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Abstract—While the utilization of Small Language Models
(sLMs) has recently expanded, the limited context window of
approximately 2,048 tokens serves as a critical bottleneck in
long-term memory tasks. Conventional truncation or simple
summarization techniques lead to information loss and distor-
tion, causing the “catastrophic forgetting” problem. This study
proposes a “Query-Aware External Memory Pipeline” inspired
by the human “Selective Attention” mechanism to address this
issue. This methodology combines importance extraction with
embedding-based filtering to dynamically retrieve only key in-
formation relevant to the query. Extensive experiments using the
2WikiMultiHopQA dataset (N=500, 10 iterations) demonstrate
that the proposed method achieves a Fact Recovery rate of
72.00%, a 6-fold improvement over the truncation method.
Furthermore, it validates high applicability in limited-context
sLM environments through a 79% reduction in tokens and a 43%
reduction in inference time. Comparative experiments between
Gemma2 and Llama2 models also confirmed the method’s
versatility and reliability.

Index Terms—Small Language Models, External Memory,
Query-Aware Retrieval, Context Window Optimization, Multi-
hop Reasoning

I. INTRODUCTION

Large Language Models (LLMs) demonstrate superior per-
formance, but due to high computational costs and privacy
concerns, lightweight Small Language Models (sLMs) are
preferred in resource-constrained environments. Models such
as Google’s Gemma2 [2] and Meta’s Llama2 [3] exhibit ex-
cellent performance with fewer than 7B parameters. However,
they share a common limitation: a physically reduced context
window due to hardware constraints. This acts as a critical
weakness in tasks requiring long-term interaction with users.

Existing systems primarily adopt truncation policies that
delete old memories or summarization policies that compress
information. However, these approaches cause the permanent
loss of key facts or semantic distortion, inducing hallucinations
in the model. To resolve this, this study introduces the “Selec-
tive Attention” [1] mechanism, a human cognitive structure,

into sLM memory management. Just as humans do not retain
all information in working memory but retrieve it from long-
term memory as needed, this pipeline stores extensive dialogue
logs in external storage and dynamically activates only the
information required for a query. Thus, while this study
does not involve direct hardware-level experiments, it presents
a practical solution for sLM environments by maximizing
processing efficiency within a limited context window.

II. RELATED WORK

A. sLMs and the Long Context Dilemma

Modern sLMs are parameter-efficient but have strict input
limits, often around 2,048 tokens. While techniques like Slid-
ing Window Attention [4] have been proposed, they require
architectural changes, making universal application difficult.
Therefore, a prompt engineering approach that optimizes input
externally is more practical.

B. Comparison with RAG

Retrieval-Augmented Generation (RAG) is a technology
that retrieves external documents for LLMs [5], and there
are attempts to apply this to dialogue logs. Recent surveys
on Agentic RAG [13] highlight the importance of dynamic
retrieval strategies that adapt to query context. While sophis-
ticated techniques like Dense Retrieval exist, most focus on
single-document-based retrieval, limiting their effectiveness
in retrieving information based on dialogue flow. This study
overcomes this limitation by introducing a window-based
extraction method that considers the time-series characteristics
of dialogue data.

C. Comparison with Long Context Models

Recently, systems like RecurrentGPT [6], LongMem [7],
LlamaIndex’s ChatMemory [8], and Mem0 [12] have at-
tempted to solve the long-term memory problem. Recent



surveys [14] categorize agent memory into factual, experi-
ential, and working memory, emphasizing the importance of
dynamic memory retrieval. However, these approaches are
unsuitable for resource-constrained sLM environments as they
require model architectural modifications or incur massive
computational costs. In contrast, this study’s pipeline adopts
a lightweight post-processing method that operates without
modifying the base model, enabling effective memory expan-
sion at a low cost.

III. METHODOLOGY: QUERY-AWARE EXTERNAL MEMORY
PIPELINE

The proposed pipeline adopts a “Lazy Evaluation” ap-
proach, dynamically constructing context at the moment a
user’s query is input. The entire system consists of three
stages: (1) Importance Extraction, (2) Embedding-based Fil-
tering, and (3) Context Composition.

INPUT: Raw Dialogue History
Synthetic Input Stream

1. Importance Extraction
Rule-based Window: Key Fact ±10 Turns

2. Embedding Filtering
Semantic Similarity (Sim ≥ 0.30)

3. Context Composition
Priority Queue (≤ 2048 Tokens)

OUTPUT: sLM Inference
Gemma2 (2B) / Llama2 (7B)

Fig. 1. Overall structure of the proposed Query-Aware External Memory
Pipeline.

A. Importance Extraction

Over 60% of dialogue consists of chit-chat with low in-
formational value. To reduce LLM call costs, this study uses
a rule-based approach to extract 10 turns before and after a
section where a key fact appears (Window = ±10).

Specifically, Named-Entity Recognition (NER) is utilized
to detect keywords and entities, identifying key facts. For
example, if the utterance “Patient A stopped taking medication
in February 2024” is input, the system detects entities like
“Patient A (Person)”, “February 2024 (Date)”, and “medica-
tion (Concept)”, selecting the utterance as an anchor for key
information.

B. Embedding-based Filtering

To remove noise irrelevant to the query from the
initially selected information, semantic search is per-
formed. Considering efficiency requirements, the lightweight

Algorithm 1: Embedding Filtering Strategy

Input: Query Q, Candidates C = {S1, . . . , Sn}
Output: Filtered Memory M

1: vQ ← Encode(Q) // Query Vectorization
2: M ← ∅
3: for each Si in C do
4: vS ← Encode(Si) // Sentence Vectorization
5: sim← CosineSim(vQ, vS)
6: if sim ≥ 0.30 then
7: M ←M ∪ {Si}
8: end if
9: end for

10: return M

all-MiniLM-L6-v2 model [9] is used, and only informa-
tion with a cosine similarity above the threshold τ is selected.

Through the above algorithm, only sentences with a cosine
similarity score above the threshold are included in the final
memory.

C. Threshold Optimization Analysis

To find the optimal threshold, performance was measured
while varying τ from 0.1 to 0.7.
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Fig. 2. Fact Recovery performance curve by threshold value. Performance
peaks at τ = 0.30, indicating optimal balance between noise removal and
information preservation.

As shown in Fig. 2, performance peaks at τ = 0.30,
suggesting an optimal balance between noise removal and
information loss prevention.

D. Context Composition

Finally, the selected information is reassembled into the
sLM’s input prompt. To strictly adhere to the physical limit of
2,048 tokens, a priority queue strategy is used. An illustrative
example of this composition is shown in Example 1.

Based on this hierarchical structure, the model is informed
first of the objective (Query), followed by the immediate
conversational context (Recent History), and finally reinforced
with factual information (Retrieved Fact). This ensures opti-
mal allocation of the limited token budget while preserving
reasoning capability.



Example 1. Priority-based Context Composition

[Priority 1] Query: “When did A stop taking medication?”
[Priority 2] Recent History: “User: You mentioned not
taking it yesterday.” (Turn-2)
[Priority 3] Retrieved Fact: “Medication discontinuation
date: 2024-02-15.”

IV. EXPERIMENTAL DESIGN

A. Dataset Selection and Sampling

This study selected 2WikiMultiHopQA [10] as the primary
dataset. Compared to HotpotQA [11], it enforces Multi-hop
Reasoning more strictly, making it suitable for verifying
memory retrieval capabilities. For the main experiment, 500
samples were randomly extracted, and for the Ablation Study,
a separate set of 100 samples was independently extracted.
All processes were performed under a fixed random seed
(Seed=42) for reproducibility.

B. Experimental Environment and Statistical Verification

All experiments were conducted using a single NVIDIA
RTX 3090 Ti (24GB VRAM) GPU and Ollama v0.3.12
environment. The main experiment was repeated 10 times
under N = 500, Seed = 42 conditions to derive average
values. An independent t-test was performed for statistical
significance verification, confirming that the performance dif-
ference between Gemma2 and Llama2 was not statistically
significant (p ≈ 0.087 > 0.05).

C. Evaluation Metrics

Fact Recovery is a binary metric indicating the proportion
of key information essential for deriving the correct answer
included in the prompt:

Fact Recovery =
Included Key Facts

Total Key Facts
× 100 (1)

Token Recall signifies the inclusion rate of correct answer
tokens within the generated response:

Token Recall =
|Answer ∩ Ground Truth|

|Ground Truth|
× 100 (2)

V. RESULTS AND ANALYSIS

A. Main Performance Evaluation (N=500)

The results of the extensive experiment on the Gemma2
model are shown in Table I.

TABLE I
MAIN EXPERIMENT RESULTS (GEMMA2, N=500)

Strategy Recall Recovery Tokens Latency

Truncation 26.61% 11.67% 1,260 1.82s
Naive Sum 25.15% 9.17% 396 3.05s
sLM-only 58.45% 42.67% 316 0.62s
Proposed 75.78% 72.00% 273 1.04s

The proposed method achieved a Fact Recovery of 72.00%,
showing a 6-fold performance improvement over Truncation
(11.67%). Notably, Naive Summarization (9.17%) performed
even worse than Truncation (11.67%), indicating that the
summarization process itself causes semantic distortion and
loss of critical factual details required for multi-hop reasoning.
Additionally, the proposed method recorded 1.04 seconds in
terms of Time Efficiency (Latency), demonstrating a favorable
balance between performance and speed.

B. Contribution Analysis (Ablation Study, N=100)

To analyze the contribution of each component of the
proposed pipeline, removal experiments were conducted using
separate samples (N=100). Results are shown in Table II.

TABLE II
ABLATION STUDY RESULTS (N=100)

Configuration Token Recall Fact Recovery

Proposed (Full) 68.32% 61.17%
w/o Embedding 57.84% 43.67%
w/o Importance 42.18% 41.17%
Baseline (w/o Both) 20.66% 8.67%

The numerical difference between the results in Table II
and Table I (72.00% vs 61.17%) is attributed to sampling
differences. The Ablation Study utilized 100 independent sam-
ples that did not overlap with the main experiment. Removing
embeddings resulted in a performance drop of approximately
17.5 percentage points, and removing importance extraction
caused a drop of about 20 percentage points, demonstrating
the necessity of both modules. The combined effect of both
modules (52.5 percentage points improvement from Baseline
to Full) exceeds the sum of individual contributions, suggest-
ing a synergistic interaction where importance extraction pre-
filters noise, thereby enhancing the precision of subsequent
embedding-based retrieval.

C. Model Generalization Verification (Gemma2 vs Llama2)

To demonstrate that the pipeline is not overfitted to a
specific model, the pipeline was applied to the Llama2 model
under the same experimental conditions (N=500, 10 itera-
tions). The Token Recall in Llama2 was 76.52%, showing
a difference of only 0.74 percentage points from Gemma2
(75.78%), confirming that the difference is not statistically
significant (p > 0.05). Thus, this pipeline can be considered
a Model-Agnostic general technology independent of model
architecture.

VI. CONCLUSION

This study experimentally demonstrates that the memory
deficiency problem of Small Language Models (sLMs) occur-
ring in limited context environments can be effectively miti-
gated. The proposed Query-Aware External Memory Pipeline
achieved up to a 6-fold improvement in information recovery
rate compared to existing Truncation methods and confirmed



its practical value in small language model environments by
simultaneously reducing token usage and inference time.

However, one limitation of this work is that the evaluation
was performed on structured benchmark datasets with con-
trolled experimental settings, and the hyperparameters (win-
dow size ±10, τ=0.30) were not exhaustively tuned across
different scenarios. Future research will address these gaps by
conducting hyperparameter sensitivity analysis, investigating
failure case patterns, and validating the pipeline’s robustness
on real-world noisy conversational data across diverse do-
mains.
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