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Abstract—Robotic grasping in unstructured environments suf-
fers from intrinsic ambiguity (aleatoric uncertainty) due to sensor
noise and occlusions, which conventional deterministic methods
often overlook. In this paper, we propose a Risk-Aware Grasping
strategy utilizing the Picking Success Prediction with Uncertainty
(PSP-U) model. Instead of relying on computationally intensive
3D backbones, we employ a lightweight statistical feature ab-
straction and a dual-head network to simultaneously estimate
grasp success probability and data-dependent uncertainty. Exper-
imental results on a large-scale real-world dataset demonstrate
that our approach achieves superior performance compared to
heavy 3D point-based models by effectively filtering out high-risk
candidates. Significantly, filtering out the top 50% of uncertain
grasps improves the success rate from 84.1% to over 94%,
validating the proposed method as a robust solution for safety-
critical industrial applications.

Index Terms—Robotic Grasping, Aleatoric Uncertainty, Risk-
Awareness, Deep Learning in Robotics

I. INTRODUCTION

Robotic grasping in cluttered environments suffers from
sensor noise and occlusions. In these scenarios, identical
grasping attempts on visually similar objects can yield di-
vergent outcomes (see Fig. 1)—a phenomenon we refer to
as intrinsic ambiguity, formally characterized as aleatoric
uncertainty [1]. While conventional deterministic approaches
often overlook this stochasticity—leading to overconfident
failures—robust operation requires explicitly quantifying pre-
dictive confidence. To address this, the robotic system must
autonomously identify and refrain from executing high-risk
attempts based on uncertainty estimation.

In this work, we propose the PSP-U model to explicitly
quantify this uncertainty. Our main contributions are sum-
marized as follows: (1) Uncertainty-Aware Modeling: We
propose the PSP-U model utilizing a dual-head architecture
and Laplacian likelihood to explicitly quantify aleatoric un-
certainty, enabling the detection of intrinsic ambiguities in
cluttered environments. (2) Efficient Feature Abstraction:
We demonstrate that lightweight statistical feature abstraction
effectively filters sensor noise and outperforms computation-
ally heavy 3D point-based networks (e.g., PointNet++) in real-
world industrial settings. (3) Risk-Aware Grasping Strategy:
We validate a robust filtering policy based on predicted un-
certainty, which significantly enhances the grasping success
rate (from 84.1% to 94%) by avoiding high-risk candidates.
(4) Large-Scale Real-World Validation: We validate our

(a) Success (b) Success

(c) Failure (d) Failure

Fig. 1: Illustrative examples of aleatoric uncertainty in bin-
picking. (a)-(b) Successful grasps in ideal scenarios where ob-
jects are spatially isolated. (c)-(d) Failed grasps in deceptively
clear scenarios subject to latent physical constraints. Note the
contrast between (a) and (c): despite being visually similar
and occlusion-free, the outcome diverges due to intrinsic
ambiguity. This necessitates uncertainty modeling to predict
risks that are not explicitly observable.

approach on a large-scale dataset comprising 11,210 physical
grasp attempts, demonstrating superior reliability compared to
deterministic baselines.

II. RELATED WORK

A. Data-Driven Grasping

Deep learning approaches using 3D point clouds, such as
PointNet++ [2], have demonstrated high performance in grasp-
ing tasks. However, their complex 3D backbones often incur
high computational costs. Recently, Li et al. [3] demonstrated
that lightweight models using hand-crafted features are highly
effective for large-scale industrial applications. Following this
insight, we adopt a feature-based MLP architecture to ensure
real-time capability while focusing on uncertainty quantifica-
tion.



Fig. 2: Architecture of the proposed PSP-U. Taking a 13-dimensional statistical feature vector as input, the network predicts
grasp success probability (ŷ) and aleatoric uncertainty (log σ2) via a dual-head mechanism. The architecture employs an
Expansion-Compression strategy: it first expands the manifold (R256 → R512) to disentangle non-linear interactions, followed
by a bottleneck compression (R512 → R256) to filter task-irrelevant noise. The residual blocks incorporate linear projection
shortcuts to preserve feature identity across varying dimensions.

B. Uncertainty in Robotics

Modeling uncertainty is essential for safety-critical appli-
cations. Kendall and Gal [1] highlighted the importance of
modeling aleatoric uncertainty to capture inherent data noise.
While significant benchmarks like SuctionNet-1Billion [4]
have advanced grasp quality scoring, they often focus on
deterministic predictions. Our work distinguishes itself by
leveraging aleatoric uncertainty as a dynamic risk indicator
to proactively filter out unreliable grasp candidates.

III. PROPOSED METHOD

A. Statistical Feature Abstraction

Instead of processing raw 3D point clouds directly, we
extract a compact set of 13 multi-aspect features from depth
maps, surface normals, and instance masks, as detailed in
Table I. While deep learning typically relies on raw inputs,
industrial depth sensors exhibit significant high-frequency
noise. We empirically found that utilizing statistical feature
abstraction acts as a robust low-pass filter, preventing the
model from overfitting to sensor artifacts compared to point-
based networks.

TABLE I: List of 13 Statistical Input Features

Category Feature Names

Geometric (4) Normal Std (σn), Normal Std (X, Y)
(σnx, σny), Depth Std (σd)

Positional (4) Center (cx, cy), Center Depth Mean/Std
(µcd, σcd)

Morphological (5) Mask Ratio (rm), BBox Cov. (cb), Occlusion
(o), Aspect Ratio (α), Rotated Box Ratio (rr)

B. Aleatoric Uncertainty Modeling via Laplace Prior (PSP-U)

We propose the PSP-U model based on a Residual MLP
architecture. To quantify uncertainty, the network employs
a Dual-Head Output: one for the predictive mean (ŷ) and
another for the log-variance (s = log σ2) representing aleatoric
uncertainty. The architecture is illustrated in Fig. 2.

To ensure robustness against outliers common in industrial
data, we assume a Laplacian distribution for the aleatoric noise
(rather than Gaussian) and train the model using a Laplacian
Heteroscedastic Loss based on the L1 norm:

L =
1

2
exp(−s)|y − ŷ|+ 1

2
s (1)

where y ∈ {0, 1} is the ground truth. We adopt the L1
norm (Laplacian prior) over the standard L2 norm (Gaussian
prior) because bin-picking data contains frequent outliers due
to sensor noise and occlusions. The heavy-tailed Laplacian
distribution is more robust to these outliers, preventing the
gradient from exploding. Furthermore, the learned variance
s acts as a heteroscedastic weight; it down-scales the loss
contribution of uncertain samples (where |y − ŷ| is large),
effectively allowing the model to suppress the influence of
confusing data during training.

IV. EXPERIMENTS AND RESULTS

A. Experimental Setup

We evaluated our PSP-U model using a large-scale dataset
of 11,210 grasp attempts collected from a real-world logistics
center. For fair comparison, we employed a deterministic MLP
and PointNet++ [2] as baselines under the same experimental
settings. Implementation Details: The dataset was split into
80% training and 20% validation sets. The backbone com-
prises four residual blocks with channel sizes [256, 512, 512,
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Fig. 3: Quantitative Analysis of Uncertainty Utility. (a)
Normalized distributions reveal a clear separation: correct
predictions (green) cluster at low uncertainty, while incorrect
predictions (red) shift significantly rightward. (Histograms
are normalized to account for class imbalance.) (b) The re-
tention curve demonstrates that progressively filtering out data
with the highest uncertainty (keeping the top X% samples)
monotonically improves grasping accuracy from 84% to over
94%.

512, 256] and a dropout rate of 0.1. We trained the model
on a single NVIDIA RTX 3060 GPU for 50 epochs using the
AdamW optimizer (lr = 10−4, wd = 10−4, b = 64) with a
Cosine Annealing scheduler.

B. Quantitative Analysis & Efficiency

Table II compares prediction accuracy and input representa-
tion complexity. Our PSP-U achieves 84.1% accuracy, signifi-
cantly outperforming PointNet++ (75.0%). This confirms that
compact statistical features are more robust to high-frequency
sensor noise than raw point clouds in cluttered environments.
Furthermore, compared to the deterministic MLP (82.8%),
explicitly modeling uncertainty acts as a regularizer, improving
generalization.

TABLE II: Comparison of Accuracy and Input Representation

Model Uncertainty Input Representation Accuracy

PointNet++ [2] × Raw Point Cloud (N × 3) 75.0%
Det. MLP × 13 Statistical Features 82.8%
PSP-U (Ours) ◦ 13 Statistical Features 84.1%

C. Risk-Aware Filtering Effect

To validate the utility of uncertainty, we sorted test samples
by their predicted uncertainty (σ) and analyzed the retention
curve. As shown in Fig. 3, filtering leads to a monotonic in-
crease in performance. By excluding the top 50% of uncertain
predictions, the success rate improves from 84.1% to over
94%, confirming that uncertainty serves as a reliable metric
for identifying and avoiding high-risk grasps. Crucially, high
uncertainty serves as a trigger for a fallback strategy (e.g.,
selecting the next-best candidate) rather than causing a system
deadlock, thereby ensuring continuous operation.
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Fig. 4: Qualitative Analysis. High aleatoric uncertainty (σ >
0.6) effectively flags False Positives (deterministic errors),
acting as a safety net against latent physical constraints.

D. Qualitative Analysis

Since False Positives (incorrect success predictions) cause
physical failures and potential hardware damage, we focus on
validating if our module flags these errors. Fig. 4 visualizes
the predicted uncertainty for false-positive cases. Even when
the model incorrectly predicts success, the uncertainty remains
high (σ > 0.6). This demonstrates the model’s capability to
detect physical risks such as deformability, concave geometry,
and occlusion, which are difficult to capture with deterministic
predictions alone.

V. CONCLUSION

We presented the PSP-U model to address aleatoric un-
certainty in robotic bin-picking. By explicitly modeling data-
dependent uncertainty with a lightweight dual-head network,
we enabled a Risk-Aware Grasping strategy. Our results show
that using uncertainty as a risk filter allows the system to
achieve near-perfect success rates by avoiding ambiguous
grasp attempts.
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