Polar visualization of leaf orientation trajectories obtained by the 

proposed tracking method. The angular axis represents leaf orientation, while 

the radial axis indicates temporal progression from inner (early stage) to 

outer (later stage), enabling simultaneous observation of spatial arrangement 

and growth dynamics. 

 This representation enables simultaneous visualization of 
leaf expansion direction (angle) and temporal progression 
(radial axis), providing intuitive insight into both spatial 
arrangement and temporal dynamics of leaf development. 

For quantitative evaluation of tracking performance, a 
consistency-based assessment grounded in plant growth 
characteristics was employed. Because the number of leaves 
increases monotonically over time, intervals in the backward 
tracking sequence where the leaf count increased or decreased 
in an implausible manner were counted as mismatches. As a 
result, inconsistencies were observed in 5.8% of all frames, 
indicating that 94.2% of the tracking sequence was 
structurally consistent with expected plant growth. These 
findings suggest that the proposed method achieves sufficient 
stability for temporal identification of leaves in plant 
timelapse imagery. 

 Using the obtained tracking sequences, the growth process 
of individual leaves was also extracted. Figure 5 shows the 
area change of the fifth-emerging leaf in each plant. 

Fig. 5. Area growth curves of the fifth-emerging leaf in each plant, 

computed from segmented mask regions. The fifth leaf was selected as a 

representative example to illustrate post-emergence growth dynamics across 

individuals. 

The leaf area, computed from the segmented mask regions, 
reflects how rapidly the leaf expands after emergence and how 
its growth rate evolves over time. This demonstrates that the 
proposed method can be applied not only to analyzing angular 
trajectories but also to extracting growth-related information. 

VI. DISCUSSION 

In this study, we established a framework for automatically 
extracting growth-related information—such as leaf 
emergence order and orientation—from timelapse images 
acquired under standard plant experimental conditions. The 
spatial arrangement, emergence timing, and growth direction 
of leaves are known to be important indicators for analyzing 
environmental responses, genetic differences, and stress 
reactions in plants [8,9]. Traditionally, these observations 
have relied heavily on manual inspection, which imposes 
substantial labor and limits experimental throughput [1,2]. 
The automated approach presented here provides a foundation 
for reducing this bottleneck and enabling more efficient 
phenotypic analysis. 

The tracking results demonstrated that leaf orientation 
trajectories in later growth stages were reproduced smoothly, 
capturing the spatial configuration of the plant appropriately. 
In contrast, instability in segmentation during early growth—
when leaves are small—led to occasional irregularities in 
tracking. These issues are likely attributable to occlusion 
between leaves and variations in illumination that affect 
segmentation performance in top-view timelapse images. 
However, the goal of this study is not to develop a highly 
precise tracking system per se, but to explore a practical 
framework through which researchers can readily obtain key 

 

 

 



growth descriptors—particularly leaf emergence order—
without specialized equipment. From this perspective, the 
tracking accuracy achieved here is sufficient for capturing the 
overall developmental tendencies of the plant. 

Furthermore, the visualization of leaf area transitions 
revealed distinct periods of rapid growth, indicating the 
potential for automatically extracting growth characteristics 
on a per-leaf basis. 

However, when relying solely on top-view 2D images, the 
apparent leaf area may decrease due to leaf curling or changes 
in inclination, as observed in Fig. 6—even when captured on 
the same day. 

Fig. 6. Example showing apparent leaf area fluctuation caused by leaf 

curling or changes in inclination under top-view imaging. 

This suggests that studies requiring accurate measurements 
of leaf area or volume may need additional imaging angles or 
3D structural information. 

Possible solutions include depth estimation or geometric 
correction based on image cues, which are considered 
important future directions. 

A key strength of this study is that growth information can 
be extracted from timelapse images obtained in a general 
laboratory environment, without relying on complex or 
specialized equipment. Leaf emergence order and orientation 
are known to respond sensitively to physiological changes and 
environmental stress [8,9], and thus the proposed method has 
potential utility for large-scale screening and genetic analysis 
by providing new quantitative traits. While further 

improvements — such as optimized lighting, alternative 

imaging angles, or integration of more advanced segmentation 
models—may enhance performance, such refinements must 
be balanced carefully against the central aim of this work: 
maintaining ease of implementation and low cost. 

VII. CONCLUSION 

In this study, we developed a method for automatically 
tracking and visualizing leaf position and growth dynamics 
using timelapse images acquired under standard plant 
experimental conditions. A key contribution of this work is 
that essential physiological traits—such as leaf emergence 
order and growth direction—can be extracted at low cost 
without the need for complex equipment or specialized 
imaging conditions. 

The proposed method successfully reproduced leaf 
orientation and spatial configuration during later growth 
stages, whereas challenges remained in the early growth phase 

due to limited detection stability for very small leaves. 
However, these limitations are primarily attributable to 
controllable factors such as imaging conditions and the choice 
of segmentation model, rather than to the framework itself. 
Importantly, the method demonstrated practical utility in 
achieving the primary objective of this study: automating the 
determination of leaf emergence order and growth tendencies, 
which previously required manual annotation by researchers. 

Future work will focus on improving leaf detection 
accuracy and developing automated estimation of plant center 
position, enabling more stable and comprehensive growth 
analysis. Applying the proposed approach to large numbers of 
individuals will allow high-frequency growth data to be 
collected at a scale difficult to achieve manually, potentially 
leading to the discovery of new developmental traits and 
advancing research in genetics and environmental response. 

Overall, this study represents a foundational step toward 
automating plant phenotyping workflows. By reducing 
manual workload and increasing research throughput, the 
proposed framework has the potential to play an important 
role in future developments in plant science. 
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