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Abstract— This study proposes and evaluates a method for
automatically recording the timing and order of leaf emergence
using only timelapse images that can be obtained in a typical
plant experimental environment. A series of top-view images of
Arabidopsis  thaliana  were processed using instance
segmentation with the deep learning framework Detectron2,
and the extracted leaf regions were then tracked based on
positional information. Approximately 2,400 segmented leaf
samples obtained from growth sequences were used for model
training, and leaf association between consecutive frames was
performed using the Hungarian algorithm. Furthermore, by
incorporating backward tracking and a loss-recovery procedure
that leverage structural constraints of plant growth, the stability
of leaf identification was improved.

Experimental results showed that the proposed method
successfully reproduced leaf orientation and spatial
arrangement during later growth stages, demonstrating its
potential for automatically estimating the order of leaf
emergence. In contrast, early-stage leaves tended to exhibit
tracking fluctuations due to unstable segmentation results,
indicating room for improvement. Nevertheless, because the
primary aim of this study is to provide a low-cost and easily
adoptable framework for acquiring important plant phenotypic
information—such as leaf emergence order and growth
tendencies—without specialized equipment, the proposed
method is considered highly useful. Future work includes
improving imaging conditions and segmentation models to
achieve more accurate and fully automated plant growth
recording.
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I. INTRODUCTION

In plant science research, a wide variety of plant species
are used as experimental subjects. Regardless of the target
species, many experiments share a common workflow in
which genetic modifications or environmental treatments are
applied and the resulting phenotypic changes are observed and
recorded. Traditionally, these observational tasks have relied
heavily on manual inspection, and the creation of detailed
growth records has been reported to require substantial time
and labor [1], [2]. Minervini et al. [1] pointed out that many
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steps in plant phenotyping remain manual, limiting
experimental throughput, while Fahlgren et al. [2] emphasized
the growing demand for automated and high-throughput
phenotyping approaches.

To address this issue, a variety of automated plant
phenotyping systems have been developed. For example,
Fujita et al. [3] proposed RIPPS, a fully automated
phenotyping platform that constructs a dedicated imaging
environment and controls environmental factors such as
temperature, humidity, light intensity, and watering. The
system enables precise and reproducible measurements of
plant traits but requires specialized equipment and a large-
scale experimental setup. Similarly, Li et al. [4] proposed a
plant growth tracking method based on skeleton extraction
from three-dimensional point cloud data acquired using
structured light and turntable-based imaging. Although such
3D approaches provide detailed structural information, they
often involve high equipment costs and complex operation,
limiting their accessibility for routine use in many laboratories.

Recognizing these limitations, several studies have
explored methods for analyzing plant growth under simpler
imaging conditions. Nagahara et al. [5] demonstrated that
plant structural changes can be tracked using time-series
images combined with a high-precision 3D model obtained at
a later growth stage, reducing the need for specialized
facilities. In parallel, advances in image processing and
machine learning have enabled accurate estimation of plant
morphological traits—such as leaf size, number, color, and
skeletal structure—from two-dimensional images [6]. In
particular, deep learning—based instance segmentation has
been successfully applied to leaf segmentation tasks in
Arabidopsis and other plant species [7].

In recent years, increasing attention has been paid to low-
cost and easily deployable plant phenotyping approaches
based on consumer-grade cameras and time-lapse imaging.
These approaches offer practical solutions for improving
experimental throughput while maintaining accessibility in
standard laboratory environments. However, an essential
aspect of plant growth analysis—namely, determining when
each leaf emerges and in what sequence—remains difficult to
automate. Granier et al. [8] and Walter et al. [9] reported that
leaf emergence timing is a critical physiological indicator



related to plant development and environmental response, yet
automatically estimating emergence order from image data
alone remains challenging. Even methods based on 3D
reconstruction or multi-view imaging often struggle to
robustly identify the temporal sequence of leaf emergence,
particularly during early growth stages.

Despite recent progress in deep learning—based plant
image analysis, most existing approaches either require
complex imaging systems or depend on extensive manual
annotation to determine leaf emergence order. Therefore,
there is a growing need for a lightweight and cost-effective
framework that can automatically record leaf emergence
timing and sequence using simple imaging setups.

In this study, we propose a practical framework for
estimating leaf emergence order by integrating instance
segmentation and tracking applied to top-view time-lapse
images acquired in a typical laboratory environment. By
combining deep learning-based leaf segmentation with
backward tracking and loss recovery strategies, the proposed
method aims to robustly identify individual leaves over time
without relying on specialized equipment. This approach
enables automatic extraction of important growth-related
information, such as leaf emergence order and orientation, and
provides a low-cost and easily adoptable solution for plant
phenotyping studies.

II. OBJECTIVE

he objective of this study is to establish a cost-effective
method for automatically recording when each leaf emerges
and in what order it develops, using timelapse images captured
in a typical laboratory environment. Many existing
approaches in plant phenotyping require large-scale
specialized equipment or rely on complex 3D point cloud
analysis, making them difficult to adopt in standard plant
biology laboratories. Moreover, only limited methods exist for
automatically determining the order of leaf emergence, and
current analyses still depend heavily on manual annotation by
researchers. Therefore, developing a technique capable of
estimating leaf emergence order under simple imaging
conditions represents an important challenge that may reduce
observational workload and improve research throughput in
plant science.

In this study, instance segmentation is applied to top-view
timelapse images to extract leaf regions at each time point.
Based on the segmentation results, individual leaves are
tracked across frames, and their emergence timing and
emergence sequence are estimated from the resulting
trajectories. This approach allows us to examine the potential
for automating growth record acquisition, which has
traditionally required detailed manual observation. In addition,
information obtained through tracking—such as changes in
leaf morphology and orientation—is analyzed to explore its
potential as a novel indicator of plant growth characteristics.

III. PROPOSED METHOD

In this study, we propose a method for tracking individual
leaves and estimating the order of leaf emergence by utilizing
leaf region information obtained through instance
segmentation, as illustrated in Fig. 1.

f images where the
sistently assigned the

| gt

Object | ~ ~ )| programto |
Detection | izzzacs | identify the |
| Library | I\ same leaf '

Perform instance segmentation

Fig. 1. Overview of the proposed framework for leaf segmentation, tracking,
and emergence order estimation from top-view timelapse images. The
pipeline consists of instance segmentation, tiled inference—based
enhancement, backward tracking, and loss correction.

First, timelapse videos are recorded from the moment the
first leaf emerges. Images are captured every 30 minutes from

a top - view perspective. The analysis focuses on the early

growth stage commonly examined in plant experiments,
spanning from germination to the development of
approximately ten true leaves. Frames captured during
nighttime without illumination, which appear nearly black, are
excluded from analysis.

Next, instance segmentation is applied to all frames
extracted from the video to obtain leaf regions at each time
point. It is known that very small early-stage leaves are often
missed under standard inference settings due to their size [10].
To mitigate this issue, the present study incorporates a tiled
inference strategy in which each image is divided into multiple
subregions, and segmentation is performed on each tile.
Although tiled inference is typically used for high-resolution
images to improve small object detection, here it serves as an
auxiliary technique to increase the detection rate of small
emerging leaves.

Based on the extracted leaf masks and positional
information, leaf tracking is performed by associating leaf
instances across successive frames. This enables continuous
identification of each leaf while accounting for natural
changes in shape and relative position during growth. From
the resulting trajectories, both the emergence timing and the
emergence sequence of individual leaves are estimated. In
addition, the tracking results allow further analysis of
accompanying characteristics such as leaf orientation and
growth rate, offering the potential to derive new phenotypic
indicators.

By integrating segmentation and tracking in this manner,
the proposed method aims to automate the recording of leaf
emergence order—traditionally performed manually—while
maintaining low cost and requiring minimal modifications to
standard experimental environments.

In this study, we propose an approach that focuses on plant
leaves, as illustrated in Fig. 1. The method utilizes instance
segmentation to detect individual leaves and track them across
time-lapse images, with the goal of extracting growth-related
data.



First, a time-lapse video is prepared to capture the entire
growth process of a plant starting from the emergence of the
first leaf. The video is recorded at 30-minute intervals, using
a top-down camera angle. In this study, we target a typical
growth phase in plant experiments—specifically, the period
from germination to the point where the plant has developed
approximately ten leaves.

Next, each frame extracted from the time-lapse video is
processed using instance segmentation to detect and segment
each leaf individually. Since nighttime frames appear nearly
black due to the lack of lighting, such frames are excluded
from the dataset.

By combining the coordinate information of each detected
leaf—obtained through a deep learning segmentation
library—with the segmented leaf images, we aim to
consistently identify and match the same leaves across
multiple frames, even as the plant continues to grow. Through
this matching process, we effectively track individual leaves.
This enables us to trace the origin of each leaf, determine when
it first appeared, and ultimately visualize the chronological
order of leaf emergence by assigning intuitive labels (e.g.,
numbered annotations) to each leaf in a given image. This
visualization helps distinguish older leaves from newly
emerged ones.

Moreover, this tracking process can compensate for
temporary segmentation errors, such as missed detections in
individual frames, by leveraging temporal continuity in the
data. Finally, by integrating the segmentation and tracking
results, we aim to automatically determine the emergence
order of leaves and facilitate the automatic extraction of
various growth-related features.

IV. EXPERIMENTS

A. Preparation of Time-Lapse Video

In this study, Arabidopsis thaliana, a widely used model
organism in plant biology, was selected as the experimental
material. Arabidopsis is well known for its small size, short
life cycle, and suitability for genetic and developmental
analyses. To observe growth dynamics in detail, timelapse
videos were recorded starting from the emergence of the first
leaf. Images were captured from a top-view perspective at 30-
minute intervals. Multiple videos were acquired, and a
representative example used in this study is shown in Fig. 2.
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Fig. 2. Representative frame from the top-view timelapse images of
Arabidopsis thaliana used in this study. The video sequence was captured at

30-minute intervals starting from the emergence of the first leaf. (1280 X
780)

B. Selection of a Platform for Leaf Segmentation

Accurate extraction of individual leaf regions from each
frame is essential for estimating leaf emergence order. Early-

stage leaves are particularly small, and overlapping leaves
often lead to false detections or missed detections. Therefore,
stability, reproducibility, and the ability to learn from a
relatively small dataset were key considerations in selecting
the segmentation model.

For these reasons, Detectron2[11] was adopted in this
study. Detectron2, developed by Meta Al, is a PyTorch-based
segmentation library that provides robust baseline models
such as Mask R-CNN. Mask R-CNN has been widely applied
to leaf segmentation in plant images[12] and is known to
achieve stable inference performance even with modest
amounts of training data. Although more advanced
segmentation methods exist, the aim of this study is not to
perform large-scale benchmarking but rather to validate a new
framework for estimating leaf emergence order. Thus,
employing a well-established and reliable platform such as
Detectron?2 is appropriate.

To further reduce missed detections of very small early-
stage leaves, a tiled inference strategy was incorporated. In
this approach, each image is divided into multiple subregions,
and inference is performed on each tile independently. While
tiled inference is commonly used in high-resolution image
analysis to improve small-object detection, it is introduced
here as a supportive measure to increase detection stability for
emerging leaves.

C. Construction of the Dataset

Prior to training with Detectron2, frames were randomly
selected from several timelapse videos to construct a training
dataset. In the example presented in this paper, approximately
30 frames were extracted and manually annotated using
COCO-annotator [13]. This resulted in a dataset containing
approximately 2,400 annotated leaf segments.

D. Training of the Segmentation Model

Mask R-CNN from the Detectron2 Model Zoo was fine-
tuned for leaf segmentation. The maximum number of training
epochs was set to 1000, and the model was saved after
confirming convergence of the loss functions. During
inference, only leaf segments with a confidence score of 0.6
or higher were retained.

E. Tracking Based on Coordinate Informatio

In this study, leaf tracking is performed by associating
segmented leaf instances across frames based on spatial
proximity. To improve robustness against ID switching
caused by temporary detection failures, a backward tracking
strategy combined with a loss recovery procedure is adopted.
The overall tracking procedure is summarized in Algorithm 1.

Algorithm 1. Backward Leaf Tracking with Loss Recovery

Input: Leaf instances at each frame (centroid position,
mask, orientation angle)

Output:  Estimated leaf trajectories and emergence order

Step 1  Apply instance segmentation to all frames to
obtain leaf candidates.

Step 2 Initialize tracking from the last frame, where the
number of leaves is maximal.

Step 3 Compute a cost matrix between leaf instances at
frame t and t—1, where the cost is primarily defined by the
Euclidean distance between centroid positions.




Step 4  Apply the Hungarian algorithm[14] to obtain
optimal leaf correspondences.

Step 5 Assign leaf IDs by backward tracking from frame
tto t—1.

Step 6 If a leaf is missing due to temporary detection
failure, apply loss recovery by searching neighboring
frames within a predefined temporal window.

Step 7 Record the first appearance of each leaf ID as its
emergence timing and determine the emergence order.

In real timelapse data, temporary detection failures may
still occur due to leaf occlusion, illumination changes, or
segmentation instability, as illustrated in Fig. 3. Such failures
can lead to fragmented tracking sequences and degrade the
accuracy of leaf emergence order estimation.

Fig.3. Example frame illustrating temporary leaf occlusion or
segmentation failure. Such situations motivate the adoption of backward
tracking and loss recovery described in Algorithm 1.

By incorporating backward tracking and the proposed loss
recovery procedure, the method maintains temporal
consistency of leaf identities and achieves stable estimation of
both leaf emergence timing and emergence order.

V. RESULTS

Using the tracking algorithm developed in this study, the
temporal changes in leaf angle and growth metrics were
extracted for each leaf. Figure 4 illustrates the leaf orientation
obtained from the tracking results, visualized in a polar
coordinate representation.
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Fig. 4. Polar visualization of leaf orientation trajectories obtained by the
proposed tracking method. The angular axis represents leaf orientation, while
the radial axis indicates temporal progression from inner (early stage) to
outer (later stage), enabling simultaneous observation of spatial arrangement
and growth dynamics.

This representation enables simultaneous visualization of
leaf expansion direction (angle) and temporal progression
(radial axis), providing intuitive insight into both spatial
arrangement and temporal dynamics of leaf development.

For quantitative evaluation of tracking performance, a
consistency-based assessment grounded in plant growth
characteristics was employed. Because the number of leaves
increases monotonically over time, intervals in the backward
tracking sequence where the leaf count increased or decreased
in an implausible manner were counted as mismatches. As a
result, inconsistencies were observed in 5.8% of all frames,
indicating that 94.2% of the tracking sequence was
structurally consistent with expected plant growth. These
findings suggest that the proposed method achieves sufficient
stability for temporal identification of leaves in plant
timelapse imagery.

Using the obtained tracking sequences, the growth process
of individual leaves was also extracted. Figure 5 shows the
area change of the fifth-emerging leaf in each plant.
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Fig. 5. Area growth curves of the fifth-emerging leaf in each plant,
computed from segmented mask regions. The fifth leaf was selected as a
representative example to illustrate post-emergence growth dynamics across
individuals.

The leaf area, computed from the segmented mask regions,
reflects how rapidly the leaf expands after emergence and how
its growth rate evolves over time. This demonstrates that the
proposed method can be applied not only to analyzing angular
trajectories but also to extracting growth-related information.

VI. DISCUSSION

In this study, we established a framework for automatically
extracting growth-related information—such as leaf
emergence order and orientation—from timelapse images
acquired under standard plant experimental conditions. The
spatial arrangement, emergence timing, and growth direction
of leaves are known to be important indicators for analyzing
environmental responses, genetic differences, and stress
reactions in plants [8,9]. Traditionally, these observations
have relied heavily on manual inspection, which imposes
substantial labor and limits experimental throughput [1,2].
The automated approach presented here provides a foundation
for reducing this bottleneck and enabling more efficient
phenotypic analysis.

The tracking results demonstrated that leaf orientation
trajectories in later growth stages were reproduced smoothly,
capturing the spatial configuration of the plant appropriately.
In contrast, instability in segmentation during early growth—
when leaves are small—led to occasional irregularities in
tracking. These issues are likely attributable to occlusion
between leaves and variations in illumination that affect
segmentation performance in top-view timelapse images.
However, the goal of this study is not to develop a highly
precise tracking system per se, but to explore a practical
framework through which researchers can readily obtain key



growth descriptors—particularly leaf emergence order—
without specialized equipment. From this perspective, the
tracking accuracy achieved here is sufficient for capturing the
overall developmental tendencies of the plant.

Furthermore, the visualization of leaf area transitions
revealed distinct periods of rapid growth, indicating the
potential for automatically extracting growth characteristics
on a per-leaf basis.

However, when relying solely on top-view 2D images, the
apparent leaf area may decrease due to leaf curling or changes
in inclination, as observed in Fig. 6—even when captured on
the same day.

Fig. 6. Example showing apparent leaf area fluctuation caused by leaf
curling or changes in inclination under top-view imaging.

This suggests that studies requiring accurate measurements
of leaf area or volume may need additional imaging angles or
3D structural information.

Possible solutions include depth estimation or geometric
correction based on image cues, which are considered
important future directions.

A key strength of this study is that growth information can
be extracted from timelapse images obtained in a general
laboratory environment, without relying on complex or
specialized equipment. Leaf emergence order and orientation
are known to respond sensitively to physiological changes and
environmental stress [8,9], and thus the proposed method has
potential utility for large-scale screening and genetic analysis
by providing new quantitative traits. While further

improvements — such as optimized lighting, alternative

imaging angles, or integration of more advanced segmentation
models—may enhance performance, such refinements must
be balanced carefully against the central aim of this work:
maintaining ease of implementation and low cost.

VII. CONCLUSION

In this study, we developed a method for automatically
tracking and visualizing leaf position and growth dynamics
using timelapse images acquired under standard plant
experimental conditions. A key contribution of this work is
that essential physiological traits—such as leaf emergence
order and growth direction—can be extracted at low cost
without the need for complex equipment or specialized
imaging conditions.

The proposed method successfully reproduced leaf
orientation and spatial configuration during later growth
stages, whereas challenges remained in the early growth phase

due to limited detection stability for very small leaves.
However, these limitations are primarily attributable to
controllable factors such as imaging conditions and the choice
of segmentation model, rather than to the framework itself.
Importantly, the method demonstrated practical utility in
achieving the primary objective of this study: automating the
determination of leaf emergence order and growth tendencies,
which previously required manual annotation by researchers.

Future work will focus on improving leaf detection
accuracy and developing automated estimation of plant center
position, enabling more stable and comprehensive growth
analysis. Applying the proposed approach to large numbers of
individuals will allow high-frequency growth data to be
collected at a scale difficult to achieve manually, potentially
leading to the discovery of new developmental traits and
advancing research in genetics and environmental response.

Overall, this study represents a foundational step toward
automating plant phenotyping workflows. By reducing
manual workload and increasing research throughput, the
proposed framework has the potential to play an important
role in future developments in plant science.
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