
Asynchronous Blockchain Recording for
Chain-of-Thought Tracing in Small Language

Models
Sungmoon Park

Department of Healthcare IT
Inje University

Gimhae, Republic of Korea
qkrtjdans55@oasis.inje.ac.kr

Seowan Kim
Department of Healthcare IT

Inje University
Gimhae, Republic of Korea

gonstoro0521@oasis.inje.ac.kr

Hoansuk Choi
Gyeongnam Intelligence Innovation Center

Kyungnam University
Changwon, Republic of Korea

chs2024@kyungnam.ac.kr

Nam-Hyun Yoo
Gyeongnam Intelligence Innovation Center

Kyungnam University
Changwon, Republic of Korea

hyun43@kyungnam.ac.kr

Jinhong Yang
Department of Healthcare IT

Inje University
Gimhae, Republic of Korea

jinhong@inje.ac.kr
(Corresponding author)

Abstract—Small Language Models (sLMs) require trans-
parency in their reasoning processes for deployment in criti-
cal domains. This paper presents an asynchronous blockchain
recording system for tracking Chain-of-Thought (CoT) reasoning
in sLMs. We implement a system using the Qwen2.5-1.5B model
integrated with Hyperledger Fabric v2.5, introducing a hybrid
asynchronous architecture with Write-Ahead Logging (WAL) to
ensure data durability. Through experiments using an unbal-
anced design (N=30 for baseline and proposed method, N=6 for
synchronous comparison), we measure the performance impact
of blockchain integration with full disk persistence. The proposed
Hybrid-BC mode achieves 11.1% latency overhead compared to
the baseline, while providing crash recovery guarantees through
WAL. In contrast, the synchronous mode results in 666.7%
overhead (p < 0.001). The system validates that disk I/O costs
for durability (574ms) are an order of magnitude smaller than
blockchain consensus latency (10,404ms), effectively decoupling
inference from network delays.

Index Terms—small language model, chain-of-thought,
blockchain, Hyperledger Fabric, asynchronous processing,
traceability, durability

I. INTRODUCTION

The deployment of Small Language Models (sLMs) in
edge computing environments has increased due to their
computational efficiency and privacy benefits. Models with
1.5 to 7 billion parameters, such as Qwen2.5 and Phi-3,
achieve reasoning capabilities comparable to larger models
on benchmarks like GSM8K [1]. However, a comprehensive
evaluation revealed that 47.6% of sLMs are vulnerable to
jailbreak attacks, necessitating robust audit trails for their
Chain-of-Thought (CoT) reasoning processes [2].

Blockchain technology offers immutable logging for AI
transparency. The EU AI Act mandates that high-risk AI
systems “shall technically allow for the automatic recording
of events (logs) over the lifetime of the system” to ensure

traceability [3]. However, synchronous blockchain integration
introduces prohibitive latency for real-time interactive AI.
Research indicates that synchronous blockchain execution
introduces latency overheads that increase with network com-
plexity, potentially limiting scalability [4]. In high-frequency
CoT generation, where a single prompt generates dozens of
reasoning steps, this synchronous overhead accumulates and
degrades user experience.

Furthermore, permissioned blockchains like Hyperledger
Fabric face Multi-Version Concurrency Control (MVCC) con-
flicts in high-throughput scenarios [5]. Simply streaming CoT
steps to the ledger results in transaction failures due to these
conflicts.

This paper proposes a Hybrid Asynchronous Blockchain
(Hybrid-BC) recording system that addresses these barri-
ers. Inspired by FastFabric [6], we implement a parallelized
submission mechanism that decouples AI inference from
blockchain consensus, while incorporating Write-Ahead Log-
ging (WAL) to guarantee data durability against system fail-
ures. Our contributions are:

• A Hybrid-BC tracing system achieving 11.1% overhead
with full disk persistence, compared to 666.7% for the
synchronous approach

• Statistical validation through 30 repeated experiments,
confirming that WAL I/O overhead accounts for 8.57%
of total inference time

• A case study demonstrating practical error backtracking
via blockchain trace queries

II. RELATED WORK

A. On-Device sLM Capabilities and Trustworthiness
Recent advancements enable language models to run locally

on mobile hardware. Abdin et al. demonstrated that Phi-3-mini

(3.8B parameters) achieves 82.5% on GSM8K, surpassing
GPT-3.5 [7]. However, Nakka et al. found that quantized
models are less trustworthy than server-based counterparts,
with optimization for mobile deployment exacerbating bias
and privacy breaches [8]. This trust gap necessitates external
audit mechanisms.

B. Blockchain Architectures for AI Integrity

The BC4LLM framework conceptualizes blockchain for
recording training processes [9]. Federated TrustChain inte-
grates Hyperledger Fabric with federated learning [10]. How-
ever, these approaches focus on static artifacts rather than
dynamic reasoning steps during inference. Systems using off-
chain storage introduce variable latency that renders real-time
CoT tracking impractical [11]. More advanced cryptographic
approaches, such as VerifyNet [12], impose higher overheads
for proof generation, making them unsuitable for interactive
sLM applications.

C. Hyperledger Fabric Optimization

Thakkar et al. identified state validation and MVCC checks
as primary bottlenecks [13]. Approaches like Fabric++ build
conflict graphs during ordering [14], while EMVCC imple-
ments local caching [15]. Our work adopts a lightweight
asynchronous pattern inspired by FastFabric [6], eliminating
the need for complex reordering mechanisms.

D. Blockchain vs. Centralized Logging

While centralized logging systems such as Elasticsearch
or cloud-based solutions provide lower latency (typically 5-
10ms), they lack several critical properties required for audit
trails in regulated domains. Centralized mechanisms are vul-
nerable to threats where logs “secured improperly in storage
or in transit might also be susceptible to intentional and unin-
tentional alteration and destruction” [16]. Blockchain provides
Byzantine fault tolerance, cryptographic non-repudiation, and
decentralized trust without single points of failure. Further-
more, the eIDAS 2.0 regulation establishes that data records
in a qualified electronic ledger “shall enjoy the presump-
tion of their unique and accurate sequential chronological
ordering and of their integrity” [17], providing a stronger
legal presumption of integrity than centralized logs. These
properties are essential for compliance with regulations such as
GDPR Article 32, which requires demonstrable data integrity.
The 11.1% overhead represents an acceptable trade-off for
applications requiring these guarantees.

III. SYSTEM ARCHITECTURE

The system consists of three components: the sLM inference
module, the async queue layer with WAL, and the Hyperledger
Fabric network, as shown in Fig. 1.

The inference module uses the Qwen2.5-1.5B-Instruct
model loaded with half-precision (FP16). Each inference ses-
sion generates multiple CoT steps stored independently in the
blockchain.

The async queue layer implements a non-blocking asyn-
chronous submission mechanism. To address the data loss

Fig. 1. Proposed Hybrid Asynchronous Blockchain recording system architec-
ture. The async queue layer employs a non-blocking submission mechanism
with Write-Ahead Logging (WAL) to ensure durability before decoupling
inference latency from blockchain consensus delays.

risks of purely in-memory queues, we implement a Hybrid-
BC approach:

1) Write-Ahead Logging (WAL): Before submission,
each CoT step is synchronously appended to a local
log file using os.fsync() to ensure physical disk
persistence.

2) Asynchronous Submission: Once persisted, the trans-
action is added to an in-memory queue for background
processing by the blockchain client.

This design ensures that even if the system crashes before
blockchain commitment, the reasoning steps can be recovered
from the WAL, providing step-level durability with minimal
latency impact.

The Hyperledger Fabric network comprises two organiza-
tions with two peers each, using Raft consensus with a single
orderer. Block generation occurs every 2 seconds or upon
reaching 10 transactions.

Chaincode Design: Each trace is stored independently with
the following structure:

{
"inference_id": "UUID",
"step_sequence": 1,
"content": "reasoning step text",
"model_id": "Qwen2.5-1.5B",
"timestamp": "ISO8601"

}

This schema eliminates MVCC conflicts by avoiding shared
state updates during trace creation.

IV. EXPERIMENTAL METHODOLOGY

A. Hardware and Software Environment

Experiments were conducted on:

• CPU: Intel Core i7-12700K (12th Gen)
• GPU: NVIDIA GeForce RTX 3090 Ti (24GB VRAM)
• RAM: 128GB DDR4
• OS: Windows 11 Home
• Software: Python 3.11, PyTorch, Hyperledger Fabric v2.5

B. Experimental Design

We utilized an unbalanced experimental design to optimize
resource usage while maintaining statistical rigor:

• Baseline & Hybrid-BC: N = 30 runs each (satisfying
Central Limit Theorem requirements).

• Sync-BC: N = 6 runs. Due to the prohibitive latency of
the synchronous mode (mean 58.76s per run), a smaller
sample size was sufficient to demonstrate the statistically
significant performance gap (p < 0.001).

Protocol:
• Warm-up: 1 iteration discarded before data collection.
• Randomization: Mode execution order shuffled per iter-

ation.
• GPU Memory Cleanup:
torch.cuda.empty_cache() called between
modes to prevent interference.

• Inter-mode Interval: 1 second delay between modes; 2
second delay between runs.

Ten questions requiring multi-step reasoning were used,
processed cyclically across runs.

Three modes were compared:
• Baseline: No blockchain tracing.
• Hybrid-BC: Asynchronous submission with WAL dura-

bility (Proposed).
• Sync-BC: Waits for block commitment for each step.

C. Evaluation Metrics

Latency Overhead:

Overhead =
Tmode − Tbaseline

Tbaseline
× 100% (1)

WAL Analysis: Separate measurement of disk I/O time
(fsync) versus blockchain network latency.

Throughput: Tokens per second (TPS) measured for base-
line mode.

V. RESULTS

A. Performance Comparison

Table I presents the latency measurements across synchro-
nization modes.

TABLE I
PERFORMANCE COMPARISON ACROSS SYNCHRONIZATION MODES

Mode N Mean (s) Std (s) Overhead

Baseline 30 7.66 3.67 -
Hybrid-BC 30 8.52 3.92 +11.1%
Sync-BC 6 58.76 37.54 +666.7%

The Hybrid-BC mode achieves an overhead of 11.1%,
which represents an acceptable trade-off for the added value
of traceability and durability. In contrast, the Sync-BC mode
increases latency by 666.7%, rendering it impractical for real-
time applications. The difference between Hybrid-BC and
Sync-BC is statistically significant (p < 0.001), validating

Fig. 2. Performance comparison. Hybrid-BC shows 11.1% overhead despite
including full disk persistence costs, whereas Sync-BC exhibits 666.7%
overhead due to network blocking.

the architectural advantage of decoupling consensus from
inference.

The baseline mode achieved a mean throughput of 43.6
tokens per second (TPS) with a standard deviation of 4.5 TPS.

B. WAL Durability Analysis
To understand the cost of durability, we analyzed the

specific overhead introduced by the Write-Ahead Logging.

TABLE II
WAL DURABILITY OVERHEAD ANALYSIS (HYBRID-BC)1

Metric Mean Std

WAL Write (ms) 573.9 270.2
WAL Commit (ms) 403.2 200.9
WAL Overhead Ratio (%) 8.57 3.84
BC Latency (ms) 10,403.5 4,914.1

As shown in Table II, the average time spent on disk
I/O (WAL Write plus Commit marking) is approximately
977ms per inference session. This accounts for 8.57% of
the total inference time when considering the baseline plus
WAL overhead. The blockchain network latency (10,404ms)
is approximately 10.6 times higher than the disk I/O time. This
confirms that the primary bottleneck in decentralized systems
is network consensus, which our asynchronous architecture
effectively masks from the user.

C. Case Study: Error Backtracking
To demonstrate practical utility, we conducted a case study

using a question adapted from GSM8K-style arithmetic rea-
soning. The blockchain stored 52 reasoning steps with Infer-
ence ID 103d80fb.... Querying the blockchain identified
the error at Step 23 (“3 eggs/morning x 8 mornings/day”),
allowing for precise root cause analysis of the hallucination.

1WAL Overhead Ratio represents the percentage of WAL operations
time relative to the baseline inference time, calculated as: (WALwrite +
WALcommit)/(Tbaseline +WALtotal)× 100%

D. Storage Efficiency

Analysis of blockchain storage reveals:
• Average storage per step: 0.21 KB
• Total storage (N=30, Hybrid-BC): approximately 123 KB
For deployment at 1,000 inferences per day (15 steps

average): 3.15 MB/day, 1.13 GB/year.

VI. DISCUSSION

A. Durability and Performance Trade-off

A key critique of asynchronous systems is the potential for
data loss during crashes. Our Hybrid-BC approach addresses
this by enforcing synchronous disk writes (WAL) before
adding tasks to the memory queue. Our results show that this
durability mechanism costs approximately 11% in additional
latency. Given that this mechanism protects against process
failures while maintaining 88.9% of the baseline speed, it rep-
resents an acceptable trade-off for sLM deployments requiring
audit capabilities.

B. Clarification on Asynchronous Performance

A potential concern is whether the performance advantage
of Hybrid-BC arises merely from deferring blockchain opera-
tions to the background. This section clarifies the architectural
rationale.

The WAL mechanism ensures that durability is achieved
at the time of commit, not deferred. The ARIES protocol
established that transaction durability requires log records to
be written to stable storage before returning acknowledgment
to the user [18]. In our implementation, each CoT step
is synchronously written to disk using os.fsync(). This
ensures immediate durability by forcing modified data to
persistent storage before returning [19]. Only after this disk
write completes is the transaction added to the asynchronous
queue for blockchain submission. Therefore, even if the system
crashes before blockchain commitment, all reasoning steps
remain recoverable from the WAL.

The asynchronous architecture fundamentally separates
user-facing latency from consensus latency. This design pat-
tern is consistent with Hyperledger Fabric’s Execute-Order-
Validate model, where transaction simulation occurs before
ordering [13]. Our measurements confirm that blockchain
consensus latency (10,404ms) exceeds local WAL operations
(977ms) by a factor of 10.6. The asynchronous design masks
this consensus latency from end-users while preserving data
integrity through WAL.

Regarding the experimental environment, the use of a
single physical machine follows established methodology for
isolating computational overhead from network variability
[13]. This controlled setting enables identification of software
bottlenecks that would be obscured by network noise. In
distributed deployments with network latency, the performance
gap between Hybrid-BC and Sync-BC would widen, as net-
work delays affect synchronous operations but not local WAL
writes.

C. The Order-of-Magnitude Principle

Our measurements reveal that the cost of local persistence
(WAL) is roughly one order of magnitude smaller than the
cost of remote consensus. Specifically, total WAL overhead
(977ms, comprising write and commit operations) versus
blockchain latency (10,404ms) yields a ratio of approximately
1:10.6. By moving the blocking operation from the network
layer (Sync-BC) to the local disk layer (Hybrid-BC), we
eliminate the major component of latency while retaining the
integrity guarantees.

D. Scalability to Larger Models

The 11.1% overhead was measured on a 1.5B-parameter
model with relatively short inference times (mean 7.66s). For
larger models (7B, 70B parameters) where inference takes
significantly longer, the relative impact of the fixed WAL
overhead (977ms) would decrease further, likely dropping
below 5%. This suggests the approach scales favorably with
model complexity.

E. Limitations

The Sync-BC experiments used N = 6 due to time
constraints imposed by the prohibitive latency. While sufficient
for demonstrating the performance gap, future work should
consider automated long-running experiments for more com-
prehensive statistical analysis of the synchronous mode.

Additionally, although the blockchain network was con-
figured with production-like parameters (2 organizations, 4
peers, Raft consensus), all components ran on a single phys-
ical machine. This approach is methodologically valid for
measuring computational overhead in isolation [13]. However,
future work should validate these findings in geographically
distributed deployments to quantify the impact of network
latency on both synchronous and asynchronous modes.

VII. CONCLUSION

This paper presented a Hybrid Asynchronous Blockchain
recording system for CoT tracing in sLMs. Through exper-
iments (N = 30 for proposed and baseline, N = 6 for
synchronous comparison), we demonstrated:

1) Hybrid-BC achieves 11.1% overhead with full disk dura-
bility, compared to 666.7% for the synchronous mode.

2) The analysis confirms that WAL disk I/O accounts for
8.57% of inference time, while effectively decoupling
the 10-second blockchain latency from user-perceived
response time.

3) Blockchain traces enable practical error backtracking
and auditability with minimal storage footprint (1.13
GB/year at 1,000 daily inferences).

These results indicate that the hybrid asynchronous archi-
tecture successfully bridges the gap between the real-time
requirements of sLMs and the immutability requirements of
blockchain auditing.

ACKNOWLEDGMENT

This work was supported by the Institute of Information &
Communications Technology Planning & Evaluation (IITP)-
Innovative Human Resource Development for Local Intellec-
tualization program grant funded by the Korea government
(MSIT)(IITP-2025-RS-2024-00436773). This work was sup-
ported by the Korea Institute for Advancement of Technology
(KIAT) grant funded by the Korea government (Ministry of
Trade, Industry and Energy) through the International Coop-
eration in Industrial Technology program (Project Number:
P0026190).

REFERENCES

[1] A. Yang et al., “Qwen2.5-Math Technical Report: Toward Mathematical
Expert Model via Self-Improvement,” arXiv preprint arXiv:2409.12122,
2024.

[2] W. Zhang, H. Xu, Z. Wang, Z. He, Z. Zhu, and K. Ren, “Can Small
Language Models Reliably Resist Jailbreak Attacks? A Comprehensive
Evaluation,” arXiv preprint arXiv:2503.06519, 2025.

[3] European Parliament and Council of the European Union, “Regu-
lation (EU) 2024/1689 laying down harmonised rules on artificial
intelligence (Artificial Intelligence Act),” Official Journal of the Eu-
ropean Union, L 1689, Jul. 2024. [Online]. Available: https://eur-
lex.europa.eu/eli/reg/2024/1689/oj

[4] V. Drungilas, E. Vaičiukynas, M. Jurgelaitis, R. Butkienė, and L.
Čeponienė, “Towards Blockchain-Based Federated Machine Learning:
Smart Contract for Model Inference,” Appl. Sci., vol. 11, no. 3, p. 1010,
2021.

[5] A. Stoltidis, K. Choumas, and T. Korakis, “Performance Optimization of
High-Conflict Transactions within the Hyperledger Fabric Blockchain,”
arXiv preprint arXiv:2407.19732, 2024.

[6] C. Gorenflo, S. Lee, L. Golab, and S. Keshav, “FastFabric: Scaling
Hyperledger Fabric to 20,000 Transactions per Second,” in Proc. IEEE
Int. Conf. Blockchain Cryptocurrency (ICBC), 2019, pp. 455–463.

[7] M. Abdin et al., “Phi-3 Technical Report: A Highly Capable Language
Model Locally on Your Phone,” arXiv preprint arXiv:2404.14219, 2024.

[8] K. Nakka, J. Dani, and N. Saxena, “Is On-Device AI Broken and Ex-
ploitable? Assessing the Trust and Ethics in ‘Small’ Language Models,”
arXiv preprint arXiv:2406.05364, 2024.

[9] H. Luo, J. Luo, and A. V. Vasilakos, “BC4LLM: Trusted Artificial
Intelligence When Blockchain Meets Large Language Models,” arXiv
preprint arXiv:2310.06278, 2023.

[10] X. Zuo et al., “Federated TrustChain: Blockchain-Enhanced LLM Train-
ing and Unlearning,” arXiv preprint arXiv:2406.04076, 2024.

[11] Y. Zhang, J. Zhao, J. Jiang, Y. Zhu, L. Wang, and Y. Xiang, “Recording
Behaviors of Artificial Intelligence in Blockchains,” IEEE Trans. Artif.
Intell., vol. 4, no. 6, pp. 1437–1448, Dec. 2023.

[12] G. Xu, H. Li, S. Liu, K. Yang, and X. Lin, “VerifyNet: Secure and
Verifiable Federated Learning,” IEEE Trans. Inf. Forensics Secur., vol.
15, pp. 911–926, 2020.

[13] P. Thakkar, S. N. Nathan, and B. Viswanathan, “Performance Bench-
marking and Optimizing Hyperledger Fabric Blockchain Platform,” in
Proc. IEEE Int. Symp. Model. Anal. Simul. Comput. Telecommun. Syst.
(MASCOTS), 2018, pp. 264–276.

[14] A. Sharma et al., “Blurring the Lines Between Blockchains and Database
Systems: The Case of Hyperledger Fabric,” in Proc. ACM SIGMOD Int.
Conf. Manage. Data, 2019, pp. 105–122.

[15] H. Trabelsi and K. Zhang, “Early Detection for Multiversion Con-
currency Control Conflicts in Hyperledger Fabric,” arXiv preprint
arXiv:2301.06181, 2023.

[16] K. Kent and M. Souppaya, “Guide to Computer Security Log Manage-
ment,” National Institute of Standards and Technology (NIST), Gaithers-
burg, MD, USA, Spec. Publ. 800-92, Sep. 2006. [Online]. Available:
https://doi.org/10.6028/NIST.SP.800-92

[17] European Parliament and Council of the European Union, “Regulation
(EU) 2024/1183 amending Regulation (EU) No 910/2014 as regards
establishing the European Digital Identity Framework,” Official Journal
of the European Union, Apr. 2024. [Online]. Available: https://eur-
lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32024R1183

[18] C. Mohan, D. Haderle, B. Lindsay, H. Pirahesh, and P. Schwarz,
“ARIES: A Transaction Recovery Method Supporting Fine-Granularity
Locking and Partial Rollbacks Using Write-Ahead Logging,” ACM
Trans. Database Syst., vol. 17, no. 1, pp. 94–162, Mar. 1992.

[19] T. S. Pillai, V. Chidambaram, R. Alagappan, S. Al-Kiswany, A. C.
Arpaci-Dusseau, and R. H. Arpaci-Dusseau, “All File Systems Are
Not Created Equal: On the Complexity of Crafting Crash-Consistent
Applications,” in Proc. USENIX Symp. Oper. Syst. Des. Implement.
(OSDI), 2014, pp. 433–448.

