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Abstract— This study presents a domain-bridged visual
adaptation framework for improving automated ultrasound
image classification with limited labeled data. The approach
employs a multistage transfer-learning pipeline that
progressively aligns feature representations across natural
images, intermediate medical imagery, and ultrasound-specific
patterns. This gradual transition fosters stable and clinically
meaningful feature learning while reducing overfitting. The
paper outlines the conceptual motivation, dataset design, training
strategy, and interpretability analyses. Experimental results show
that the proposed framework enhances classification accuracy,
training stability, and cross-dataset generalization,
demonstrating its effectiveness for robust ultrasound analysis.
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I. INTRODUCTION

Ultrasound imaging plays an essential role in contemporary
medical diagnostics due to its affordability, real-time
acquisition capability, and lack of ionizing radiation [1]. These
advantages have led to its widespread adoption in applications
such as breast cancer screening, abdominal examinations,
obstetric assessments, and cardiovascular analysis [2]. Despite
its clinical value, automated interpretation of ultrasound images
remains difficult. The modality inherently suffers from speckle
noise, acoustic shadowing, blurred boundaries, and operator-
dependent variations in probe orientation, all of which
introduce substantial inconsistencies in appearance [3]. These
factors complicate the extraction of coherent feature
representations and limit the effectiveness of deep neural
networks trained on modestly sized ultrasound datasets [4].

The scarcity of large, well-annotated ultrasound datasets
further exacerbates these challenges. Unlike natural-image
collections, which often contain millions of labeled examples,
publicly available ultrasound datasets are comparatively small
and heterogeneous [5]. Models trained from scratch on such
limited data frequently exhibit unstable convergence, high
sensitivity to noise, and a strong tendency to overfit [6].

Transfer learning offers a partial remedy by leveraging
feature representations learned from natural-image datasets
such as ImageNet [7]. Although pretrained models provide
robust low-level filters and general visual descriptors, their
internal representations do not naturally align with the diffuse
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textures and ambiguous structures characteristic of ultrasound
imagery [8]. Natural photographs contain well-defined object
boundaries, rich color gradients, and clear geometric features,
whereas ultrasound images display irregular textures, variable
intensity patterns, and low-contrast lesion margins. As a result,
directly fine-tuning natural-image models typically yields
inconsistent and suboptimal performance [9].

Recent studies have explored domain adaptation strategies
to reduce this discrepancy. However, many existing methods
rely on adversarial objectives or complex distribution-
alignment losses and often require extensive intermediate
datasets that may not be readily accessible [10]. Furthermore,
directly adapting a model from natural images to ultrasound
imagery involves a considerable representational leap due to
their fundamentally different visual characteristics [11].

To address these limitations, this study introduces a
Domain-Bridged Cross-Adaptation Framework that guides the
model through a smoother representational transition. Instead
of applying a single adaptation step, the framework
progressively shifts the model’s feature space from natural-
image representations to intermediate medical-image structures
and finally to ultrasound-specific patterns. This staged
progression encourages the formation of medically aligned
features, reduces the burden of abrupt domain shifts, improves
stability during training, and enhances sensitivity to fine-
grained lesion characteristics. The following sections describe
the conceptual foundations, design strategy, and empirical
validation of the proposed approach.

II.  MATERIALS AND METHODS

Deep neural networks develop increasingly abstract visual
representations across their hierarchical layers. Early layers
capture edges, gradients, and low-frequency textures, while
deeper layers encode shape-based and semantic information.
Transfer learning assumes that these representations retain
some degree of utility across tasks, yet the semantic gap
between natural images and ultrasound images is large enough
to limit their direct transferability [7].

To mitigate this discrepancy, the proposed domain-bridged
strategy introduces an intermediate medical-image domain that
shares structural similarities with ultrasound imagery [11].
Medical images produced by modalities such as microscopy,
radiography, and dermoscopy often contain irregular
boundaries, heterogeneous textures, and locally varying



intensity profiles—properties that are more aligned with the
characteristics of ultrasound images than with those of natural
photographs. Training the model on such imagery creates a
representational staging ground that encourages medically
meaningful feature extraction before the final adaptation to
ultrasound data.

The first stage initializes the model using weights learned
from a large-scale dataset of natural images [7]. This initial
phase provides a stable and expressive set of filters capable of
capturing diverse low-level features. Although these
representations do not reflect medical structures, they offer a
reliable foundation that prevents unstable learning behaviors
when the model encounters small medical datasets in
subsequent stages. The pretrained backbone also accelerates
convergence and reduces the likelihood of vanishing gradients
during early training iterations.

In the second stage, the entire network is retrained using an
intermediate dataset composed of structurally rich medical
images [11]. These images may include microscopic cellular
structures, dermoscopic skin patterns, or radiographic textures,
all of which exhibit visual characteristics that resemble those
observed in ultrasound scans. Retraining on this dataset
encourages the model to depart from the object-centric
semantics prevalent in natural images and instead adopt more
medically oriented abstractions. This stage enables the
development of intermediate representations that bridge the
disparity between natural-image features and ultrasound-
specific patterns, thereby reducing the learning burden during
the final fine-tuning phase [12].

In the final stage, the model undergoes fine-tuning on
ultrasound datasets containing benign and malignant breast
lesions [5]. All layers remain trainable so that the feature
representations learned in earlier stages can be fully realigned
with the unique textural and structural properties of ultrasound
imaging. Minimal preprocessing is applied to maintain
generalizability; images are resized, normalized, and
augmented with realistic transformations such as moderate
rotation, flipping, contrast adjustment, and intensity
perturbation. These augmentations mimic variability
encountered in clinical practice. The Adam optimizer, paired
with a cosine decay learning-rate schedule, is used to maintain
stable convergence. Light regularization with dropout and
batch normalization is employed to stabilize feature
distributions while preserving clinically relevant textures [13].

The framework is evaluated using multiple backbone
architectures and consistent training configurations to ensure a
fair comparison. Performance is assessed via accuracy,
sensitivity, specificity, Fl1-score, and AUC [14]. Cross-dataset
experiments are conducted to examine robustness to domain
shifts, while ablation studies quantify the specific contribution
of the intermediate medical-domain adaptation. Qualitative
analyses involving activation maps and feature visualizations
provide insight into the internal representational changes
induced by the domain-bridged training process.

III. RESULTS

Experiments demonstrate that the domain-bridged
framework consistently outperforms conventional transfer
learning. Across various CNN backbones, models trained using
the proposed multistage strategy achieve higher accuracy,
improved sensitivity to malignant cases, and reduced variance
across validation folds. Residual architectures in particular
yield the strongest performance, likely due to their ability to
preserve gradient flow and refine deeper representational
features during staged adaptation [15]. In contrast, EfficientNet
and Inception-based models show moderate but less stable
improvements.

Single-stage transfer learning often results in unstable
convergence, characterized by oscillations in loss and accuracy.
These instabilities stem from the abrupt transition between
natural-image representations and ultrasound imagery. After
incorporating the intermediate medical-domain stage, the
training curves become markedly smoother and more
consistent. The model demonstrates a reduced tendency to
memorize noise patterns and instead learns more generalizable
textural distinctions. This stability is maintained even in
datasets with limited sample sizes.

The multistage framework yields classification boundaries
that more accurately separate benign and malignant lesions.
ROC analyses reveal that the proposed method produces curves
with stronger class separation and higher AUC scores. These
trends indicate improved discriminative capacity and more
reliable clinical decision support. Statistical evaluations
confirm that the observed improvements are significant and
unlikely to result from random variation.

Testing on an independent ultrasound dataset further
validates the robustness of the domain-bridged approach. The
model maintains high sensitivity and specificity despite
differences in acquisition equipment, imaging quality, and
patient demographics. This outcome highlights the
framework’s ability to generalize across diverse clinical
settings and demonstrates its resilience to domain shifts that
commonly challenge medical imaging models.

Visualization of learned feature maps reveals clear
distinctions between the domain-bridged model and
conventional transfer-learning baselines. While single-stage
models tend to focus on strong edges and global patterns, the
domain-bridged framework captures fine-grained textures,
irregular lesion boundaries, and subtle structural cues
associated with malignancy. The progressive transition
established in earlier stages appears to reorganize feature
channels into medically meaningful clusters, indicating the
emergence of domain-specific abstractions.

IV. CONCLUSION

This work presents a structured domain-bridged learning
framework that progressively transitions visual representations
from natural images through intermediate medical imagery and
ultimately to ultrasound data. By incorporating a staged
adaptation process, the framework reduces the representational
mismatch that hampers conventional transfer learning and
enables the extraction of stable, clinically relevant features



from limited ultrasound datasets. Extensive evaluation
demonstrates that the method enhances accuracy, sensitivity,
interpretability, and cross-dataset robustness.

Although this study focuses on breast ultrasound
classification, the proposed approach is broadly applicable to
other medical imaging tasks where annotated data are limited.
Future research may explore alternative intermediate domains,
multimodal pretraining sources, larger multi-center datasets,
and integration with self-supervised learning strategies. Overall,
the domain-bridged framework offers a highly promising
foundation for developing reliable, adaptable, and clinically
deployable Al systems for ultrasound image analysis.
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