
Benchmarking CNN Components in EZKL: A
Layer-Level Analysis for EVM-Compatible

Deployment
George Chidera Akor1, Love Allen Chijioke Ahakonye2, Jae Min Lee1, Dong-Seong Kim1,∗

1Department of IT-Convergence Engineering, Kumoh National Institute of Technology, Gumi, South Korea
2ICT Convergence Research Center, Kumoh National Institute of Technology, Gumi, South Korea

∗NSLab Co. Ltd., Gumi, South Korea
Email: {georgeakor, loveahakonye, ljmpaul, dskim}@kumoh.ac.kr

Abstract—Zero-knowledge machine learning (ZKML) enables
verifiable inference on private data, but deploying convolutional
neural networks (CNNs) in production remains constrained by
a multi-dimensional tradeoff between proof-generation latency,
bandwidth consumption, and computational complexity. Existing
ZKML frameworks and engineering blogs provide qualitative
heuristics, yet practitioners lack systematic, layer-level measure-
ments to guide architecture design under these constraints. This
work presents the first systematic, layer-level characterization
of CNN component costs in EZKL, a Halo2-based ZKML
framework targeting EVM-compatible blockchains. We profile
8 feasible layer types (activations, pooling, normalization, and
linear) across two EZKL precision settings (scale 7 and 10),
measuring proof-generation time, proof size, circuit complexity,
and peak memory in 26 experiments. We reveal critical infras-
tructure requirements by documenting 10 additional experiments
that exceeded hardware limits (Conv2d operations, LayerNorm,
and ReLU-based composite CNNs requiring >125GB RAM).
Contrary to conventional wisdom, we find that precision config-
uration has a negligible performance impact (1.002× ratio), and
that system RAM, not GPU VRAM, is the primary bottleneck.
We release an open-source profiling toolkit and a public dataset
that enable practitioners to query expected costs for their
architectures and constraints.

Index Terms—Blockchain, Convolutional Neural Networks,
EZKL, EVM, Halo2, Zero-Knowledge Machine Learning, zk-
SNARK.

I. INTRODUCTION

Zero-knowledge machine learning (ZKML) enables verifi-
able neural network inference while preserving privacy [1].
When instantiated as zk-SNARKs, these proofs enable de-
ployment in smart contracts and resource-constrained ver-
ifiers [2]. Deploying verifiable CNNs requires navigating
three constraints: latency (proof generation takes minutes [3]),
bandwidth (proof sizes affect transmission costs), and com-
putational complexity (circuit size determines memory re-
quirements). Architects must select activation functions and
downsampling strategies under tight resource budgets, but at
present have little quantitative, layer-level guidance.

Existing work, including ZKML surveys, framework docu-
mentation, and engineering blog posts, primarily offers quali-
tative recommendations (e.g., “avoid MaxPooling,” use poly-
nomial activations) derived from scattered benchmarks and en-

gineering intuition rather than systematic, layer-level profiling
under production-realistic constraints [4]–[7]. ZKML surveys
and on-chain overviews summarize available frameworks and
use cases [4], [8], [9] while benchmarking efforts on ZK
proofs for ML inference report end-to-end performance for
full models and selected architectures [5], [7], [10]. However,
prior evaluations rarely isolate individual CNN layers or
systematically map the multi-dimensional cost space spanning
proof time, proof size, circuit complexity, and memory under
a concrete, production-oriented stack.

This paper provides systematic layer-level benchmarks for
EZKL, a Halo2-based ZKML framework targeting EVM-
compatible blockchains. Our contributions are:

1) Layer-level measurements. We benchmark eight viable
CNN layer types in EZKL, covering activations, pooling,
normalization, and linear operations, at standard resolu-
tion under two precision settings (scale 7 and 10), with
an additional scaling study on dense layers. Across three
composite CNN architectures, we conduct 26 feasible
experiments to measure proof time, proof size, circuit
complexity, and peak memory usage.

2) Multi-objective analysis. We characterize the multi-
dimensional Pareto frontier spanning latency, band-
width, and circuit complexity, and identify deployment
regimes with distinct architectural optima: bandwidth-
constrained IoT, latency-critical edge, and resource-
limited verification nodes.

3) Open benchmark. We release an open-source profiling
toolkit and a public dataset of configuration–cost pairs,
enabling practitioners to query expected costs for their
deployment constraints and serving as a basis for future
ZKML-aware architecture search.

The remainder of this paper is organized as follows. Sec-
tion II reviews background and related work in ZKML and
on-chain verification. Section III describes our methodology
and experimental design. Section IV presents single-layer and
composite architecture results, design principles and deploy-
ment guidance. Section V discusses limitations and directions
for future work.

Fig. 1. EZKL CNN benchmarking pipeline with concrete data flow. Input: PyTorch models with CIFAR-10 resolution tensors (e.g., [1, 3, 32, 32] or [1,
64, 64] for activations). ONNX export produces 10–500KB model files. EZKL calibration generates settings.json (1–5KB) with optimized scales. Circuit
compilation yields constraints ranging 5K–2M. Proving key generation consumes 0.3–60GB RAM. Final outputs: proof files (150–250KB), circuit size, proof
time (1–300s), and peak memory metrics.

II. BACKGROUND & RELATED WORK

Zero-knowledge proofs enable proving the correct execution
of f(x) = y without revealing inputs or intermediate val-
ues [11]. Neural networks are compiled to arithmetic circuits
over Fp; linear operations map naturally to field arithmetic
while non-linear operations require expensive constraint gad-
gets [4]. Proving time typically scales as O(|C| log |C|) in
constraints |C| [2]. We focus on EZKL [12], an open-source
ZKML framework that compiles neural networks to Halo2-
based zk-SNARK circuits and has production deployments on
EVM-compatible blockchains [12], [13].

Prior ZKML benchmarking spans framework compar-
isons [14], which evaluated six ZK systems on MLPs; spe-
cialised protocols, including zkCNN’s sumcheck optimisa-
tions (88.3s for VGG16, 1,264× speedup) [10], Mystique’s
arithmetic-Boolean conversions [5], and pvCNN’s QMP-based
13.9× acceleration [15]; and end-to-end benchmarks such as
ZKML (52.9s for ResNet-18) [6] and ZKTorch (6× speedup
on MLPerf Edge) [16]. However, all prior work benchmarks
complete models rather than isolating layer-level costs. No ex-
isting study profiles individual CNN layers within a production
framework across proof time, proof size, circuit complexity,
and peak memory; the granularity practitioners require for
architecture selection under resource constraints.

III. METHODOLOGY

All experiments use an Intel i9-10940X CPU (14 cores,
28 threads) with 125GB RAM and three NVIDIA RTX
3090 GPUs (24GB VRAM each) running Ubuntu 22.04.
Despite GPU availability, EZKL proof generation is CPU
and RAM-intensive, with GPU utilization below 5%. This
finding suggests practitioners should prioritize RAM (128+
GB) and multi-core CPUs over GPU hardware. The software

stack consists of EZKL v23.0.3 [12] and PyTorch v2.5.1.
All scripts and configuration files are publicly available. Fig-
ure 1 illustrates the end-to-end benchmarking pipeline. Each
CNN layer flows through PyTorch definition, ONNX export
(typically 10–500KB), EZKL circuit generation (producing
settings.json with calibrated scales), proving key generation
(1–60GB RAM), and proof generation with comprehensive
metrics collection.

We profile 8 layer types: activations (ReLU, SiLU, Tanh,
polynomial), pooling (MaxPool2d, AvgPool2d), normaliza-
tion (BatchNorm2d), and linear (Dense). Input shapes match
CIFAR-10 resolution (32×32×3 or variants). Combining these
with 2 precision configurations yields 16 core experiments,
supplemented by 4 Dense scaling experiments and 6 composite
architecture runs, for a total of 26 feasible experiments.
An additional 10 experiments (Conv2d variants, LayerNorm,
CNN-ReLU composite) exceeded 125GB RAM during key
generation.

Each layer is wrapped in a minimal PyTorch module,
exported to ONNX, and compiled via EZKL Python bindings
with automatic calibration. We evaluate two precision config-
urations: scale 10 (accuracy mode, high precision) and scale
7 (efficiency mode, lower precision), which control EZKL’s
input_scale and param_scale parameters that affect
the fixed-point representation. We measure proof generation
time, proof size, circuit size (constraints), and peak memory
usage. For composite architectures, we train small CNNs on
CIFAR-10 (50 epochs, Adam, lr=0.001) to evaluate end-to-end
costs. We test four architectures:

• CNN-ReLU: Conv – ReLU – MaxPool – Conv – ReLU
– MaxPool – Dense

• CNN-Poly: Conv – polynomial activation – AvgPool –
Conv – polynomial activation – AvgPool – Dense

• CNN-Mixed: Conv – polynomial activation – AvgPool –
Conv – ReLU – AvgPool – Dense

• CNN-Strided: Conv (stride 2) – ReLU – Conv (stride 2)
– ReLU – Dense

Each architecture is trained on CIFAR-10 for 50 epochs
using Adam optimizer (learning rate 0.001, weight decay
0.0001), then compiled through EZKL to obtain end-to-end
proof-generation time, proof size, circuit size, peak memory,
and model accuracy.

IV. RESULTS AND DISCUSSION

We present empirical findings across 26 experiments, orga-
nized into the following categories: precision impact, layer-
level performance, scaling behavior, composite architectures,
deployment guidance, and infrastructure insights.

A. Precision Impact: A Counter-Intuitive Finding

A central finding of this work is that EZKL’s precision con-
figuration (input_scale and param_scale) has negligi-
ble impact on proof generation performance across all tested
layer types. This contradicts conventional ZKML wisdom that
higher precision incurs substantial overhead. Table I presents
the measured ratios between high-precision (scale 10) and low-
precision (scale 7) configurations.

TABLE I
PRECISION IMPACT ON PERFORMANCE METRICS (SCALE 10 VS SCALE 7

RATIO)

Metric Mean Ratio Std Dev Interpretation
Proof generation time 1.002× 0.08 Negligible (0.2% increase)
Proof size 1.000× 0.00 Identical
Circuit size (constraints) 1.000× 0.00 Identical
Peak memory usage 1.001× 0.05 Negligible

This result contradicts conventional ZKML wisdom that
higher precision incurs substantial performance penalties. We
attribute this to EZKL’s automatic calibration phase, which
adjusts internal scales to minimize circuit complexity while
maintaining numerical stability. After calibration, both pre-
cision modes converge to similar actual scale values, result-
ing in nearly identical circuits. This finding has immediate
practical implications: practitioners can use strict precision
settings (scale 10) to ensure high numerical accuracy without
sacrificing efficiency, eliminating a traditional accuracy-vs-
performance tradeoff.

Figure 2 visualizes this counter-intuitive result, comparing
proof time, proof size, and circuit complexity across precision
settings. The near-identical bars demonstrate that EZKL’s cal-
ibration effectively neutralizes the trade-off between precision
and performance.

B. Layer-Level Performance Characteristics

Having established that precision settings are essentially
cost-free, we now examine the performance characteristics
of individual layer types. Table II presents detailed metrics
for eight feasible CNN layers, averaged across both precision
settings. Layers are ordered by proof generation time from
fastest to slowest, revealing a 146× performance range.

TABLE II
LAYER-LEVEL PERFORMANCE CHARACTERISTICS (AVERAGED ACROSS

SCALE 7 AND 10)

Layer Proof time (s) Proof size (KB) Constraints Peak RAM (GB)
Fast (<10s): Activation Functions & Linear

Dense 1.78 74.9 19,072 0.8
Polynomial 4.66 1,257.0 65,536 1.2
Tanh 5.06 1,248.0 65,536 1.2
SiLU 5.16 1,265.9 67,584 1.3
ReLU 5.19 1,216.7 96,256 1.5

Medium (10–100s): Pooling
AvgPool2d 82.71 24,576.4 1,884,162 26.4

Slow (>100s): Normalization & Pooling
BatchNorm2d 137.15 39,057.3 2,097,152 42.1
MaxPool2d 260.80 39,059.5 2,310,144 51.8

Excluded (OOM): Conv2d variants & LayerNorm
Conv2d (stride 1, 2), DepthwiseConv2d, LayerNorm: >125 GB RAM

Several trends emerge: (1) Activation functions are uni-
formly fast (1.8–5.2s), with Dense layers being the most
efficient, and polynomial activations slightly outperforming
ReLU. (2) Pooling operations span a wide performance range,
with AvgPool2d being 3.2× faster than MaxPool2d (82.7s vs
260.8s). (3) BatchNorm2d incurs moderate overhead (137.1s),
making it viable for applications with relaxed latency budgets.
(4) Proof sizes vary dramatically (75 KB to 39 MB), driven
primarily by circuit complexity rather than operation type. (5)
Memory consumption is the limiting factor for convolutional
layers, with all Conv2d variants exceeding our 125 GiB system
capacity.

C. Scaling Study: Sub-Linear Cost Growth

The layer-level measurements raise an essential question:
how do these costs scale with model size? To answer this, we
evaluated Dense layers in two configurations: Small (5,440
constraints) and Large (272,896 constraints), a 50× increase
in circuit complexity. Table III summarizes the results.

TABLE III
DENSE LAYER SCALING BEHAVIOR

Configuration Constraints Proof time (s) Peak RAM (GB)
Dense-Small 5,440 1.09 0.3
Dense-Large 272,896 16.76 4.1
Ratio 50.1× 15.4× 13.7×

Proof time scales sub-linearly with circuit size: a 50×
increase in constraints yields only a 15.4× increase in proof
time. Across all 26 experiments, power-law fit yields exponent
0.89 ± 0.03 (R2=0.975, p<10−20), confirming sub-linear
scaling. This favorable behavior suggests larger models may
be more efficient per parameter. Memory consumption exhibits
similar sub-linear scaling (13.7×).

Figure 3 presents the scaling behavior across all 26 ex-
periments on a log-log plot. The power-law fit reveals sub-
linear scaling (exponent 0.89 ± 0.03, R2=0.975), indicating
that EZKL proof generation benefits from economies of scale
as circuit complexity increases.

D. Attribution of Performance Characteristics

An important methodological considteration is whether our
benchmarked costs reflect properties of the EZKL Library or

Fig. 2. Precision impact comparison showing negligible performance differences between scale 10 (high precision) and scale 7 (low precision). The 1.002×
ratio contradicts expectations of substantial overhead for higher precision.

Fig. 3. Scaling behavior across all experiments showing sub-linear relation-
ship (exponent 0.89, R2=0.975) between circuit size and proof time. Different
markers denote layer categories; the dashed line shows a power-law fit.

artifacts of Pytorch. We argue that the measured performance
characteristics are predominantly attributable to EZKl and
the underlying Halo2 proving system, as EZKL’s architecture
sets a clear separation between model definition and proof
generation. Pytorch is only involved in the initial model
definition and ONNX export phases, which contribute neg-
ligibly to the total benchmarked time. The Python bindings
serve merely as an interface to invoke EZKL’s compiled Rust
routines; the computationally intensive operations (polynomial
commitment, constraint satisfaction, and proof construction)
execute entirely within the native Halo2 prover.

Nevertheless, we acknowledge two potential sources of
framework influence:

1) ONNX export fidelity: Different frameworks may pro-
duce subtly different ONNX graphs for equivalent op-
erations, potentially affecting circuit structure; and

2) Quantisation calibration: the sample inputs provided
during EZKL’s calibration phase derive from PyTorch
tensors, which could marginally affect the optimised
scale parameters.

Still, we consider these effects to be second-order and unlikely

to alter our primary findings, though future work could validate
this by comparing ONNX exports from TensorFlow or other
frameworks.

E. Composite Architecture Comparison

With layer-level costs and scaling behavior characterized,
we now examine how these components compose in end-to-
end CNN architectures. Table IV presents results for three
successfully evaluated composite architectures on CIFAR-10,
alongside one failed architecture that exceeded our hardware
capacity. CNN-ReLU could not be assessed due to out-of-
memory errors during proving key generation, even on our
125 GiB RAM system, indicating that ReLU-based composite
architectures require substantially more memory than alterna-
tives using polynomial or mixed activations.

TABLE IV
COMPOSITE CNN ARCHITECTURES ON CIFAR-10 (AVERAGED ACROSS 2

PRECISION SETTINGS)

Architecture Proof time (s) Proof size (KB) Constraints Peak memory (GB)
CNN-Strided 69.8 478.9 1,144,660 11.2
CNN-Mixed 291.1 478.7 5,277,528 58.3
CNN-Poly 288.8 478.9 5,531,480 59.1
CNN-ReLU OOM error (4 failed attempts; requires >125 GB RAM)

CNN-Strided emerges as the clear winner for latency-critical
applications, achieving 4.2× faster proof generation than
CNN-Mixed and CNN-Poly while requiring only 11.2 GiB
peak memory. This architecture eliminates pooling layers in
favor of strided convolutions, resulting in substantially smaller
circuit complexity (1.14M vs 5.3M constraints). CNN-Mixed
and CNN-Poly exhibit similar performance characteristics,
with proof times near 290 seconds and peak memory usage
around 58 GiB. Both architectures prioritize ZK-friendly oper-
ations (polynomial activations, average pooling) but generate
significantly larger circuits than CNN-Strided. The composite
models exhibit a 3.4× overhead compared to the average
of isolated core layers (216.6s vs 62.8s), demonstrating that
layer-level costs compose approximately linearly in end-to-end
architectures.

F. The Conv2d Paradox

Isolated Conv2d layers (32×32 input) consistently exceeded
125GB RAM during proving key generation, yet composite
CNNs containing convolutional layers successfully generated
proofs with <60GB peak memory. This discrepancy arises
from three factors: (1) isolated layers are wrapped in identity
I/O circuits for testing, creating larger end-to-end circuits;
(2) composite architectures downsample inputs progressively:
CNN-Strided uses stride-2 convolutions (effective 16×16 res-
olution), while CNN-Mixed and CNN-Poly use AvgPool after
the first conv, reducing to 16×16 spatial dimensions; and
(3) EZKL’s compiler applies more aggressive optimizations
to multi-layer graphs than isolated operations. This finding
implies Conv2d is viable at ≤16×16 resolution on 125GB
systems; practitioners should use strided convolutions or early
pooling to manage memory.

G. Deployment Regime Recommendations

Based on our measurements, we provide concrete archi-
tectural guidance for three deployment regimes prioritizing
different constraints. Table V summarizes recommendations.

Bandwidth-limited regime. For IoT and mobile scenarios
where network transmission cost dominates, Dense layers and
polynomial activations offer the best proof size efficiency (75–
1,300 KB). BatchNorm2d should be avoided due to its 39 MB
proof size, while AvgPool2d (24.6 MB) may be acceptable for
moderate bandwidth budgets.

Latency-critical regime. Real-time applications (au-
tonomous vehicles, robotics) should prioritize fast layers:
Dense (1.78s), activation functions (4.7–5.2s), and the CNN-
Strided architecture (69.8s). Critically, MaxPool2d (260.8s)
and BatchNorm2d (137.1s) are prohibitively slow for inter-
active workloads.

Memory-constrained regime. Embedded systems with
limited RAM should use activation-only or small Dense-layer
models, avoiding pooling (26–52 GB) and normalization (42
GB). Conv2d is currently infeasible on commodity hardware
(>125 GB).

Beyond these regimes, we anticipate that the dataset will
enable automated model search, with the cost model incor-
porating ZK-specific metrics, complementing existing Neural
Architecture Search (NAS) methods [17], [18].

H. Lessons Learned: Infrastructure & Design Principles

Our systematic evaluation reveals several counterintuitive
findings and practical insights:

a) System RAM, not GPU VRAM, is the bottleneck.:
Despite using three NVIDIA RTX 3090 GPUs (24 GiB VRAM
each), GPU utilization remained below 5% across all exper-
iments, with VRAM consumption under 1 GiB. Proof gen-
eration in EZKL is CPU- and system-RAM-intensive, with
CPU usage reaching 1,500–1,600% (15–16 cores) and RAM
consumption up to 60 GiB per experiment. This finding has
direct implications for infrastructure planning: practitioners
should prioritize high-capacity system RAM (128+ GB) and

multi-core CPUs over expensive GPU hardware. Cloud de-
ployments should favor memory-optimized instances (e.g.,
AWS r6i family) rather than GPU instances (p3/p4).

b) Precision is “free.”: The negligible performance dif-
ference between scale 7 and scale 10 (1.002× ratio) contra-
dicts common assumptions in ZKML that higher precision
incurs steep costs. This enables practitioners to use strict accu-
racy requirements without performance penalties, eliminating
a traditional tradeoff.

c) Pooling-free architectures win for latency.: CNN-
Strided (69.8s) outperforms CNN-Mixed and CNN-Poly
(290s) by 4.2× through eliminating pooling layers. Strided
convolutions provide downsampling without the circuit com-
plexity of MaxPool2d (260.8s) or AvgPool2d (82.7s).

d) ReLU composite architectures are problematic.:
While standalone ReLU layers work well (5.19s), CNN-ReLU
composite architectures failed due to OOM errors. Polynomial
and mixed-activation architectures (CNN-Poly, CNN-Mixed)
successfully generate proofs, suggesting activation function
choice significantly impacts memory requirements in multi-
layer contexts.

e) Sub-linear scaling offers hope.: The observed 0.89
scaling exponent indicates that proof time grows slower than
circuit size, making moderately-sized models (1–5M con-
straints) more viable than naive linear extrapolation would
suggest.

I. Limitations

Several limitations of this study are worth highlighting:
• Single framework. Our measurements focus on EZKL

and Halo2; results may not directly generalize to other
proving systems or ZKML stacks (e.g., Circom/Groth16,
Risc0, Plonky2) [13].

• On-chain gas measurement. While our infrastructure
generates Solidity verifier contracts suitable for EVM de-
ployment, we encountered Solidity compiler stack depth
limitations when deploying verifiers for complex circuits.
This is a known constraint of zk-SNARK verifiers on
current EVM implementations [12]. Future work may ex-
plore gas estimation using alternative compilation strate-
gies (e.g., --via-ir) or simplified circuit subsets.

• Model scale. We target CNNs with parameter counts suit-
able for edge and on-chain inference. Extending to large-
scale architectures (e.g., ResNet-50 or transformers) will
likely require recursive proving or folding schemes [19].

• Hardware configuration. We evaluate a specific GPU
instance; results may vary for larger prover clusters or
specialized ZK accelerators.

• Reproducibility. Our experiments are run on a sin-
gle high-end workstation with an i9-10940X CPU and
RTX 3090 GPU. While this configuration may not be
identical to all deployment environments, we mitigate
this by releasing all scripts, configuration files, and mea-
surement pipelines so that results can be replicated on
comparable hardware. and by reporting mean ± standard
deviation over multiple runs for each configuration.

TABLE V
ARCHITECTURE SELECTION GUIDE BY DEPLOYMENT CONSTRAINT

Constraint priority Recommended layers / patterns Cost characteristics Use cases
Bandwidth-limited (IoT) Dense, polynomial activations,

AvgPool2d; avoid BatchNorm2d
Proof size: 75–1,300 KB;
Time: 1–83s

Wireless sensors, satellite
links, mobile edge

Latency-critical (edge) Dense, SiLU/ReLU/Poly activa-
tions, CNN-Strided architecture

Time: 1–70s; Size: 75–479 KB;
Constraints <1.2M

Real-time vision (vehicles,
robotics, AR/VR)

Memory-constrained Activation-only models, small
Dense layers; avoid pooling &
normalization

Peak RAM: 0.3–1.5 GB; Con-
straints: 5K–96K

Embedded systems,
resource-limited nodes

V. CONCLUSION & FUTURE WORK

This paper presents a systematic benchmark of CNN com-
ponents in EZKL for verifiable inference on EVM-compatible
blockchains. We provide quantitative, layer-level measure-
ments to navigate tradeoffs between proof latency, bandwidth,
circuit complexity, and memory in edge deployments. Our
study profiles 8 feasible layer types across two precision
settings (scales 7 and 10), including scaling studies and com-
posite architectures, and captures proof time, proof size, circuit
size, and peak memory across 26 successful experiments. Ten
additional configurations exceeded hardware limits: Conv2d
and ReLU-based composite models require more than 125 GiB
RAM, which is a barrier for commodity hardware.

Key findings are that (1) precision configuration has a
negligible impact (1.002× time ratio), (2) RAM, not GPU,
is the main bottleneck, (3) scaling is sub-linear (exponent
0.89 ± 0.03), and (4) pooling-free architectures reach about
4× speedup. We release an open source toolkit and dataset
for cost queries and ZKML-aware architecture search, and
outline future work on larger models with recursive proofs,
transformer components for verifiable language models, and
comparisons with alternative ZKML stacks.

ACKNOWLEDGMENT

This work was partly supported by the Innovative Human
Resource Development for Local Intellectualization program
through the IITP grant funded by the Korea government
(MSIT) (IITP-2025-RS-2020-II201612, 25%), by the Priority
Research Centers Program through the NRF funded by the
MEST (2018R1A6A1A03024003, 25%), and by the MSIT,
Korea, under the ITRC support program (IITP-2025-RS-2024-
00438430, 25%) and by the Basic Science Research Program
through the National Research Foundation of Korea(NRF)
funded by the Ministry of Education (RS-2025-25431637,
25%).

REFERENCES

[1] M. B. Aziz, A. S. Naushad, M. Siddiqui, and J. A. Shamsi, “Zkvml:
Zero-knowledge verifiable machine learning,” in International Confer-
ence on Asia Pacific Advanced Network. Springer, 2024, pp. 220–239.

[2] J. Groth, “On the size of pairing-based non-interactive arguments,” in
Advances in Cryptology – EUROCRYPT 2016, ser. Lecture Notes in
Computer Science, vol. 9616. Springer, 2016, pp. 305–326.

[3] zkonduit, “Benchmarking ezkl and zkml frameworks,” 2023.
[4] A. Sathe, V. Saxena, P. A. Bharadwaj, and S. Sandosh, “State of the

art in zero-knowledge machine learning: A comprehensive survey,” in
International Conference on Advancements in Smart Computing and
Information Security (ASCIS). Springer, 2023, pp. 98–110.

[5] C. Weng, K. Yang, X. Xie, J. Katz, and X. Wang, “Mystique: Efficient
conversions for zero-knowledge proofs with applications to machine
learning,” in Proceedings of the 30th USENIX Security Symposium.
USENIX Association, 2021, pp. 501–518.

[6] B.-J. Chen, S. Waiwitlikhit, I. Stoica, and D. Kang, “Zkml: An optimiz-
ing system for ml inference in zero-knowledge proofs,” in Proceedings
of the 19th European Conference on Computer Systems (EuroSys 2024).
Association for Computing Machinery, 2024, pp. 560–574.

[7] M. Hao, H. Chen, H. Li, C. Weng, Y. Zhang, H. Yang, and T. Zhang,
“Scalable zero-knowledge proofs for non-linear functions in machine
learning,” in Proceedings of the 33rd USENIX Security Symposium.
USENIX Association, 2024, pp. 3819–3836.

[8] V. Keršič, S. Karakatič, and M. Turkanović, “On-chain zero-knowledge
machine learning: An overview and comparison,” Journal of King Saud
University – Computer and Information Sciences, vol. 36, no. 9, p.
102207, 2024.

[9] Y. Peng et al., “A survey of zero-knowledge proof based verifiable
machine learning,” arXiv preprint, vol. arXiv:2502.18535, 2025.

[10] T. Liu, X. Xue, and Y. Zhang, “zkcnn: Zero knowledge proofs for con-
volutional neural network predictions and accuracy,” in Proceedings of
the 2021 ACM SIGSAC Conference on Computer and Communications
Security. Association for Computing Machinery, 2021, pp. 2968–2985.

[11] S. Goldwasser, S. Micali, and C. Rackoff, “The knowledge complexity
of interactive proof systems,” SIAM Journal on Computing, vol. 18,
no. 1, pp. 186–208, 1989.

[12] zkonduit, “Ezkl documentation.”
[13] F. H. Soureshjani, M. Hall-Andersen, M. Jahanara, J. Kam, J. Gorzny,

and M. Ahmadvand, “Automated analysis of halo2 circuits,” in Pro-
ceedings of the 21st International Workshop on Satisfiability Modulo
Theories (SMT 2023). CEUR-WS.org, 2023, pp. 3–17.

[14] Modulus Labs, “The cost of intelligence: Proving machine learning
inference with zero-knowledge,” 2023.

[15] J. Weng, J. Weng, G. Tang, A. Yang, M. Li, and J.-N. Liu, “pvcnn:
Privacy-preserving and verifiable convolutional neural network testing,”
Trans. Info. For. Sec., vol. 18, p. 2218–2233, Jan. 2023. [Online].
Available: https://doi.org/10.1109/TIFS.2023.3262932

[16] B.-J. Chen, L. Tang, and D. Kang, “Zktorch: Compiling ml inference
to zero-knowledge proofs via parallel proof accumulation,” 2025.
[Online]. Available: https://arxiv.org/abs/2507.07031

[17] T. Elsken, J. H. Metzen, and F. Hutter, “Neural architecture search,” in
Automated Machine Learning: Methods, Systems, Challenges, F. Hutter,
L. Kotthoff, and J. Vanschoren, Eds. Springer, 2019, pp. 63–77.

[18] M. Wistuba, A. Rawat, and T. P. S., “A survey on neural architecture
search,” arXiv preprint, vol. arXiv:1905.01392, 2019.

[19] S. Bowe, J. Grigg, and D. Hopwood, “Halo: Recursive proof composi-
tion without a trusted setup,” in IACR Cryptology ePrint Archive, vol.
2019/1021, 2019.

1

1https://github.com/Jupiter-Plantagenet/ezkl-cnn-benchmark

