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Abstract— This study presents a domain-bridged visual 

adaptation framework for improving automated ultrasound 

image classification with limited labeled data. The approach 

employs a multistage transfer-learning pipeline that 

progressively aligns feature representations across natural 

images, intermediate medical imagery, and ultrasound-specific 

patterns. This gradual transition fosters stable and clinically 

meaningful feature learning while reducing overfitting. The 

paper outlines the conceptual motivation, dataset design, training 

strategy, and interpretability analyses. Experimental results show 

that the proposed framework enhances classification accuracy, 

training stability, and cross-dataset generalization, 

demonstrating its effectiveness for robust ultrasound analysis. 
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I.  INTRODUCTION 

Ultrasound imaging plays an essential role in contemporary 
medical diagnostics due to its affordability, real-time 
acquisition capability, and lack of ionizing radiation [1]. These 
advantages have led to its widespread adoption in applications 
such as breast cancer screening, abdominal examinations, 
obstetric assessments, and cardiovascular analysis [2]. Despite 
its clinical value, automated interpretation of ultrasound images 
remains difficult. The modality inherently suffers from speckle 
noise, acoustic shadowing, blurred boundaries, and operator-
dependent variations in probe orientation, all of which 
introduce substantial inconsistencies in appearance [3]. These 
factors complicate the extraction of coherent feature 
representations and limit the effectiveness of deep neural 
networks trained on modestly sized ultrasound datasets [4]. 

The scarcity of large, well-annotated ultrasound datasets 
further exacerbates these challenges. Unlike natural-image 
collections, which often contain millions of labeled examples, 
publicly available ultrasound datasets are comparatively small 
and heterogeneous [5]. Models trained from scratch on such 
limited data frequently exhibit unstable convergence, high 
sensitivity to noise, and a strong tendency to overfit [6]. 

Transfer learning offers a partial remedy by leveraging 
feature representations learned from natural-image datasets 
such as ImageNet [7]. Although pretrained models provide 
robust low-level filters and general visual descriptors, their 
internal representations do not naturally align with the diffuse 

textures and ambiguous structures characteristic of ultrasound 
imagery [8]. Natural photographs contain well-defined object 
boundaries, rich color gradients, and clear geometric features, 
whereas ultrasound images display irregular textures, variable 
intensity patterns, and low-contrast lesion margins. As a result, 
directly fine-tuning natural-image models typically yields 
inconsistent and suboptimal performance [9]. 

Recent studies have explored domain adaptation strategies 
to reduce this discrepancy. However, many existing methods 
rely on adversarial objectives or complex distribution-
alignment losses and often require extensive intermediate 
datasets that may not be readily accessible [10]. Furthermore, 
directly adapting a model from natural images to ultrasound 
imagery involves a considerable representational leap due to 
their fundamentally different visual characteristics [11]. 

To address these limitations, this study introduces a 
Domain-Bridged Cross-Adaptation Framework that guides the 
model through a smoother representational transition. Instead 
of applying a single adaptation step, the framework 
progressively shifts the model’s feature space from natural-
image representations to intermediate medical-image structures 
and finally to ultrasound-specific patterns. This staged 
progression encourages the formation of medically aligned 
features, reduces the burden of abrupt domain shifts, improves 
stability during training, and enhances sensitivity to fine-
grained lesion characteristics. The following sections describe 
the conceptual foundations, design strategy, and empirical 
validation of the proposed approach. 

II. MATERIALS AND METHODS 

Deep neural networks develop increasingly abstract visual 
representations across their hierarchical layers. Early layers 
capture edges, gradients, and low-frequency textures, while 
deeper layers encode shape-based and semantic information. 
Transfer learning assumes that these representations retain 
some degree of utility across tasks, yet the semantic gap 
between natural images and ultrasound images is large enough 
to limit their direct transferability [7]. 

To mitigate this discrepancy, the proposed domain-bridged 
strategy introduces an intermediate medical-image domain that 
shares structural similarities with ultrasound imagery [11]. 
Medical images produced by modalities such as microscopy, 
radiography, and dermoscopy often contain irregular 
boundaries, heterogeneous textures, and locally varying 
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intensity profiles—properties that are more aligned with the 
characteristics of ultrasound images than with those of natural 
photographs. Training the model on such imagery creates a 
representational staging ground that encourages medically 
meaningful feature extraction before the final adaptation to 
ultrasound data. 

The first stage initializes the model using weights learned 
from a large-scale dataset of natural images [7]. This initial 
phase provides a stable and expressive set of filters capable of 
capturing diverse low-level features. Although these 
representations do not reflect medical structures, they offer a 
reliable foundation that prevents unstable learning behaviors 
when the model encounters small medical datasets in 
subsequent stages. The pretrained backbone also accelerates 
convergence and reduces the likelihood of vanishing gradients 
during early training iterations. 

In the second stage, the entire network is retrained using an 
intermediate dataset composed of structurally rich medical 
images [11]. These images may include microscopic cellular 
structures, dermoscopic skin patterns, or radiographic textures, 
all of which exhibit visual characteristics that resemble those 
observed in ultrasound scans. Retraining on this dataset 
encourages the model to depart from the object-centric 
semantics prevalent in natural images and instead adopt more 
medically oriented abstractions. This stage enables the 
development of intermediate representations that bridge the 
disparity between natural-image features and ultrasound-
specific patterns, thereby reducing the learning burden during 
the final fine-tuning phase [12]. 

In the final stage, the model undergoes fine-tuning on 
ultrasound datasets containing benign and malignant breast 
lesions [5]. All layers remain trainable so that the feature 
representations learned in earlier stages can be fully realigned 
with the unique textural and structural properties of ultrasound 
imaging. Minimal preprocessing is applied to maintain 
generalizability; images are resized, normalized, and 
augmented with realistic transformations such as moderate 
rotation, flipping, contrast adjustment, and intensity 
perturbation. These augmentations mimic variability 
encountered in clinical practice. The Adam optimizer, paired 
with a cosine decay learning-rate schedule, is used to maintain 
stable convergence. Light regularization with dropout and 
batch normalization is employed to stabilize feature 
distributions while preserving clinically relevant textures [13]. 

The framework is evaluated using multiple backbone 
architectures and consistent training configurations to ensure a 
fair comparison. Performance is assessed via accuracy, 
sensitivity, specificity, F1-score, and AUC [14]. Cross-dataset 
experiments are conducted to examine robustness to domain 
shifts, while ablation studies quantify the specific contribution 
of the intermediate medical-domain adaptation. Qualitative 
analyses involving activation maps and feature visualizations 
provide insight into the internal representational changes 
induced by the domain-bridged training process. 

 

III. RESULTS 

Experiments demonstrate that the domain-bridged 
framework consistently outperforms conventional transfer 
learning. Across various CNN backbones, models trained using 
the proposed multistage strategy achieve higher accuracy, 
improved sensitivity to malignant cases, and reduced variance 
across validation folds. Residual architectures in particular 
yield the strongest performance, likely due to their ability to 
preserve gradient flow and refine deeper representational 
features during staged adaptation [15]. In contrast, EfficientNet 
and Inception-based models show moderate but less stable 
improvements. 

Single-stage transfer learning often results in unstable 
convergence, characterized by oscillations in loss and accuracy. 
These instabilities stem from the abrupt transition between 
natural-image representations and ultrasound imagery. After 
incorporating the intermediate medical-domain stage, the 
training curves become markedly smoother and more 
consistent. The model demonstrates a reduced tendency to 
memorize noise patterns and instead learns more generalizable 
textural distinctions. This stability is maintained even in 
datasets with limited sample sizes. 

The multistage framework yields classification boundaries 
that more accurately separate benign and malignant lesions. 
ROC analyses reveal that the proposed method produces curves 
with stronger class separation and higher AUC scores. These 
trends indicate improved discriminative capacity and more 
reliable clinical decision support. Statistical evaluations 
confirm that the observed improvements are significant and 
unlikely to result from random variation. 

Testing on an independent ultrasound dataset further 
validates the robustness of the domain-bridged approach. The 
model maintains high sensitivity and specificity despite 
differences in acquisition equipment, imaging quality, and 
patient demographics. This outcome highlights the 
framework’s ability to generalize across diverse clinical 
settings and demonstrates its resilience to domain shifts that 
commonly challenge medical imaging models. 

Visualization of learned feature maps reveals clear 
distinctions between the domain-bridged model and 
conventional transfer-learning baselines. While single-stage 
models tend to focus on strong edges and global patterns, the 
domain-bridged framework captures fine-grained textures, 
irregular lesion boundaries, and subtle structural cues 
associated with malignancy. The progressive transition 
established in earlier stages appears to reorganize feature 
channels into medically meaningful clusters, indicating the 
emergence of domain-specific abstractions. 

IV. CONCLUSION 

This work presents a structured domain-bridged learning 
framework that progressively transitions visual representations 
from natural images through intermediate medical imagery and 
ultimately to ultrasound data. By incorporating a staged 
adaptation process, the framework reduces the representational 
mismatch that hampers conventional transfer learning and 
enables the extraction of stable, clinically relevant features 



from limited ultrasound datasets. Extensive evaluation 
demonstrates that the method enhances accuracy, sensitivity, 
interpretability, and cross-dataset robustness. 

Although this study focuses on breast ultrasound 
classification, the proposed approach is broadly applicable to 
other medical imaging tasks where annotated data are limited. 
Future research may explore alternative intermediate domains, 
multimodal pretraining sources, larger multi-center datasets, 
and integration with self-supervised learning strategies. Overall, 
the domain-bridged framework offers a highly promising 
foundation for developing reliable, adaptable, and clinically 
deployable AI systems for ultrasound image analysis. 
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