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Abstract—LiDAR semantic segmentation suffers substantial
degradation when deployed in unseen environments, where ge-
ometric distortions arise from both extrinsic misalignment and
intrinsic sensor characteristics. We show that these overlooked
factors significantly alter the representation of LiDAR measure-
ments and are major contributors to real-world performance
failures. Although domain adaptation has made progress in
narrowing domain gaps, existing approaches still struggle when
encountering entirely unseen scenes without labels. While test-
time adaptation has recently emerged as a promising alternative
to address label-free deployment in 2D vision, its application to
3D LiDAR perception remains underexplored, leaving current
models vulnerable to distribution shifts. To address this gap we
introduce two geometry-aware TTA modules tailored to LiDAR’s
properties, designed to compensate for one of these key variation
sources. Our approach improves mIoU from 16.27 to 18.44
(+13.34%), demonstrating substantial gains in robustness under
unseen sensor configurations and environments.

Index Terms—LiDAR Semantic Segmentation, Autonomous
Driving, Domain Adaptation, Point Clouds, Test-time Adaptation

I. INTRODUCTION

LiDAR point clouds provide robust distance measurements
and rich 3D geometry even in challenging conditions, making
LiDAR semantic segmentation (LSS) a key component of
scene understanding for autonomous driving and robotics.
However, a significant performance gap remains between
training and real-world deployment due to distribution shifts in
LiDAR data. This challenge has increased interest in unsuper-
vised domain adaptation (UDA), which allows a source-trained
model to adapt to a target domain without labels.

In real-world LiDAR scenarios, the domain gap mainly
arises from two factors: 1) shifts in depth distribution due
to vertical extrinsic variations and 2) changes in point density
caused by different intrinsic configurations.

The first factor arises from the disruption of the inherent
vertical layering when the sensor height changes. As shown
in Fig. 1, the lower beams predominantly capture ground
surfaces, the middle beams tend to capture objects such as ve-
hicles and pedestrians, and the upper beams generally observe
higher structures such as building facades or the upper parts
of vegetation. When the sensor is elevated along the z-axis,
the depth distribution becomes dominated by farther points.
As a result, the semantic categories learned during training no

Fig. 1: Impact of vertical shift and sensor resolution on Li-
DAR geometry. (Top) Changing the LiDAR height alters the
vertical viewpoint and disrupts the semantic layering of beams.
(Bottom) Depth distributions from SemanticKITTI, nuScenes,
and A2D2 show how vertical angular resolution (θres) controls
point density. Smaller θres yields denser sampling.

longer align at test time, producing a severe mismatch between
beam index and semantic content. Although vertical viewpoint
misalignment is a critical source of geometric distortion, prior
work has largely overlooked its impact, often treating sensor
height and pitch as fixed and inconsequential factors.

The second factor originates from discrepancies in point
density caused by intrinsic configurations. Different LiDAR
sensors may employ varying numbers of vertical channels,
distinct vertical fields of view, and different vertical angular
resolutions. Vertical angular resolution θres —defined as the
angular spacing between adjacent LiDAR beams—determines
how finely the sensor can capture structures at different



heights. It depends on how many channels cover the vertical
FoV. More channels make the beams closer together and
give denser points. Fewer channels make the sampling much
sparser.

For example, nuScenes [1] uses a 32-beam LiDAR with a
vertical FoV of about 40°, yielding a vertical resolution of
approximately 1.29°. Similarly, SemanticKITTI [2] employs a
64-beam LiDAR with a 26.9° vertical FoV, resulting in a finer
resolution of about 0.44°. The A2D2 dataset [3] uses an even
sparser 16-beam LiDAR with a vertical FoV of roughly 30°,
corresponding to a much coarser resolution of about 2.0°. As
illustrated in Fig. 1, a smaller vertical angular resolution leads
to a noticeably denser point cloud.

Recently, unsupervised domain adaptation (UDA) methods
for LiDAR point clouds have been introduced to address
performance degradation in target domains. Most existing
approaches [4]–[6] rely on augmentations or pre-processing
that approximate target conditions, such as adverse weather
simulation or point-density modification. CoSMix [7] and
UniMix [8] mitigate the domain gap by mixing source and
target features, effectively simulating target-domain geometry.
However, both methods assume full prior access to the target
domain distribution—a common but restrictive limitation of
UDA approaches.

To avoid dependence on explicit target information, recent
work has shifted toward domain-generalization (DG) strate-
gies. DGLSS [9] adopts random beam dropping under an
assumed lower-spec setting, while DDFE [10] leverages intra-
domain density variation to promote cross-dataset consistency.
However, these techniques treat sensor properties in isolation
and rely heavily on implicit assumptions about the target
environment, even though sensor characteristics such as height,
FOV, and density are strongly interdependent. As a result, they
often become over-regularized, suppressing domain-specific
geometric cues that are crucial for reliable adaptation and
ultimately limiting their effectiveness in truly unseen environ-
ments.

These limitations highlight that simply regularizing the
source model is insufficient when the target domain exhibits
systematic geometric deviations. In such scenarios, the model
must instead interpret the target sensor’s geometry at inference
time rather than relying on prior assumptions. This naturally
motivates a source-free test-time adaptation approach, where
the model adjusts itself based solely on the incoming target
data.

In this work, we revisit the problem of LiDAR domain
shift from the perspective of extrinsic and intrinsic variation.
Our analysis shows that z-axis shift in sensor (extrinsic) and
vertical angular resolution (intrinsic) induce systematic distor-
tions in the geometric structure of range-view representations,
resulting in severe performance degradation when models
are deployed outside their training configuration. To address
these challenges, we propose a source-free test-time adaptation
framework that explicitly estimates and compensates for both
factors using only the first mini-batch of the target domain.

Our contributions are summarized as follows:

• We introduce the first source-free TTA framework that
explicitly models and corrects both extrinsic and intrinsic
LiDAR variations during inference.

• We identify the fundamental cause of vertical-
shift–induced degradation in LiDAR semantic
segmentation and introduce VSAM, which estimates
target sensor height from the first mini-batch and corrects
the disrupted vertical semantic structure.

• We propose VARS, which infers the target sensor’s
vertical resolution online and re-samples features via
elevation-aware interpolation to handle intrinsic density
differences across sensors.

II. RELATED WORK

A. Domain Generalization for LSS

Domain generalization (DG) aims to generalize the model
to distribution-shifted target domains by learning domain-
invariant features at the training stage. For point cloud segmen-
tation, DG methods augment the source domain to simulate
unseen target domains, e.g., by randomly subsampling LiDAR
scans. 3DLabelProp [11] relies on exploiting the geometry and
sequence of LiDAR data to improve its generalization per-
formance by partially accumulated point clouds. LiDOG [12]
introduces an additional BEV auxiliary task to learn robust
features. Although DG can generalize to multiple domains, its
inability to leverage data from application scenarios results in
sub-optimal performance.

B. Unsupervised Domain Adaptation for LSS

Domain Adaptation (DA) focuses on reducing the perfor-
mance gap between the labeled source domain and the unla-
beled target domain by exploiting only the raw target data dur-
ing training. To achieve this, Complete & Label [13] mitigates
discrepancies caused by different LiDAR configurations by
completing point clouds from both domains onto a shared 3D
surface before segmentation. ePointDA [14] performs domain
transfer through a Generative Adversarial Network that injects
realistic noise into synthetic data. LiDAR-UDA [15] enhances
pseudo-label quality through LiDAR beam subsampling and
cross-frame ensembling for self-supervised adaptation. Despite
these advances, concurrent access to both source and unlabeled
target data remains a limitation for real-world deployment.

C. Test-Time Adaptation

Test-Time Adaptation (TTA) aims to adapt models to un-
seen test distributions by mitigating domain shifts that arise
between training and deployment. A seminal work in this
area, Tent [16], minimizes prediction entropy by updating
batch normalization parameters during inference. Following
this idea, numerous methods extend TTA by optimizing a
small subset of parameters with different strategies.

For example, EATA [17] selects reliable and non-
redundant samples for optimization, while DUA [18] intro-
duces adaptive momentum through a novel normalization
layer. NOTE [19] performs instance-wise batch norm updates,



whereas RoTTA [20] and DELTA [21] leverage global statis-
tics. Sharpness-aware optimization has also been adopted, as in
SoTTA [22] and SAR [23]. Beyond BN-based updates, several
methods adapt the entire network using a mean-teacher frame-
work for stable supervision generate pseudo labels for self-
training [24], [25], cluster features to refine adaptation [26]–
[28], or utilize augmentations to improve robustness [29].

While most prior efforts target image classification, Mem-
CLR [30] is the first work to apply TTA to 2D object detection,
leveraging a mean-teacher structure to align instance-level
features. However, the applicability of these image-based TTA
approaches to 3D point cloud perception remains largely
unexplored.

III. METHOD

A. Vertical Shift-Aware Adaptation Module
To infer the geometric distribution of the unseen target

domain, the proposed Vertical Shift-Aware Adaptation Module
(VSAM) analyzes the first mini-batch and estimates its vertical
shift. This initial estimation provides a reliable measure of the
z-axis displacement characterizing the target domain, allowing
the model to capture the underlying geometric shift that will
persist across subsequent test samples. VSAM performs this
estimation by first determining the LiDAR’s relative height
from the ground in the target domain.

To obtain this height, VSAM applies RANSAC to the
incoming 3D point cloud and robustly fits the ground plane:

π : ax+ by + cz + d = 0, (1)

The perpendicular distance from the sensor origin to the
plane gives the test-time height:

htgt =
|d|√

a2 + b2 + c2
, ∆h = htgt − hsrc. (2)

A canonical training-time height hsrc is computed similarly,
and the difference ∆h represents the vertical domain shift.

This displacement provides a direct measurement of how
much the vertical semantic layering has shifted in the target
domain. VSAM compensates for this geometry-induced distor-
tion by vertically warping the intermediate range-view feature
map:

F ′(c, h, w) = F (c, h− α∆h, w) , (3)

where α converts metric height units to elevation-index units
based on the vertical angular resolution.

To further refine this correction, VSAM generates height-
dependent FiLM [31] parameters:

γh, βh = MLP(∆h), (4)

and applies row-wise modulation:

F̃ (c, h, w) = γh F
′(c, h, w) + βh. (5)

Since the shift ∆h is estimated only once from the first
mini-batch—capturing the global geometric bias of the target
domain—it provides a strong source-free prior for subsequent
test-time adaptation. Adjusting this mismatch with ∆h, the
module restores the proper vertical structure and preserves
segmentation performance under unseen sensor heights.

B. Vertical Angular Resolution–Aware Sampling

Since the intrinsic vertical angular resolution of the target
LiDAR is unknown in the source-free test-time setting, VARS
first estimates it directly from the first mini-batch. For each
point p = (x, y, z), we compute its elevation angle

ϕ(p) = arctan 2
(
z,

√
x2 + y2

)
, (6)

sort all angles, and estimate the target sensor’s effective
vertical resolution as the median spacing:

θtgtres = mediani
(
ϕi+1 − ϕi

)
. (7)

From this estimate, VARS constructs a target elevation
grid {θtgt(k)} where k denotes the index of the k-th target
elevation row. The spacing between consecutive grid points is
set to θtgtres , reflecting how densely the target sensor samples
the vertical axis. In contrast, the source-trained model expects
features aligned to the source elevation grid {θsrc(h)} with
resolution θsrcres , where h indexes the source beam rows.

To reconcile this mismatch, each target elevation angle
θtgt(k) is aligned to the source grid through elevation-aware
linear interpolation. We first find two adjacent source eleva-
tions θsrc(h1) and θsrc(h2) such that

θsrc(h1) ≤ θtgt(k) ≤ θsrc(h2), (8)

and compute the interpolation weight

λ =
θtgt(k)− θsrc(h1)

θsrc(h2)− θsrc(h1)
. (9)

Here λ represents how far the target elevation lies between
the two source elevations (i.e., a normalized position between
rows h1 and h2). The resolution-adjusted feature for the k-th
target row is then obtained as

FVARS(c, k, w) = (1− λ)F (c, h1, w) + λF (c, h2, w). (10)

This interpolation effectively re-samples the source-trained
feature map onto the inferred target sampling grid. As a
result, the backbone operates with a feature representation
whose vertical density is consistent with that of the target
sensor. Because VARS relies solely on the first mini-batch
and requires no access to source data, it is fully compatible
with the source-free test-time adaptation setting.

C. Test-Time Parameter Update

After geometric alignment by VSAM and VARS, the model
receives a feature map Fgeo that reflects the estimated extrinsic
and intrinsic properties of the target LiDAR. TTA is then
performed by updating a small set of parameters using only
the incoming unlabeled target samples.

Following prior source-free TTA methods, we adopt pre-
diction entropy as the self-supervised adaptation signal. Given
the segmentation logits Z = H(Fgeo) and probability map
P = Softmax(Z), the entropy loss is defined as:

Lent = − 1

N

N∑
i=1

C∑
c=1

Pi,c logPi,c, (11)



Fig. 2: Test-time adaptation pipeline. VSAM corrects ex-
trinsic height shift, VARS aligns intrinsic angular resolution,
and the geometry-adjusted features update BN parameters via
entropy minimization.

where N is the number of valid pixels and C is the number
of classes. Minimizing (11) encourages confident and stable
predictions in the target domain.

To preserve the source-trained representation while en-
abling on-the-fly adaptation, we restrict updates to batch-
normalization (BN) affine parameters:

θTTA = {γ(ℓ), β(ℓ)}ℓ∈B,

where B is the set of BN layers. The update rule is:

θ
(t+1)
TTA = θ

(t)
TTA − η∇θTTALent, (12)

with learning rate η.
In addition to updating affine parameters, BN running

statistics are incrementally refined using the target batch:

µ
(t+1)
BN = (1− α)µ

(t)
BN + α µ̂, (13)

σ
2(t+1)
BN = (1− α)σ

2(t)
BN + α σ̂2, (14)

where (µ̂, σ̂2) are batch statistics and α is a momentum
coefficient.

This design ensures that adaptation operates on a geometry-
aligned feature representation, enabling stable and effective
source-free TTA under diverse target sensor configurations.

D. Overall Architecture

At test time 2, we apply VSAM and VARS sequentially:
VSAM first corrects the vertical semantic shift caused by
extrinsic height differences, and VARS then aligns the intrinsic
vertical resolution by re-sampling features onto the target
elevation grid. This ordering reflects the physical relationship
between height-induced layer displacement and resolution-
induced sampling density.

IV. EXPERIMENTS

A. Datasets

We focus on [2], [3], and [1], which differ significantly in
LiDAR specifications (number of channels, vertical FoV, and
sampling patterns). This diversity enables a controlled study
of domain shift and sensor-dependent variations.

[2] is a large-scale benchmark for LiDAR semantic seg-
mentation, derived from the KITTI odometry sequences and
captured using a Velodyne HDL-64E (64-channel). It provides
dense point-wise annotations for over 4.5 billion points, mak-
ing it a standard reference for evaluating outdoor LSS.

[3] is a multi-modal dataset recorded with multiple cameras
and five Velodyne VLP-16 (16-channel) LiDARs. Semantic
labels are annotated on 2D images and projected onto 3D,
offering consistent multimodal supervision for segmentation.

[1] is a comprehensive autonomous-driving benchmark
comprising 1000 scenes collected with a Velodyne HDL-
32E (32-channel) LiDAR. It includes full-sweep LiDAR point
clouds, object annotations, and semantic labels, covering di-
verse urban environments, lighting conditions, and weather
scenarios, making it a strong testbed for robustness and cross-
domain evaluation.

B. Settings

SemanticKITTI [2], nuScenes-lidarseg [1], and A2D2 [3]
adopt different label taxonomies with varying granularity,
making direct cross-dataset evaluation inconsistent. To es-
tablish a unified training and evaluation setup, we identify
semantically aligned categories across the three datasets and
merge fine-grained or dataset-specific labels into broader
groups. Examples include mapping car/van/bus into
car and consolidating road/street/drivable into
drivable-surface, while unmatched labels are assigned
to a ignore class.

This process yields a unified set of ten common classes:
{car, bicycle, motorcycle, truck, other-vehicle, pedestrian,
drivable-surface, sidewalk, walkable, vegetation}, enabling
consistent cross-dataset evaluation under heterogeneous Li-
DAR sensors.

C. Implementation Details

For all experiments, we employ EPMF [32] as our base-
line segmentation model. EPMF adopts a perception-aware
multi-sensor fusion architecture that projects LiDAR points
onto camera views to incorporate complementary RGB cues,
enabling robust feature learning under heterogeneous sensor
configurations.

D. Results

Table II summarizes the cross-domain mIoU when models
trained on one dataset are evaluated on others. As expected,
each model performs best when tested on its own domain
(e.g., KITTI→KITTI, NuScenes→NuScenes, A2D2→A2D2).
However, transferring across datasets leads to a severe per-
formance collapse: KITTI-trained models drop from 74.95%
in-domain to 13.51% on NuScenes and 11.48% on A2D2,



TABLE I: Quantitative results per class
(Source: Semantic KITTI)
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SemanticKITTI 94.35 67.88 47.29 58.94 68.32 67.06 95.86 82.66 75.98 91.15 74.95
A2D2 43.88 39.42 0.00 12.88 0.00 24.82 1.10 0.85 0.22 39.44 16.27

A2D2 (+Ours) 47.08 17.93 – 2.32 – 9.54 64.00 2.5 0.8 40.30 18.44
(+13.34%)

Notes. Source = training dataset, Target = evaluation dataset.

TABLE II: Performance Gap Across Domains.

mIoU (%)

Source
Target KITTI

(64-ch)
NuScenes

(32-ch)
A2D2
(16-ch)

KITTI 74.95 13.51 11.48

NuScenes 20.48 67.82 10.27

A2D2 16.27 20.64 53.56

Notes. KITTI denotes SemanticKITTI; A2D2 denotes
Audi A2D2. “Source” = no adaptation.

while A2D2-trained models similarly degrade when evaluated
on KITTI (16.27%). These results highlight the substantial
geometric and density discrepancies across LiDAR sensors
(64/32/16 beams), making cross-domain generalization highly
challenging without targeted adaptation.

Table I summarizes per-class IoU when training on
SemanticKITTI and evaluating on both SemanticKITTI
and A2D2. As expected, in-domain evaluation
(SemanticKITTI→SemanticKITTI) yields consistently high
IoUs across most classes, with Car, Drivable Surface, and
Vegetation achieving over 90%. However, when transferring to
A2D2, performance drops sharply across nearly all categories
due to severe cross-sensor and cross-domain discrepancies.
Highly structured classes such as Car degrade from 94.35%
to 43.88%, while texture-sensitive or long-tail categories such
as Motorcycle, Other Vehicle, and Terrain collapse to nearly
0%.

Applying our method on the A2D2 target domain yields
consistent improvements in several key categories. Notably,
Car improves from 43.88% to 47.08%, and Drivable Surface
increases substantially from 1.10% to 64.00%, highlighting
the benefit of geometric alignment under mismatched sensor
configurations. Although certain underrepresented classes re-
main challenging (e.g., Motorcycle and Other Vehicle), the
overall mIoU rises from 16.27% to 18.44%, demonstrating
that our geometric test-time adaptation effectively mitigates
cross-sensor degradation.

V. CONCLUSION

This work examined how geometric variations—specifically
vertical extrinsic shifts and intrinsic differences in sensor

resolution—introduce systematic distortions in LiDAR data,
ultimately degrading semantic segmentation performance in
unseen environments. To address these challenges, we pro-
posed a source-free test-time adaptation framework that ex-
plicitly estimates and compensates for both forms of geometric
variation using only incoming target data. VSAM corrects
vertical semantic misalignment by inferring sensor height,
while VARS adapts to resolution differences through elevation-
aware feature re-sampling.

By enabling models to reinterpret target-domain geometry
at inference time, this study highlights the importance of
geometry-aware adaptation for reliable LiDAR perception.
Moving forward, we aim to extend this direction beyond cross-
environment shifts to encompass broader real-world scenarios,
including adverse weather and other challenging conditions
where robust test-time adaptation is essential.
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