
Benchmarking Readability-Aware Boosting and
Re-Scoring Techniques for Hybrid Lexical–Dense

Code Search
1st Budi Susanto

Electrical Engineering
and Information Technology
Universitas Gadjah Mada

Yogyakarta, Indonesia
budisusanto490229@mail.ugm.ac.id

2nd Ridi Ferdiana*
Electrical Engineering

and Information Technology
Universitas Gadjah Mada

Yogyakarta, Indonesia
ridi@ugm.ac.id

3rd Teguh Bharata Adji
Electrical Engineering

and Information Technology
Universitas Gadjah Mada

Yogyakarta, Indonesia
adji@ugm.ac.id

Abstract—Code search is a critical capability in modern
software development, supporting efficient reuse, comprehen-
sion, and maintenance. While lexical retrieval methods such as
BM25 remain strong baselines, recent neural approaches have
introduced dense vector representations that facilitate semantic
matching. However, hybrid retrieval pipelines rarely incorporate
code readability, even though readability strongly influences
how developers interpret and assess code relevance. This study
provides a systematic benchmark of readability-aware ranking
strategies for both lexical and hybrid code search.

Three ranking strategies are examined on the CodeSearchNet
Java dataset: (1) a BM25 baseline, (2) readability-aware boosting
that integrates a supervised readability score into the lexical
scoring function, and (3) re-scoring techniques, i.e. additive,
multiplicative, and α-fusion, that combine lexical scores with
readability signals. The evaluation is further extended to hybrid
lexical and dense retrieval by fusing BM25 with dense code
embeddings and applying readability-aware re-scoring to the
fused rankings.

Across 93 evaluated queries, readability-aware boosting yields
a consistent improvement of approximately 5.15% over the
lexical BM25 baseline, while multiplicative re-scoring offers an
additional gain of about 7.44%. Moreover, readability-aware
α-fusion provides the most stable improvements in hybrid re-
trieval, achieving an MRR@10 of 0.51 (an increase of roughly
10.87% over the BM25 baseline) and an nDCG@10 of 0.28
(an improvement of approximately 29.54%). Collectively, these
results demonstrate that readability signals substantially enhance
both lexical and hybrid code search, and they establish the
first comprehensive benchmark of readability-aware ranking
strategies.

Index Terms—code search, BM25, dense retrieval, re-scoring,
boosting, readability, hybrid retrieval

I. INTRODUCTION

Semantic code retrieval has become an essential part of
supporting modern software development. With the ever-
growing code repositories and developers need to quickly find
relevant code snippets, the effectiveness of ranking models
in code retrieval is a highly determining factor. Information
retrieval models based on lexical matching, such as BM25
(Best Match 25) [1], have proven to be robust in various
code search tasks. In their experiments, Sachdev et al. [2]

demonstrated that utilizing the BM25 method delivers bet-
ter performance than applying basic vector similarity search
(Neural code search). Zhang et al. [3] also reinforced that
BM25 with tokenization configuration outperforms neural bag-
of-words and self-attention methods. He et al. [4] showed that
BM25 can effectively retrieve highly relevant data in Retrieval-
Augmented Generation (RAG) systems for coding tasks. It
can be said that BM25’s performance can often compete with
dense vector neural bag-of-words-based methods.

However, code snippets are not just ordinary textual docu-
ments; they have structures, naming patterns, and readability
levels that can influence developers’ perceptions of relevance
in the search results. In this regard, the use of neural bag-
of-words is considered insufficient for the semantic needs
of a code snippet. Efforts to further enhance code search
performance by strengthening the semantics of code snippets
have been made through the development of code-specific
embedding vector models. Gu et al. [5] proposed leveraging
a deep learning-based model (DeepCS) that combines dense
vectors of code and descriptions into a single vector space.
The complex DeepCS model was simplified by Liu et al. [6]
by applying it within an information retrieval (IR) model to
strengthen semantic recognition of queries and code snippets
(CodeMatcher). This model implements reranking between
the method name weight and the code snippet. Reranking
successfully delivered better performance than CodeHow and
DeepCS. Heyman et al. [7] developed an improved vector
embedding model from the initial neural code search [2] by
applying augmentation to the training corpus and utilizing all
identifiers in the code. The resulting embedding vector models
were applied in code search as an ensemble (code and de-
scription). This model outperformed BM25 and NCS. Gandhi
et al. [8] applied a reranking model to the BM25 ranking
results, using it as an initial filter, with a neural CodeBERT
model trained on bug reports and commit messages from git
repositories. This reranking model boosted performance by up
to 80%.

On the other hand, code reading is one of the most fre-

quently performed activities by application developers. The
easier code is to read, the more it supports the quality of the
developed software, including its maintenance. Sorour et al.
[9] emphasized that readability is a crucial objective in the
software development process, as it affects overall software
quality. Code readability is influenced not only by its syntactic
formulation but also by aspects such as visual clarity, structural
simplicity, and documentation support. With this perception,
it is considered necessary to incorporate readability factors
into code search systems. The background for this need is
that code search involves selecting reusable code solution
patterns [10]. A survey by Sadowski et al. [11] showed that
26% of programmers use code search services in local project
repositories for reusable code practices. Therefore, readability
factors can serve as additional signals in code search ranking.
The hypothesis regarding this argument is that readability
weights have the potential to improve ranking quality.

In the IR context, such signals can be exploited through
boosting, readability-aware weighting, or client-side re-
scoring, resulting in hybrid models that combine textual sig-
nals (BM25) and intrinsic code quality. The hybrid model for
search systems has been proven to improve recall compared to
using dense vector-based models alone [12]. The combination
of sparse and dense vector models (hybrid approach) in search
systems is more effective than using either sparse or vector
models individually [13].

This study is aimed at understanding to what extent the
rankings from traditional models based on lexical matching,
dense vectors, and additional code readability weighting sig-
nals can contribute to the effectiveness of code search. First,
this study evaluates to what extent pure BM25 can deliver
effective retrieval results on the code search dataset used,
given that BM25 remains a strong baseline in many previous
studies. Next, it examines whether integration of readability
scores through boosting and re-scoring techniques—using add,
mul, or α-fusion approaches—can improve ranking effective-
ness compared to the BM25 baseline, especially since the
readability signal provides an intrinsic code quality perspec-
tive not captured by lexical signals. Finally, this research
experiments with hybrid models to find out whether there
is improved search performance from applying weighted-sum
fusion between sparse and dense vector models. Accordingly,
this study compares these four approaches to identify which
method delivers the most significant and stable improvements
in MRR@10 and nDCG@10, so that the most effective
readability signal integration strategy for code search can be
determined.

II. METHODOLOGY

To develop and test the code search model, this study
uses a collection of Java code snippets and test queries from
the CodeSearchNet (CSN) Challenge Corpus [14]
provided on Hugging Face via the ir-datasets package1

[15]. This package provides the CodeSearchNet (CSN)

1https://pypi.org/project/ir-datasets/

and CodeSearchNet Challenge datasets that can be
used directly. The code snippet corpus for each language,
including Java, is provided in the training, validation, and
testing sections. For the experiments in this study, all Java
code snippets across these three sections are combined as the
search corpus.

Next, the study explores a code search architec-
ture based on a hybrid approach that combines lexical
BM25 with dense vectors [16]. To generate dense vec-
tors for each query and code snippet, this research uses
CodeSearch-ModernBERT-Owl-Plus2 as the LLM
(Large Language Model), which has been fine-tuned from
ModernBERT-Owl-Plus for the code search task. The
dimensionality of the resulting dense vectors is 768.
This model has been trained using a dual-tower (doc-
string, code) approach, enabling it to produce dense vec-
tors for both code and natural language text. Additionally,
CodeSearch-ModernBERT-Owl-Plus has been trained
using a hard negative mining approach to better distin-
guish between relevant and less or non-relevant results.
ModernBERT-Owl-Plus is a domain-adapted derivative of
ModernBERT [17], designed to overcome the limitations of
the classic CodeBERT model in understanding the syntactic
and semantic structure of program code.

Fig. 1 illustrates the relationships among the components
involved in this code search exploration. The code search
functions use the Apache SOLR system version 9.103, which
enables hyperparameter tuning for the lexical BM25 method.
Furthermore, version 9.10 has introduced dense vector search
with HNSW indexing. Apache SOLR provides a boosting
mechanism using the code readability weight on top of BM25.
Re-scoring, on the other hand, is performed on the client side
and involves the code readability weight via Additive Re-
Scoring, Multiplicative Re-Scoring, and α-weighted fusion.
The best performance result among the BM25 lexical baseline,
boosting, and re-scoring with readability weights will be used
to test the hybrid model based on Weighted-Sum fusion.

Performance evaluation results are measured using two
common metrics in information retrieval systems: Mean Re-
ciprocal Rank (MRR@10) to measure how quickly the system
finds the most relevant result, and Normalized Discounted
Cumulative Gain (NDCG@10) to assess the overall ranking
quality among the top ten results. These metrics are chosen
because they represent a balance between early precision and
graded relevance—both of which are important in code search,
where users usually seek the most relevant snippet within a
limited set of results.

At the ingestion and preprocessing stages, one crucial step is
deduplication. Deduplication is the process of cleaning redun-
dancy without sacrificing diversity among relevant snippets.
In this context, every code snippet that forms part of the
ground-truth relevance for the query dataset is retained. This
study implements deduplication for Java code snippets that

2https://huggingface.co/Shuu12121/CodeSearch-ModernBERT-Owl-Plus
3https://solr.apache.org/

Fig. 1. Code Search Architecture Test Plan

are exact duplicates as well as those that are not relevant but
are duplicates of ground-truth entries. No duplicate Java code
snippets were found in the ir-dataset package’s dataset.

The next process is to validate whether all relevant URLs
in this relevance definition list are available within the Code-
SearchNet corpus. The results showed that 26 URLs no longer
provided their code snippets. In these cases, similar code
was searched for via archive.net or by searching for the
snippet’s package and method names. Through this search,
one snippet URL could not be found. This code snippet had a
relevance value of 0, so it was excluded from the evaluation.

Another step taken was to review, among the 99 query
definitions, whether the relevance list in the qrels.csv file
contains queries where all query IDs are assigned a relevance
value of 0. If all are 0, the study excludes those queries from
testing. Through this validation process, 6 queries were found
where all relevance values were 0. This step is necessary to
ensure that the computation of MRR and NDCG performance
metrics is truly based on queries with at least one result scoring
> 0.

Additionally, since the code search ranking system in this
study requires a complete Java method declaration snippet,
every code text entry was validated to ensure it represents
a valid, complete Java method declaration. The validation
process revealed 463 code snippets that needed to be cor-
rected into a complete method declaration. The method for
selecting whole method declaration snippets is based on the
func name value. After the entire validation process, a total
of 497,144 Java-language CSN documents were ready for use.

The code readability weights for Java snippets used in this
study are based on a readability metric model previously
developed by the researcher, called KERTA. This metric model
can produce 56 metric features from a Java code snippet,
grouped into 5 conceptual dimensions of code readability. The
dimensions defined in KERTA are Visual Clarity, Structural
Simplicity, Documentation Support, Naming Transparency,

and Cognitive Load. The KERTA readability weight model
is based on a corpus of Java code snippets that have been
classified into three readability categories: unreadable, neutral,
and readable. The global readability weight produced by
KERTA for a code snippet is in the range [0,1], so no further
normalization is needed. For every Java code snippet in the
CSN, its global readability weight will be calculated using the
KERTA weight model.

BM25-based experiments were conducted without involving
dense vector retrieval in order to purely observe the influence
of each lexical component. Testing involved various combi-
nations of query fields (qf) and phrase fields (pf), as well as
incorporating a boost function (bf) based on the readability
score to assess the contribution of code quality factors to the
relevance of search results. The parameters b and k1 in BM25
were set to 0.1 and 0.7 to accommodate the varying lengths
of code snippets, while the α value was used to control the
influence level of the BM25 score on the final results.

This study applies hyperparameter tuning to the weights of
each defined search basis field, specifically the parameters qf,
(λ) lambda, and (α) alpha. As a result, each test configuration
will involve several iterations of combination to determine its
best performance.

III. RESULTS AND DISCUSSION

A. Boosting and Re-scoring with Code Readability Weighting

Testing related to code search with Solr has been specifically
configured to handle code snippets as individual documents.
The metadata provided by CodeSearchNet for each code
snippet and used in this code search test includes code text,
code tokens, and docstring text. The code tokens field
is not preprocessed because it already contains the result
of tokenization for each code snippet. The docstring text
field is preprocessed by converting each token to lowercase,
removing words defined as stop words except for Java lan-
guage keywords, and applying Porter stemming. Meanwhile,

TABLE I
PERFORMANCE RESULTS OF BM25-BASED CODE SEARCH WITH BOOSTING, READABILITY WEIGHT RE-SCORING

Config Boosting qf
λ α MRR@10 NDCG@10

code text docstring text code tokens

BM25 Baseline

- 7 - - - - 0.343544 0.163907
- - - 7 - - 0.404416 0.153278
- 5 - 7 - - 0.456763 0.200736
- 5 2 - - - 0.354297 0.175364
- 5 1 6 - - 0.457497 0.217139

BM25 + Kerta Boosting

Scale 6 1 7 - - 0.481059 0.22405
SQRT Scale 6 1 7 - - 0.462186 0.220881

Log Sum 5 1 6 - - 0.457497 0.216951
POW 6 1 7 - - 0.462186 0.220881

BM25 + Kerta Re Scoring
Additive 6 1 8 0.6 - 0.471625 0.218356

Multiplicative 6 1 8 0.15 - 0.491547 0.227134
Alpha 6 1 8 - 0.8 0.485079 0.224493

code text undergoes more complex preprocessing steps, in-
cluding: URL/email-based tokenization to avoid excessive dot
splitting, separating words from camelCase and snake case,
and removing Java operators.

Unlike general text search, code search requires a mech-
anism capable of balancing lexical matching and syntactic
suitability, as search terms often contain identifiers, techni-
cal terms, or naming patterns unique to programming lan-
guages. Therefore, the initial configuration focuses on testing
the combination of several main fields, namely code text,
code tokens, and docstring text, with adjustments to BM25
parameters and the application of readability-based boosting
(kerta score).

As a comparison, the initial configuration using only the
code text field served as the baseline, followed by a series
of tests involving combinations of fields including identi-
fier tokenization (code tokens) and semantic descriptions
(docstring text). The next stage involved adding a boosting
component based on kerta score, which represents code
readability levels, using various functions (linear, root, log-
arithmic, and power) to observe to what extent readability
impacts search performance. Finally, the alpha parameter
was adjusted to assess the balance between strengthening the
BM25 score and the additional contribution of boosting to the
search results.

Table I presents the results of several code search configura-
tion tests based on the BM25 method for CodeSearchNet data
and KERTA readability weights. The test configurations are
defined into three groups. The first group involves basic BM25
function testing with five configurations. The second group
is defined based on the best-performing configuration from
the first group, applying a boosting function by incorporating
the KERTA readability weight into the search weighting. The
tested boosting functions include scale (normalizing the field
values to a new scale [0,1]), square root (smoothing the
differences between documents with high values to prevent
dominance by large scores), log (using the logarithm to reduce
large differences), sum (to ensure the log is not zero), and pow
(a power function to strengthen high scores). All tests for each
boosting function were carried out using grid search to find

the best performance among parameter value choices.
The third test group applies additive fusion re-scoring,

multiplicative fusion, and alpha (α). The re-scoring function
with linear addition (additive) is used for each ranking weight
of the retrieved documents, applying equation (1).

ŝ(di) = sbm25(di) + λ · skerta(di) (1)

In the add function, the readability weight serves as an
additive bonus to the BM25 score.

• If (λ > 0), documents with high readability will be
pushed to the top.

• If (λ = 0), same as pure BM25.

Rescoring with proportional reinforcement (multiplication)
serves to proportionally multiply the search ranking weight
by the KERTA weight (equation (2)).

ŝ(di) = sbm25(di) · (1 + λ · skerta(di)) (2)

Meanwhile, for normalization-based weighted fusion rescor-
ing, it is applied in the following order of calculation:

1) Normalization of BM25 and KERTA scores by min-
max:

s′ ∗ bm25(di) =
s ∗ bm25(di)−min(sbm25)

max(sbm25)−min(sbm25) + ε
(3)

s′ ∗ kerta(di) =
s ∗ kerta(di)−min(skerta)

max(skerta)−min(skerta) + ε
(4)

2) Combine the two linearly:

ŝ(di) = α · s′ ∗ bm25(di) + (1− α) · s′ ∗ kerta(di) (5)

where:

• (α) adjust a balance between BM25 contribution and
readability.

• (α = 1.0) only for BM25 relevance score ranking.
• (α = 0.0) only for readability score based ranking.

The test results show significant performance variation
across configurations, both in MRR@10 and NDCG@10 met-
rics. The comparison between configurations illustrates how
the combination of query fields (qf) and BM25 parameters
affects the system’s ability to find and rank relevant code
snippets. In general, performance consistently improves when
the code tokens field is included along with code text, in-
dicating that identifier token representation plays a significant
role in semantic matching between queries and code snippets.

Configurations that rely solely on code text yield the
lowest MRR and NDCG scores, indicating that raw text-based
search is insufficient to capture syntactic variations in source
code. Conversely, adding code tokens provides a substantial
improvement in both the precision of the top results (MRR)
and ranking stability (NDCG). Meanwhile, the inclusion of
docstring text shows a limited influence, as the docstrings
in the dataset do not always align with the functional content
of the code being described.

More significant improvements arise when the system is
enhanced with a readability score-based boosting function
(kerta score). The results show that highly readable snippets
tend to be more relevant to user queries, so integrating
readability as a factor contributes positively to ranking. Among
the various forms of boosting functions tested, the linear trans-
formation of kerta score delivers the most consistent results,
whereas non-linear functions (such as root, logarithmic, or
exponentiation) do not provide significant improvements.

Additionally, variations in the multiplication parameter
show a consistent pattern: increasing the scaling factor for
the BM25 score improves performance up to an optimal
point at lambda = 0.15. This finding demonstrates that the
prominence of the BM25 score remains important in lexical
search-based systems, but it can be effectively augmented
by additional signals such as code readability. Overall, the
combination of code textˆ6 docstring strˆ1 code tokensˆ8
with boosting scale(kerta score, 0, 1) ∗ 5 and alpha = 0.8
delivers the best performance, with MRR@10 of 0.491547 and
NDCG@10 of 0.227134.

Thus, the configuration ”qf=code textˆ6.0
docstring strˆ1.0 code tokensˆ8.0” and
”pf=code tokensˆ1.0 code textˆ1.0” can be interpreted as
an effective “semantically dominant, phrase-aware retrieval”
strategy. This approach demonstrates that synergy between
a high semantic weight on tokens, contextual support from
code content, and moderate phrase boosting can consistently
enhance code search performance—both in terms of top-rank
relevance (MRR) and graded relevance ranking (NDCG).

This optimal configuration represents a search approach that
balances the semantic representation of identifiers and the
textual context provided by both code content and documen-
tation. For the qf parameter, the highest weight is assigned
to code tokens (ˆ8.0), followed by code text (ˆ6.0) and
docstring str (ˆ1.0). This arrangement of weights indicates
that the system emphasizes token-based semantic matching,
such as function, variable, or class names, as these elements
best represent the functional meaning of a code snippet.

Meanwhile, code text provides syntactic context and com-
ments within the function body, while the docstring still
contributes, albeit on a smaller scale, enriching descriptive
semantic understanding.

The pf parameter is used to provide a phrase boost to
search results that contain token sequences that match the
query, whether in the code tokens or code text fields, each
with a moderate weight (ˆ1.0). With this setup, the system
gives additional scores to results that maintain phrase structure
aligned with the query’s word order, without overpowering
the main influence of semantic matching. This phrase-aware
retrieval approach helps balance precision and recall, while
enhancing the system’s ability to identify results that are
relevant and naturally structured.

B. Hybrid Search (Dense vector and BM25 rescoring)

Testing of the hybrid retrieval model was conducted by
combining two search approaches, namely dense vector-based
search (KNN) and lexical BM25 search, which was rescored
using readability scores (kerta score). The evaluation process
used 93 queries (out of a total of 99 queries, with 5 queries
having no documents of relevance > 0) from the Java dataset,
resulting in three comparison scenarios, as shown in Table II.

TABLE II
HYBRID MODEL PERFORMANCE RESULTS

Config MRR@10 nDCG@10

dense vector only 0.403772 0.210577
hybrid 0.507207 0.281275

The integration of readability scores (kerta score) into
BM25 through a multiplicative rescoring approach (using the
formula (2)) results in an increase in MRR@10 of approx-
imately 7.1% compared to BM25 using the query model
”code textˆ5.0 docstring strˆ1.0 code tokensˆ6.0”. When
the results of dense retrieval (embedding-based) are fused
with BM25 · (1 + λ · kerta) using the weighted sum fusion
method (α = 0.35, min–max normalization), performance
increases further, reaching MRR@10 = 0.5072 and nDCG@10
= 0.2813. This improvement indicates that the two types of
representation, dense and lexical, are complementary.

Although the margin between the hybrid model and the
BM25 multiplication rescoring approach is only 3%, it can be
said that the hybrid approach is effective because documents
with higher readability receive proportional boosts to their
lexical scores. As a result, outputs that are easier to read
(e.g., those with clear code structure, descriptive naming, and
concise comments) are more likely to appear at the top ranks.
This shows that kerta score serves as a semantic-quality prior
that helps balance textual similarity and syntactic/semantic
quality of the retrieved code snippets.

The dense vector component captures semantic similarities
between queries and code snippets even without direct term
matches, such as the relationship between ”serialize JSON”
and a function named ’toJsonString’. Meanwhile, BM25

maintains its advantage in capturing explicit terminological
matches, particularly in very specific variable names and
comments. With α = 0.35, the contribution of dense retrieval
is kept from overwhelming the lexical results, which aligns
with the nature of code search requiring a balance between
semantic understanding and syntactic matching.

Score normalization using the min–max approach plays a
crucial role in making the dense and BM25 scores comparable
before fusion. Without normalization, the score distribution
from BM25 (usually in a small range with high variance across
queries) can suppress the contribution of the dense vector.
The choice of weighted sum fusion (wsum) is also proven
to be more stable compared to rank-based fusion methods
(such as Reciprocal Rank Fusion) because it maintains the
proportionality among already normalized scores.

These results show that the hybrid model with readability-
based client-rescore and weighted fusion is an effective con-
figuration for code search systems that consider result quality.
The architecture can be interpreted as three layers:

1) Lexical retrieval (BM25), which functions to capture
direct term matches.

2) Quality-aware rescoring (KERTA), which functions to
prioritize documents that are easy to read and well-
structured.

3) Semantic retrieval (Dense KNN), which adds semantic
context from embeddings trained with code–text align-
ment.

This combination enhances the system’s ability to present
code snippets that are not only semantically relevant but also
high in readability quality, thereby being more useful to users.

IV. CONCLUSION

This study demonstrates that BM25, with optimized field
configuration and parameters, serves as a strong lexical base-
line for code retrieval, especially when queries directly match
syntactic structures or identifiers. BM25’s stable performance
makes it a primary reference point for other approaches.

The integration of KERTA readability scores, whether
through boosting or re-scoring, has been proven to improve
ranking effectiveness. Boosting provides moderate gains, while
re-scoring strategies (ADD, MUL, and α-fusion) offer more
precise score combinations and result in more consistent
increases in MRR@10 and nDCG@10. This confirms that
readability is an important relevance signal for prioritizing
code snippets that are easier to understand.

Meanwhile, dense vector-based models have not individu-
ally outperformed BM25, but they serve a complementary role.
When combined with BM25 and Kerta scores in a hybrid re-
scoring scheme, this approach delivers the best performance
among all tested configurations. Thus, the combination of
sparse and dense relevance, combined with readability signals,
is the most effective strategy for improving the quality of code
retrieval.

ACKNOWLEDGMENT

The authors would like to thank the Faculty of Information
Technology, Universitas Kristen Duta Wacana, for the financial
support provided for the publication of this paper.

REFERENCES

[1] S. Robertson and H. Zaragoza, “The probabilistic relevance framework:
BM25 and beyond,” Foundations and Trends in Information Retrieval,
vol. 3, pp. 333–389, 2009.

[2] S. S. Sachdev, H. H. Li, S. S. Luan, S. S. Kim, K. K. Sen, and S. S.
Chandra, “Retrieval on source code: A neural code search,” MAPL 2018
- Proceedings of the 2nd ACM SIGPLAN International Workshop on
Machine Learning and Programming Languages, co-located with PLDI
2018, pp. 31–41, 2018.

[3] X. Zhang, J. Xin, A. Yates, and J. Lin, “Bag-of-words baselines for
semantic code search,” in Proceedings of the 1st Workshop on Natural
Language Processing for Programming, 2021, pp. 88–94.

[4] P. He, S. Wang, S. Chowdhury, and T.-H. Chen, “Evaluating the
effectiveness and efficiency of demonstration retrievers in RAG for
coding tasks,” arXiv [cs.SE], Oct. 2024.

[5] X. Gu, H. Zhang, and S. Kim, “Deep code search,” Proceedings -
International Conference on Software Engineering, pp. 933–944, 2018.

[6] C. Liu, X. Xia, D. Lo, Z. Liu, A. E. Hassan, and S. Li, “CodeMatcher:
Searching code based on sequential semantics of important query
words,” arXiv [cs.SE], May 2020.

[7] G. Heyman and T. Van Cutsem, “Neural code search revisited: Enhanc-
ing code snippet retrieval through natural language intent,” arXiv:2008.
12193 Search. . ., 2020.

[8] S. Gandhi, L. Gao, and J. Callan, “Repository-level code search with
neural retrieval methods,” arXiv [cs.IR], Feb. 2025.

[9] S. E. Sorour, H. E. Abdelkader, K. M. Sallam, R. K. Chakrabortty, M. J.
Ryan, and A. Abohany, “An analytical code quality methodology using
latent dirichlet allocation and convolutional neural networks,” Journal
of King Saud University - Computer and Information Sciences, vol. 34,
no. 8, Part B, pp. 5979–5997, September 2022.

[10] V. Bauer, J. Eckhardt, B. Hauptmann, and M. Klimek, “An exploratory
study on reuse at google,” in Proceedings of the 1st International
Workshop on Software Engineering Research and Industrial Practices,
ser. SER&IPs 2014. New York, NY, USA: Association for Computing
Machinery, June 2014, pp. 14–23.

[11] C. Sadowski, K. T. Stolee, and S. Elbaum, “How developers search for
code: A case study,” 2015 10th Joint Meeting of the European Software
Engineering Conference and the ACM SIGSOFT Symposium on the
Foundations of Software Engineering, ESEC/FSE 2015 - Proceedings,
pp. 191–201, 2015.

[12] N. Arabzadeh, X. Yan, and C. L. A. Clarke, “Predicting
efficiency/effectiveness trade-offs for dense vs. sparse retrieval strategy
selection,” in Proceedings of the 30th ACM International Conference
on Information & Knowledge Management, ser. CIKM ’21. New York,
NY, USA: Association for Computing Machinery, 2021, p. 2862–2866.
[Online]. Available: https://doi.org/10.1145/3459637.3482159

[13] J. Lin, X. Ma, S.-C. Lin, J.-H. Yang, R. Pradeep, and R. Nogueira,
“Pyserini: A python toolkit for reproducible information retrieval
research with sparse and dense representations,” in Proceedings of
the 44th International ACM SIGIR Conference on Research and
Development in Information Retrieval, ser. SIGIR ’21. New York,
NY, USA: Association for Computing Machinery, 2021, p. 2356–2362.
[Online]. Available: https://doi.org/10.1145/3404835.3463238

[14] H. Husain, H.-H. Wu, T. Gazit, G. Miltiadis, and A. M. Brockschmidt,
“CodeSearchNet challenge: Evaluating the state of semantic code
search,” arXiv:1909. 09436, 2019.

[15] S. MacAvaney, A. Yates, S. Feldman, D. Downey, A. Cohan, and
N. Goharian, “Simplified data wrangling with ir datasets,” in SIGIR,
2021.

[16] H. Husain, “How to create natural language semantic search for
arbitrary objects with deep learning,” https://towardsdatascience.com/
semantic-code-search-3cd6d244a39c, May 2018, accessed: 2024-3-21.

[17] B. Warner, A. Chaffin, B. Clavié, O. Weller, O. Hallström,
S. Taghadouini, A. Gallagher, R. Biswas, F. Ladhak, T. Aarsen,
N. Cooper, G. Adams, J. Howard, and I. Poli, “Smarter, better, faster,
longer: A modern bidirectional encoder for fast, memory efficient, and
long context finetuning and inference,” arXiv [cs.CL], Dec. 2024.

